
CS 695: Virtualization and Cloud
Computing

Lecture 15: Application-specific
cloud storage: Haystack

Mythili Vutukuru

IIT Bombay

Spring 2021

Facebook’s photo storage: Haystack

• Some cloud storage systems are optimized for specific applications
• Facebook’s Haystack is optimized for photo storage

• Why not store photos as regular files on a POSIX-compliant filesystem?
• Many attributes like permissions are meaningless

• Lot of metadata accesses (inodes) before actual photo access

• App specific knowledge: photos are written once, read often, rarely modified or
deleted

• High throughput, low latency, fault tolerance, with cost-effectiveness

Finding a needle in Haystack: Facebook’s photo storage
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel

Typical design of photo/object storage

• Photos and other read-only objects are
served from Content Delivery Networks
(CDNs), e.g., Akamai

• DNS redirects to geographically closest
CDN servers

• If object cached in CDN, served directly
from CDN
• Else, fetch object from original storage and

serve, cache

• CDNs improve performance only for the
hottest objects found in cache
• Photos have a “long tail”: unpopular

photos form significant part of traffic

• Need to optimize photo storage even if
using CDN cache

NFS-based photo storage

• Each photo stored as a separate file on a
commercial NAS (Network Attached
Storage) box, served by NFS

• At least 3 disk accesses to read a photo
from filesystem
• Get inode number of file by reading parent

directory blocks), read inode block, then
fetch actual file

• Large directories spread over multiple blocks
incur even higher overhead

• Can cache inodes in memory to save disk
accesses, but too much memory
consumed to store all inodes of all files

Motivation and key idea
• Ideally, access photo directly on disk, without multiple disk accesses

• Metadata (inode) to locate photo on disk should be in memory

• However, caching all inodes for even unpopular photos is not possible

• Existing systems do not have the right “RAM-to-disk” ratio
• Each photo as a separate file, each inode occupied ~100 bytes in memory

• Too much memory for metadata in general purpose filesystems

• Goal: reduce metadata per photo, so that all metadata in memory,
only one disk access even for unpopular photos

• Key idea: new filesystem, store multiple photos in large files, minimal
metadata per photo
• Redesigning filesystem is better than buying more NAS appliances / web

servers / CDN storage

Haystack architecture
• 3 components: Store, Cache, Directory

• Store has the actual photos
• Each server has many physical volumes (disks) which

are organized into logical volumes

• Cache caches popular content that is not already
cached in CDNs

• Directory maintains location mapping (which
CDN/cache/store/logical volume may have
photo)
• When user requests photo from Facebook’s

webserver, it looks up directory
• Directory returns a URL which encodes the location of

the photo: CDN/Cache/Store/logical volume info

• Can check in CDN first, or directly go to cache
• Balances load across store machines

Photo uploads

• Upload path:
• Photo goes to webserver, which looks up

directory

• Directory returns the location of the Store
server and logical volume where photo to
be stored

• A logical volume is replicated at multiple
physical volumes for resiliency

• Web server uploads photos at the multiple
locations of a logical volume

Store server architecture
• Each Store server has multiple physical volumes/disks

• Physical volume is a large file (~100GB) with millions of photos
• Each physical volume belongs to one of the logical volumes

• Logical volume = collection of different physical volumes on different
servers
• When a photo stored on a logical volume, it is replicated at all physical volumes of

the logical volume, for resiliency
• Directory has all info on physical and logical volumes on all store servers

• Photo identified by Store machine ID, logical volume, photo identifier/key
• Go to server, find physical volume associated with logical volume, lookup photo

• New machine added to store: write-enabled, accepts uploads
• Once capacity is full, moves to read-only mode, only serves photos
• Cache mostly caches data from write-enabled store machines, because the most

recently uploaded photos are frequently accessed by users

Store server: Disk Layout
• Each physical volume has a

superblock and a set of
“needles”
• A single file with all photos

• Needle = photo + all its
metadata (key, alternate key,
size, etc.)
• Alternate key is a way to

distinguish multiple versions of
a photo (e.g., different
resolutions)

• Large file stored on disk using
existing filesystems (XFS)

Store server: In-memory data structures

• Store server has open file descriptor for each physical volume

• In-memory index mapping photo key/alternate key to offset within disk
• Lower overhead than full-fledged inodes

• Read request: lookup photo’s key in index, find disk offset, read data
from disk
• Achieved goal of one disk access per photo

• Write request of new photo: appended to disk at end, index updated

• Modification/deletion of existing photo (rare): new copy appended at
end, index updated to point to latest version
• Modifications (e.g., rotations) have same key and alternate key
• Old data not overwritten on disk for modifications or deletions, instead updated

entry (or deletion record) is appended to disk
• Periodic compactions of disk files to delete stale entries

Updating index file

• Where is index stored? In theory, no need to store index on disk,
reconstructed from disk data on booting
• If two entries on disk for same photo key (e.g., deletion or modification),

index points to latest entry
• However, may take a long time for large disks

• Periodically checkpoint index into a file on disk for quick bootup:
• Index file written to disk asynchronously after appending actual data to disk
• If system crashes after updating actual data but before updating index, index

file on disk may be stale
• For example, we can have orphans (photos on disk without entry in index)
• During bootup, start with index file, see latest entry in index, all disk records

after that are read and incorporated into index

Summary

• Application specific knowledge to optimize cloud storage
• Not optimal to use general purpose filesystem for storing a specific type of

files (photos) with specific usage patterns (write once, read multiple times,
rarely modified)

• Efficient disk layout and index design ensures close to one disk access per
photo read

• Good performance: benchmarks in paper show that Haystack achieves 85% of
raw disk throughput, and only 17% extra latency (almost close to one disk
access per photo)

