
CS 695: Virtualization and Cloud 
Computing

Lecture 4: Hardware-assisted 
CPU virtualization in KVM/QEMU

Mythili Vutukuru

IIT Bombay

Spring 2021



Hardware-assisted Virtualization

• Modern technique, after hardware support for virtualization 
introduced in CPUs
• Original x86 CPUs did not support virtualization
• Intel VT-X or AMD-V support is widely available in modern systems
• Special CPU mode of operation called VMX mode for running VMs

• Many hypervisors use this H/W feature, e.g., QEMU/KVM in Linux

QEMU (Userspace process)

KVM (kernel module)

CPU with VMX mode

Works with binary translation if no hardware support
Sets up guest VM memory as part of userspace process

When invoked, KVM switches to VMX mode to run guest

CPU switches between VMX and non-VMX root modes



Libvirt and QEMU/KVM

• When you install QEMU/KVM on Linux, libvirt is also installed
• A set of tools manage hypervisors, including QEMU/KVM

• A daemon runs on the system and communicates with hypervisors

• Exposes an API using which hypervisors can be managed, VM created etc.

• Commandline tool (virsh) and GUI (virt-manager) use this API to manage VMs

QEMU (Userspace process)

KVM (kernel module)

CPU with VMX mode

virsh, virt-manager 
and other tools

Libvirt
API



QEMU architecture
• QEMU is userspace process

• KVM exposes a dummy device
• QEMU talks to KVM via open/ioctl syscalls

• Allocates memory via mmap for guest 
VM physical memory

• Creates one thread for each virtual CPU 
(VCPU) in guest

• Multiple file descriptors to /dev/kvm
(one for QEMU, one for VM, one for 
VCPU and so on)
• ioctl on fds to talk to KVM

• Host OS sees QEMU as a regular multi-
threaded process

QEMU (Userspace process)

KVM (kernel module)
(/dev/kvm)

Guest VM physical memory

VCPU-0 VCPU-N…



QEMU operation
open(/dev/kvm)

ioctl(qemu_fd, KVM_CREATE_VM)

ioctl(vm_fd, KVM_CREATE_VCPU)

for(;;) { //each VCPU runs this loop

ioctl(vcpu_fd, KVM_RUN)

switch(exit_reason) {

case KVM_EXIT_IO: //do I/O

case KVM_EXIT_HLT: 

}

}

This ioctl system call blocks this 
thread, KVM switches to VMX 
mode, runs guest VM

Returns to QEMU on host when VM 
exits from VMX mode.

QEMU handles exit and returns to 
guest VM



QEMU/KVM operation

QEMU (Userspace process)

KVM (kernel module)

Guest VM physical memory

VCPU-0

ring 3
(user virt
addr space)

ring 0
(kernel
addr space)

Root mode VMX mode

Guest OS

Guest 
application

1. QEMU thread calls KVM_RUN

2. KVM shifts CPU to VMX mode

3. Guest OS and user 
applications run 
normally

4. Guest OS exits back to KVM

5. KVM handles exit or 
returns to QEMU thread

kvm_run VCPU thread has kvm_run stucture
to share info from QEMU to KVM



VMX mode

• Special CPU instructions to enter and exit VMX mode
• VMLAUNCH, VMRESUME invoked by KVM to enter VMX mode

• VMEXIT invoked by guest OS to exit VMX mode

• On VMX entry/exit instructions, CPU switches context between host 
OS to guest OS
• Page tables (address space), CPU register values etc switched 

• Hardware manages the mode switch

• Where is CPU context stored during mode switch?
• Cannot be stored in host OS or guest OS data structures alone (why?)

• VMCS (VM control structure), also called VMCB (VM control block)



VM control structure (VMCS)

• What is VMCS?
• Common memory area accessible in both modes

• One VMCS per VM (KVM tells CPU which VMCS to use)

• What is stored in VMCS?
• Host CPU context: Stored when launching VM, restored on VM exit

• Guest CPU context: Stored on VM exit, restored when VM is run

• Guest entry/execution/exit control area: KVM can configure guest memory
and CPU context, which instructions and events should cause VM to exit

• Exit information: Exit reason and any other exit-related information

• VMCS information (e.g., exit reason) exchanged with QEMU via 
kvm_run structure
• VMCS only accessible to KVM in kernel mode, not to QEMU userspace

KVM
(root mode)

Guest OS
(VMX mode)

VMCS



VMX mode execution

• How is guest OS execution in VMX mode different?

• Restrictions on guest OS execution, configurable exits to KVM
• Guest OS exits to KVM on certain instructions (e.g., I/O device access)

• No hardware access to guest, emulated by KVM
• Guest OS usually exits on interrupts (interrupts handled by KVM, assigned to 

the appropriate host or guest OS)

• KVM can inject virtual interrupts to guest OS during VMX mode entry

• All of the above controlled by KVM via VMCS

• Mimics the trap-and-emulate architecture with hardware support
• Guest runs in a (special) ring 0, but trap-and-emulate achieved



QEMU/KVM operation revisited

QEMU (Userspace process)

KVM (kernel module)

Guest VM physical memory

VCPU-0

ring 3

ring 0

Root mode VMX mode

Guest OS

Guest 
application

1. QEMU thread calls KVM_RUN

2. KVM executes VMRESUME/VMLAUNCH
Host context saved in VMCS, guest context restored

3. Guest OS and user 
applications run 
normally, within 
restrictions

4. Guest OS executes VMEXIT upon trigger
Guest context saved, host restored from VMCS

5. KVM handles exit or 
returns to QEMU thread,

with exit info in kvm_run

kvm_run

VMCS



Host view

• Host sees QEMU as regular multithreaded process
• Process that has memory-mapped memory, talks to KVM device via ioctl calls

• Multiple QEMU VCPU threads can be scheduled in parallel on multiple cores

• When KVM launches a VM, host OS context is stored in VMCS
• Host OS execution is suspended (all host processes stop)

• CPU loads guest OS context and guest OS starts running

• When guest OS exits, host OS context is restored from VMCS
• Host OS resumes in KVM, where it stopped execution

• KVM can return to QEMU, or host can switch to another process

• Host OS is not aware of guest OS execution

KVM / Host OS Guest OS

QEMU

VMCS



Summary

• Hardware-assisted CPU virtualization in QEMU/KVM
• QEMU creates guest physical memory, one thread per VPCU

• QEMU VCPU thread gives KVM_RUN command to KVM kernel module

• KVM configures VM information in VMCS, launches guest OS in VMX mode

• Guest OS runs natively on CPU until VM exit happens

• Control returns to KVM/Host OS on VM exit

• VM exits handled by KVM or QEMU

• Host schedules QEMU like any other process, not aware of guest OS 

Guest OS

VMX mode

KVM / Host OS

QEMU

Root mode


