CS 695: Virtualization and Cloud
Computing

Lecture 13: High performance key
value stores: Dynamo

Mythili Vutukuru
IIT Bombay
Spring 2021



Amazon’s Dynamo

* Dynamo is a distributed key-value store: simple get/put interface
* Map a key to a blob of instructured data, stored across multiple nodes
e Example of No-SQL data store (unlike traditional RDBMS)

* Highly available (responsive even when nodes fail), high performance (high
throughput, low average/tail latency), highly scalable (throughput scales with
increasing nodes)

* Weak consistency (eventual consistency): a get may not always return the latest
value put in the past

* No atomicity, isolation, or consistency (ACID of RDBMS)
* A get may also return multiple conflicting values

 Suitable for applications that can tolerate inconsistencies (e.g., shopping cart)
* Building block for many Amazon services (S3, DynamoDB)
* Traditional RDBMS is an overkill for such applications

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels




System architecture

* A service chain of web
servers, application servers,
data stores

* Aggregator services
aggregate data from multiple
applications

e Very important to keep even
tail latency (e.g., 99.9
percetile latency) low

Client Requests

s o o> ot Page
Wl R W e

Request Routing

- 5 ~ / \ e

ol ?\ N j>‘ = Aggregator

" \ / = ;"E‘?‘J Services
=

Services

Other datastores

Dynamo instances

Figure 1: Service-oriented architecture of Amazon’s

platform



Key idea of Dynamo

* Dynamo partitions the keys over the set of nodes using consistent hashing
* Every key is stored at a subset N of the total nodes (“preference list” of a key)

* Shared-nothing architecture: each replica independently stores state
e System can scale by adding more nodes

* Put operation: the key is written to a subset W of the N nodes
e Succeeds even if some subset of nodes are unavailable

* Get operation: the key is read back from some subset R of the N nodes
e Eventual consistency: get may not return latest put
* Multiple values can be returned, application has to reconcile

* Dynamo chooses R,W,N such that R+W > N, so that the latest value can be
returned most of the times

 Quorum protocol
* R,W chosen to be less than N in order to achieve good latency



Assigning keys to nodes: Consistent Hashing

* Every key is hashed to generate a number in a circular e
range O
* Every node/replica assigned an ID in the same space @ . NodesBC
* A key is stored at the first N nodes which succeed the ~ (v) (©) TN
hash of the key in the circular ring SR
* Called “preference list” of the key @‘.___.@

* First node on the list is the coordinator for the key
* Get/put operations at all nodes managed by coordinator

* For better load balancing, every node is treated as
multiple virtual nodes, assigned many positions on list

* Preference list will contain N distinct physical nodes



Failures and eventual consistency

* |[n cases of node/network failures:

* Preference list of first N nodes can change with failures, finds first N alive nodes
(“sloppy” quorum)

* Nodes in original preference list will be contacted and updated when they come back

e Put is asynchronous: coordinator does not wait for confirmation from all W
nodes before sending a reply to the client

* In case of failures, a put may not reach all W nodes

e A get after a put can find multiple versions of the key at different nodes
e Consistency (get returning latest put) is only guaranteed “eventually”

* Why this design? Because one of the goals is to be always writeable
e System should never turn down a write request from a client

e Systems with strong consistency will turn down client requests in case of failures,
and will only accept requests when they can guarantee consistency



Versioning: vector clocks

* Since multiple versions of a key-value pair can exist, need some version number
to track values

 Dynamo uses the idea of vector clocks to version the key-value pairs

* Vector clock is a set of (node, count) pairs, where the count is incremented locally
at every node

* Every node that handles a key will add/increment its entry in the vector clock

* Vector clock version number associated with value (also called “context”) is
returned with every get to the client, and the client sends it along with its next
put request

* object, context = get(key)
» put(key, context, object)

* Suppose there are three nodes X, Y, Z handling a key

» Suppose client gets a value from X with vector clock [(X, nx), (Y, ny), (Z, nz)]
e Next put at X will increment the vector clock to [(X, nx+1), (Y, ny), (Z, nz)]
* If put done at Y instead, vector clock will be [(X, nx), (Y, ny+1), (Z, nz)]



Example of vector clocks l i

handled by Sx

e Aclient gets D1, puts D2, Sx is the coodinator O {l=at])

D2 directly descends from D1, can overwrite D1 l write

* Client reads D2, Sx is down, so client writes D3 aendiod o =%
at Sy. Another client reads D2 and writes D4 at

Sz in parallel D2 ([Sx,2])
* Both D3 and D4 descend from D2 x -
* D3 and D4 can have conflicting changes, one does hand‘;;';iy Sy handled by Sz
not overwrite the other
. Oln the next get, both D3 and D4 returned to D3 ([Sx,21.[Sy.1]) D4 ([Sx,2].[Sz.1])
client i S5 AR
* Node performing get cannot decide which to return T oo
* Client must reconcile and arrive at new value (D5) and written by

* Next put of D5 at Sx has combined vector clock,
indicating reconciliation has happened D5 ([Sx,3],[Sy,11[Sz,1])

e D5 can overwrite D3 and D4



Summary of key ideas

e Discussed in this lecture:

* Consistent hashing to partition keys
to nodes for scalability

* “Shared nothing” architecture to
scale over multiple nodes

* Handle temporary failures via
sloppy quorum, async writes

* High availability by settling for
weaker consistency guarantees

* Leave it to application to reconcile
inconsistencies using vector clocks
* More details in the paper:
* Handling permanent failures
 Membership changes

Table 1: Summary of techniques used in Dynamo and

their advantages.

Problem Technique Advantage
Partitioning Consistent Hashing Incremental
Scalability

High Availability Vector clocks with Version size 1s

for writes

reconciliation during

decoupled from

reads update rates.
Handling temporary | Sloppy Quorum and Provides high
failures hinted handoff availability and

durability guarantee
when some of the
replicas are not

available.
Recovering from Anti-entropy using Synchronizes
permanent failures Merkle trees divergent replicas in
the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
information.




