
CS 695: Virtualization and Cloud
Computing

Lecture 9: VM Live Migration
Mythili Vutukuru

IIT Bombay

Spring 2021

VM Live Migration

• Migrate an entire VM from one physical host to another
• All user processes and kernel state
• Without having to shut down the machine

• Why migrate VMs?
• Distribute VM load efficiently across servers in a cloud
• System maintenance

• Easier than migrating processes
• VM has a much narrower interface than a process

• Two main techniques: pre-copy and post-copy

“Live Migration of Virtual Machines”, Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, Andrew Warfield
“Post-Copy Based Live Virtual Machine Migration Using Adaptive Pre-Paging and Dynamic Self-Ballooning”,
Michael R. Hines and Kartik Gopalan

source PM target PM

VM

What is migrated?

• CPU context of VM, contents of main memory
• Narrow interface, easier than process migration

• Disk: assume NAS (network attached storage) that is accessible from
both hosts, or local disk is mirrored
• We do not consider migrating disk data

• Network: assume both hosts on same LAN
• Migrate IP address, advertise new MAC address to IP mapping via ARP reply
• Migrate MAC address, let switches learn new MAC location
• Network packets redirected to new location (with transient losses)

• I/O devices are provisioned at target
• Virtual I/O devices easier to migrate, direct device assignment of physical

devices to VMs (device passthrough) makes migration harder

source PM target PM

VM

Steps to migrate a VM

• Broad steps in any migration technique: Suppose we are migrating a
VM from host A to host B

1. Setup target host B, reserve resources for the VM

2. Push phase: push some memory of VM from A to B

3. Stop-and-copy: stop the VM at A, copy CPU context, and some memory

4. Pull phase: Start VM at host B, pull any further memory required from A

5. Clean up state from host A, migration complete

• Total migration time: time for steps 2,3,4

• Service downtime: time for step 3

• Other metrics: impact on application performance, network
bandwidth consumed, total pages transferred

Flavors of migration techniques

• Pure stop-and-copy: VM stopped, all state transferred to target, VM
restarts
• Too much downtime to be classified as “live” migration

• Pre-copy: most state is transferred in the push phase, followed by a
brief stop-and-copy phase

• Post-copy: VM stopped, bare minimum state required to run the VM
is transferred to the target host. Remaining state is pulled on demand
while the VM is running at the new location.

• Hybrid: a mix of pre-copy and post-copy. Some pushing of state
followed by stop-and-copy, followed by pulling of state on demand.

Pre-copy based live migration
• Iterative pre-copy + stop-and-copy

for remaining memory

• First push round copies all pages

• Every round copies pages dirtied in
previous round
• A page maybe copied multiple times

• Writable Working Set (WWS): pages
commonly written to
• WWS will be copied multiple times
• Finally transferred in stop-and-copy

• How many rounds? Stop when rate of
dirtying > rate of transfer
• Diminishing returns with more than few

rounds

• If stop-and-copy, 512MB VM, 128 Mbps network, downtime = 32 sec

• With one pre-copy round, downtime goes to 2-3 sec
• ~1 second for 2 or more rounds

Impact of iterative pre-copy

Page dirtying rate (WWS) Downtime after successive rounds

Tracking dirty pages

• Xen-based implementation
• Page tables in Xen maintained by guest
• Move to shadow page tables for migration
• Migration managed by control software in domain0

• Shadow page table constructed on demand for every round
• Dirty bitmap maintained for every round
• Any page access by guest page fault to Xen, shadow page table updated
• PTE marked as read-only by default in shadow
• If valid write access, shadow PTE marked writeable, page marked dirty in bitmap
• At end of round, dirty pages are marked for transfer in control software
• Shadow page table and dirty bitmap reinitialized after every round
• Last set of dirty pages copied in stop-and-copy

• Guest page table in target host changed based on new physical addresses

Guest page table

Shadow page table in Xen

Some optimizations

• Avoid transferring page multiple times
• Before transmitting page, peek into the current round's dirty bitmap

• Skip transmission if page is already dirtied in ongoing round

• Move non-interactive processes generating dirty pages to wait queue
• Execution paused until migration completes

• Free up page cache and other unnecessary pages
• Reduce memory footprint

• Much like ballooning

Pre-copy performance
• Downtime: ~100 millisec, total migration time of few tens of seconds

• Worse for memory-intensive applications, better for interactive apps

Post-copy based live migration

• Avoid multiple transfers of
same page as happens in pre-
copy

• Prepare target, stop VM, copy
CPU context and minimum
memory to target

• Start VM at target, pull memory
from source via demand paging
• Memory access at target causes

page fault, page fetched from
source

Optimizations

• Active pushing: source proactively pushes important pages, in
addition to pulling pages via page faults

• Pre-paging: a “bubble” of pages around faulted page and proactively
pushed, in anticipation of future accesses

• Dynamic self-ballooning: VM periodically frees up unnecessary
memory and gives it back to hypervisor
• Reduces memory footprint, speeds up page transfer

• Performed carefully without hurting application performance

• Can be used to optimize pre-copy migration as well

• Hybrid: one pre-copy round, followed by post copy

Implementation details (Xen)

• How are pages pulled at target? “Pseudo-paging”
• Page to a pseudo, in-memory, swap device (part of domain0). No memory copy, just transfer pages

across domains. Guest page table updated suitably.
• Only non-pageable memory transferred during stop-and-copy
• When guest resumes at target, fetch memory from pseudo-paging device via page fault mechanism
• Special swap device driver fetches from source over the network

• Alternative: use shadow page tables
• If page fault to non-existent page at target, trap to hypervisor, fetch from source and update

What about failures?

• What if target machine fails during migration?

• Pre-copy can simply abort the migration, restart with another target
• With pre-copy, latest state is on source only, so can recover

• With post copy, source has stale memory, target has updated memory
• If target crashes during post copy, cannot recover application data (unless

some replication is performed)

Post copy performance
• Longer downtime as compared to pre-copy, but lower total migration

time, fewer page transfers, lesser disruption to application

Summary

• VM live migration techniques
• Iterative pre-copy vs post-copy via demand paging

• Implementation details on Xen

• Performance comparison

• Which is better?
• Pre-copy suited for interactive application

• Post copy is better for memory-intensive applications with large WWS

• Hybrid techniques are also used

