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Techniques for I/O virtualization

• Guest OS cannot get full access to I/O devices
• VMM must share I/O device access across guests

• Two ways to virtualize I/O devices:
• Emulation: I/O access in guest traps to VMM, which performs I/O

• Direct I/O or device passthrough: a slice of device is assigned directly to guest

• Many optimizations exist, only basics discussed here



Communication between OS and device
• Device memory exposed as registers (command, status, data etc.)

• I/O happens by reading/writing this memory
• E.g., write command into device register to begin I/O

• OS can read/write device registers in two ways:
• Explicit I/O: in/out instructions in x86 can write to device memory
• Memory mapped I/O: Some memory addresses are assigned to device 

memory and are not to RAM. I/O happens by reading/writing this memory. 

• Accessing device memory (via explicit I/O or memory mapped I/O) 
can be configured to trap to VMM

• Device raises interrupt when I/O completes (alternative to polling)
• Modern I/O devices perform DMA (Direct Memory Access) and copy data 

from device memory to RAM before raising interrupt 
• Device driver provides physical address of DMA buffers to device



QEMU/KVM I/O handling
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QEMU/KVM interrupt handling
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Full virtualization VMM architecture
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QEMU/KVM virtio optimization
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Device passthrough or Direct I/O

• More efficient than device emulation

• Example: SR-IOV (Single Root IO Virtualization) in network devices
• Network card has one physical function (PF) and many virtual functions (VFs)

• PF managed by host OS, each VF assigned to one guest VM

• Each VF is like a separate NIC, and is bound to a guest VM

• Packets destined to the MAC address of VM are switched to corresponding VF
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SR-IOV

• SR-IOV NIC communicates directly with device driver in guest OS
• Packets do not go to the host OS stack at all

• Packets switched at Layer-2 using VM virtual device’s MAC address

• Packets DMA’ed directly into guest VM memory, host OS not involved

• But, interrupts may still cause VM exit (interrupt can be for host too)

• Challenge: when guest device driver provides DMA buffers to VF, it 
can only provide guest physical addresses (GPA) of the buffer
• NIC cannot access the DMA buffer memory using GPA alone

• SR-IOV capable NICs have an inbuilt MMU (IOMMU) to translate from 
GPA to HPA



Summary

• Techniques for I/O virtualization
• Device emulation

• Virtio optimization

• Device passthrough or direct I/O (SR-IOV)


