
CS 695: Virtualization and Cloud
Computing

Lecture 13: High performance key
value stores: Dynamo

Mythili Vutukuru

IIT Bombay

Spring 2021

Amazon’s Dynamo
• Dynamo is a distributed key-value store: simple get/put interface

• Map a key to a blob of instructured data, stored across multiple nodes
• Example of No-SQL data store (unlike traditional RDBMS)

• Highly available (responsive even when nodes fail), high performance (high
throughput, low average/tail latency), highly scalable (throughput scales with
increasing nodes)

• Weak consistency (eventual consistency): a get may not always return the latest
value put in the past
• No atomicity, isolation, or consistency (ACID of RDBMS)
• A get may also return multiple conflicting values

• Suitable for applications that can tolerate inconsistencies (e.g., shopping cart)
• Building block for many Amazon services (S3, DynamoDB)
• Traditional RDBMS is an overkill for such applications

Dynamo: Amazon’s Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels

• A service chain of web
servers, application servers,
data stores

• Aggregator services
aggregate data from multiple
applications

• Very important to keep even
tail latency (e.g., 99.9
percetile latency) low

System architecture

Key idea of Dynamo
• Dynamo partitions the keys over the set of nodes using consistent hashing

• Every key is stored at a subset N of the total nodes (“preference list” of a key)

• Shared-nothing architecture: each replica independently stores state
• System can scale by adding more nodes

• Put operation: the key is written to a subset W of the N nodes
• Succeeds even if some subset of nodes are unavailable

• Get operation: the key is read back from some subset R of the N nodes
• Eventual consistency: get may not return latest put
• Multiple values can be returned, application has to reconcile

• Dynamo chooses R,W,N such that R+W > N, so that the latest value can be
returned most of the times
• Quorum protocol
• R,W chosen to be less than N in order to achieve good latency

Assigning keys to nodes: Consistent Hashing

• Every key is hashed to generate a number in a circular
range

• Every node/replica assigned an ID in the same space

• A key is stored at the first N nodes which succeed the
hash of the key in the circular ring
• Called “preference list” of the key

• First node on the list is the coordinator for the key
• Get/put operations at all nodes managed by coordinator

• For better load balancing, every node is treated as
multiple virtual nodes, assigned many positions on list
• Preference list will contain N distinct physical nodes

Failures and eventual consistency

• In cases of node/network failures:
• Preference list of first N nodes can change with failures, finds first N alive nodes

(“sloppy” quorum)
• Nodes in original preference list will be contacted and updated when they come back

• Put is asynchronous: coordinator does not wait for confirmation from all W
nodes before sending a reply to the client
• In case of failures, a put may not reach all W nodes

• A get after a put can find multiple versions of the key at different nodes
• Consistency (get returning latest put) is only guaranteed “eventually”

• Why this design? Because one of the goals is to be always writeable
• System should never turn down a write request from a client
• Systems with strong consistency will turn down client requests in case of failures,

and will only accept requests when they can guarantee consistency

Versioning: vector clocks

• Since multiple versions of a key-value pair can exist, need some version number
to track values

• Dynamo uses the idea of vector clocks to version the key-value pairs

• Vector clock is a set of (node, count) pairs, where the count is incremented locally
at every node
• Every node that handles a key will add/increment its entry in the vector clock

• Vector clock version number associated with value (also called “context”) is
returned with every get to the client, and the client sends it along with its next
put request
• object, context = get(key)
• put(key, context, object)

• Suppose there are three nodes X, Y, Z handling a key
• Suppose client gets a value from X with vector clock [(X, nx), (Y, ny), (Z, nz)]
• Next put at X will increment the vector clock to [(X, nx+1), (Y, ny), (Z, nz)]
• If put done at Y instead, vector clock will be [(X, nx), (Y, ny+1), (Z, nz)]

Example of vector clocks

• A client gets D1, puts D2, Sx is the coodinator
• D2 directly descends from D1, can overwrite D1

• Client reads D2, Sx is down, so client writes D3
at Sy. Another client reads D2 and writes D4 at
Sz in parallel
• Both D3 and D4 descend from D2
• D3 and D4 can have conflicting changes, one does

not overwrite the other

• On the next get, both D3 and D4 returned to
client
• Node performing get cannot decide which to return
• Client must reconcile and arrive at new value (D5)

• Next put of D5 at Sx has combined vector clock,
indicating reconciliation has happened
• D5 can overwrite D3 and D4

Summary of key ideas

• Discussed in this lecture:
• Consistent hashing to partition keys

to nodes for scalability
• “Shared nothing” architecture to

scale over multiple nodes
• Handle temporary failures via

sloppy quorum, async writes
• High availability by settling for

weaker consistency guarantees
• Leave it to application to reconcile

inconsistencies using vector clocks

• More details in the paper:
• Handling permanent failures
• Membership changes

