
CS 695: Virtualization and Cloud 
Computing

Lecture 7: I/O Virtualization 
Techniques

Mythili Vutukuru

IIT Bombay

Spring 2021



Techniques for I/O virtualization

• Guest OS cannot get full access to I/O devices
• VMM must share I/O device access across guests

• Two ways to virtualize I/O devices:
• Emulation: I/O access in guest traps to VMM, which performs I/O

• Direct I/O or device passthrough: a slice of device is assigned directly to guest

• Many optimizations exist, only basics discussed here



Communication between OS and device
• Device memory exposed as registers (command, status, data etc.)

• I/O happens by reading/writing this memory
• E.g., write command into device register to begin I/O

• OS can read/write device registers in two ways:
• Explicit I/O: in/out instructions in x86 can write to device memory
• Memory mapped I/O: Some memory addresses are assigned to device 

memory and are not to RAM. I/O happens by reading/writing this memory. 

• Accessing device memory (via explicit I/O or memory mapped I/O) 
can be configured to trap to VMM

• Device raises interrupt when I/O completes (alternative to polling)
• Modern I/O devices perform DMA (Direct Memory Access) and copy data 

from device memory to RAM before raising interrupt 
• Device driver provides physical address of DMA buffers to device



QEMU/KVM I/O handling

QEMU (Userspace process)

KVM (kernel module)
Host OS

Guest VM physical memory

VCPU-0

ring 3

ring 0

Root mode VMX mode

Guest OS

Guest 
application

4. QEMU I/O 
thread initiates 
I/O in host OS 
(may block)

6. KVM resumes guest VM

1. User 
application 
makes system 
call to guest OS

2. Guest OS exits when it 
attempts I/O

3. KVM returns 
to QEMU VCPU 
thread (exit info 
in kvm_run)

I/O 
thread

Separate I/O threads to handle I/O ops
VCPU threads do not block for I/O
Guest VM resumes and can context 
switch to another process

5. VCPU 
thread 
resumes VM 

8. Return 
to user 
process



QEMU/KVM interrupt handling

QEMU (Userspace process)

KVM (kernel module)
Host OS

Guest VM physical memory

VCPU-0

ring 3

ring 0

Root mode VMX mode

Guest OS

Guest 
application

4. Interrupt for guest OS are 
injected into guest via VMCS

1. Interrupt 
occurs, user 
process goes to 
kernel mode

2. Guest OS configured in 
VMCS to exit on interrupts

I/O 
thread

5. Guest OS 
handles its 
interrupts 
normally

3. Interrupts for host are handled by host OS



Full virtualization VMM architecture

VMM userspace process

VMM kernel driver
(Host OS)

Guest VM physical memory

ring 3

ring 0

Host OS context VMM context

VMM
(guest OS traps 

here)

Guest application

1. Guest user app 
makes system call 
to perform I/O

3. VMM exits to host OS to handle I/O. 
Some traps can handled by VMM 
without world switch, e.g., exit only 
once per batch of I/O requests

4. VMM kernel driver or 
userspace process handle 
I/O requests via emulation

ring 1 Guest OS

2. Privileged action 
traps to VMM

5. Interrupts handled by 
host and injected into guest



QEMU/KVM virtio optimization

QEMU (Userspace process)

KVM (kernel module)
Host OS

Guest VM physical memory

VCPU-0

ring 3

ring 0

Root mode VMX mode

Guest OS

Guest 
application

1. User 
application 
makes system 
call to guest OS

3. Guest OS exits after a batch 
of requests accumulate

4. KVM and QEMU “backend” 
access requests from shared ring. 
Virtual interrupt raised in guest 
after batch of responses.

I/O 
thread

2. Special virtio “front 
end” device driver 
places requests in 
shared memory

Shared ring

Memory copy avoided
Batching of requests, interrupts
Standardized across devices
High performance



Device passthrough or Direct I/O

• More efficient than device emulation

• Example: SR-IOV (Single Root IO Virtualization) in network devices
• Network card has one physical function (PF) and many virtual functions (VFs)

• PF managed by host OS, each VF assigned to one guest VM

• Each VF is like a separate NIC, and is bound to a guest VM

• Packets destined to the MAC address of VM are switched to corresponding VF

Guest VM

NIC

Guest VMGuest VMHost

PF VF VF VF



SR-IOV

• SR-IOV NIC communicates directly with device driver in guest OS
• Packets do not go to the host OS stack at all

• Packets switched at Layer-2 using VM virtual device’s MAC address

• Packets DMA’ed directly into guest VM memory, host OS not involved

• But, interrupts may still cause VM exit (interrupt can be for host too)

• Challenge: when guest device driver provides DMA buffers to VF, it 
can only provide guest physical addresses (GPA) of the buffer
• NIC cannot access the DMA buffer memory using GPA alone

• SR-IOV capable NICs have an inbuilt MMU (IOMMU) to translate from 
GPA to HPA



Summary

• Techniques for I/O virtualization
• Device emulation

• Virtio optimization

• Device passthrough or direct I/O (SR-IOV)


