
CS 695: Virtualization and Cloud 
Computing

Lecture 3: Techniques to design
Virtual Machine Monitors

Mythili Vutukuru

IIT Bombay

Spring 2021



What does VMM do?
• Multiple VMs running on a PM – multiplex the underlying machine

• Similar to how OS multiplexes processes on CPU 

• VMM performs machine switch (much like context switch)
• Run a VM for a bit, save context and switch to another VM, and so on…

• What is the problem?
• Guest OS expects to have unrestricted access to hardware, runs privileged 

instructions, unlike user processes
• But one guest cannot get access, must be isolated from other guests

VM

VMM

VMVM VM Proc

OS

ProcProc Proc



Trap and emulate VMM (1)

• All CPUs have multiple privilege levels
• Ring 0,1,2,3 in x86 CPUs

• Normally, user process in ring 3, OS in ring 0
• Privileged instructions only run in ring 0

• Now, user process in ring 3, VMM/host OS in ring 0
• Guest OS must be protected from guest apps
• But not fully privileged like host OS/VMM
• Can run in ring 1?

• Trap-and-emulate VMM: guest OS runs at lower privilege level than 
VMM, traps to VMM for privileged operation

Guest app (ring 3)

Guest OS (ring 1)

VMM /
Host OS
(ring 0)



Trap and emulate VMM (2)

• Guest app has to handle syscall/interrupt
• Special trap instr (int n), traps to VMM 

• VMM doesn’t know how to handle trap

• VMM jumps to guest OS trap handler

• Trap handled by guest OS normally

• Guest OS performs return from trap
• Privileged instr, traps to VMM

• VMM jumps to corresponding user process

• Any privileged action by guest OS traps to VMM, emulated by VMM
• Example: set IDT, set CR3, access hardware

• Sensitive data structures like IDT must be managed by VMM, not guest OS

Guest app
(ring 3)

Guest OS
(ring 1)

VMM /
Host OS
(ring 0)

Trap and
emulate



Problems with trap and emulate

• Guest OS may realize it is running at lower privilege level
• Some registers in x86 reflect CPU privilege level (code segment/CS)

• Guest OS can read these values and get offended!

• Some x86 instructions which change hardware state (sensitive 
instructions) run in both privileged and unprivileged modes
• Will behave differently when guest OS is in ring 0 vs in less privileged ring 1

• OS behaves incorrectly in ring1, will not trap to VMM

• Why these problems? 
• OSes not developed to run at a lower privilege level

• Instruction set architecture of x86 is not easily virtualizable (x86 wasn’t 
designed with virtualization in mind)



Example: Problems with trap and emulate

• Eflags register is a set of CPU flags
• IF (interrupt flag) indicates if interrupts on/off

• Consider the popf instruction in x86
• Pops values on top of stack and sets eflags

• Executed in ring 0, all flags set normally

• Executed in ring 1, only some flags set 
• IF is not set as it is privileged flag

• So, popf is a sensitive instruction, not 
privileged, does not trap, behaves differently 
when executed in different privilege levels
• Guest OS is buggy in ring 1

CPU

EIP

EAX EDX…..

Eflags

Code/data

Heap

Stack

…..



Popek Goldberg theorem
• Sensitive instruction = changes hardware state

• Privileged instruction = runs only in privileged mode
• Traps to ring 0 if executed from unprivileged rings

• In order to build a VMM efficiently via trap-and-emulate method, 
sensitive instructions should be a subset of privileged instructions
• x86 does not satisfy this criteria, so trap and emulate VMM is not possible

Sensitive
instructions

Privileged
instructions

CPU instructions

x86



Techniques to virtualize x86 (1)
• Paravirtualization: rewrite guest OS code to be virtualizable

• Guest OS won’t invoke privileged operations, makes “hypercalls” to VMM

• Needs OS source code changes, cannot work with unmodified OS

• Example: Xen hypervisor

• Full virtualization: CPU instructions of guest OS are translated to be 
virtualizable
• Sensitive instructions translated to trap to VMM

• Dynamic (on the fly) binary translation, so works with unmodified OS

• Higher overhead than paravirtualization

• Example: VMWare workstation



Techniques to virtualize x86 (2)
• Hardware assisted virtualization: KVM/QEMU in Linux

• CPU has a special VMX mode of execution

• X86 has 4 rings on non-VMX root mode, another 4 rings in VMX mode

• VMM enters VMX mode to run guest OS in (special) ring 0

• Exit back to VMM on triggers (VMM retains control)

Guest app (ring 3)

Guest OS (ring 0)

Host app (ring 3)

VMM / Host OS
(ring 0)

Non-VMX root mode VMX mode

Enter VMX mode to run VM

Exit to trap to VMM



Memory virtualization
• What about address translation in virtual machines?

Page

Guest
Virtual Addresses (GVA)

Guest
Physical Addresses (GPA)

Address = Y

Address = Z

Address = X

Host/Machine
Physical Addresses (HPA)

Address = Y’

Address = Z’

Address = X’

Guest page table VMM / Host page table



Techniques for memory virtualization
• Guest page table has GVAGPA mapping

• Each guest OS thinks it has access to all RAM starting at address 0

• VMM / Host OS has GPAHPA mapping
• Guest “RAM” pages are distributed across host memory

• Which page table should MMU use?

• Shadow paging: VMM creates a combined mapping GVAHPA and MMU 
is given a pointer to this page table
• VMM tracks changes to guest page table and updates shadow page table

• Extended page tables (EPT): MMU hardware is aware of virtualization, 
takes pointers to two separate page tables
• Address translation walks both page tables

• EPT is more efficient but requires hardware support



I/O Virtualization

• Guest OS needs to access I/O devices, but cannot give full control of 
I/O to any one guest OS

• Two main techniques for I/O virtualization:
• Emulation: guest OS I/O operations trap to VMM, emulated by doing I/O in 

VMM/host OS

• Direct I/O or device passthrough: assign a slice of a device directly to each VM

• Many optimizations exist, active area of research



Summary

• Techniques for CPU virtualization
• Paravirtualization: rewrite guest OS source code

• Full virtualization: dynamic binary translation

• Hardware-assisted virtualization: CPU has special virtualization mode

• Techniques for memory virtualization:
• Shadow page tables: combined GVAHPA mappings

• Extended page tables: MMU is given separate GVAGPA and GPAHPA 
mappings

• I/O virtualization: emulation, device passthrough

• VMMs use a combination of above techniques
• We will study all of the above techniques in detail


