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Motivation

Motivation

Inspired by dependency grammar
“Who-did-what-to-whom”
Easy to encode long distance dependencies
Better suited for free word order languages
Proven to be useful in various NLP & ML applications
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Introduction

Dependency Grammar

Basic Assumption: Syntactic structure essentially consists of lexical
items linked by binary asymmetrical relations called dependencies.[1]
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Introduction

Constituency parsing example

Figure: Output of Stanford parser [Penn treebank type]

India won the world cup by beating Lanka
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Introduction

Example of dependency parser output

Figure: Output of Stanford dependency parser
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Introduction

Example of dependency grammar

Figure: Parse tree
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Introduction

Example of dependency grammar

Figure: Parse tree
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Introduction

Example of dependency grammar

Figure: Parse tree
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Introduction

List of dependency relations

aux - auxiliary
arg - argument
cc - coordination
conj - conjunct
expl - expletive (expletive /there)
mod - modifier
punct - punctuation
ref - referent

Marie-Catherine de Marneffe and Christopher D. Manning. September 2008. “Stanford typed dependencies manual”[2]
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Introduction

Dependency Parsing

Input: Sentence
x = w0, w1, ..., wn
Output: Dependency graph
G = (V , A) for x where:

V = 0, 1, ..., n is the vertex
set,
A is the arc set, i.e.,
(i , j , k) ∈ A represents a
dependency from wi to wj
with label lk ∈ L

    Sentence

(W0,W1, ...,Wn)

Input

Dependecy Parser

e.g.  MaltParser etc.

Head Dependent/

 Lable

Output

Figure: Dependency Parsing
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Dependency Parsing Basic Requirements

Basic Requirements

Unity: Single tree with a unique root consisting of all the words in the
input sentence.
Uniqueness: Each word has only one Head (Some parsing techniques
(ex. Hudson) works with multiple heads)
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Dependency Parsing Types of Dependency Parsing

Types of Dependency Parsing

Rule Based (Grammar Driven)
Fundamental algorithm of dependency parsing (by Michael A.
Covington)[3]

Machine Learning Based (Data Driven)
Statistical Dependency Analysis with SVM (by Hiroyasu et.al)[4]

Joakim Nivre, (2005) “Dependency Grammar and Dependency Parsing,”. Vaxjo University
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Dependency Parsing Rule Based

Strategy-1 (Brute-force search)

Examine each pair of words in the entire sentence whether they can
be head-to-dependent or dependent-to-head based on the grammar

For n words n(n − 1) pairs, so the complexity is O(n2)
Michael A. Covington. 2001. “A Fundamental Algorithm for Dependency Parsing”, 39th Annual ACM Southeast Conference
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Dependency Parsing Rule Based

Strategy-2 (Exhaustive left-to-right search)

Take words one by one starting at the beginning of the sentence, and
try linking each word as head or dependent of every previous word.

Whether to check from 1 to n − 1 or from n − 1 to 1: Most of the
times head and dependents are more like to be near the target word.
Whether it is better to look for heads and then dependents or
dependents then heads: Cannot yet be determined
Whether the algorithm enforce unity and uniqueness

Michael A. Covington. 2001. “A Fundamental Algorithm for Dependency Parsing”, 39th Annual ACM Southeast Conference
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Dependency Parsing Rule Based

Strategy-3 (Enforcing Uniqueness)

When a word has a head it cannot have another one.
When looking for dependent of the current word: do not consider
words that are already dependents of something else.
When looking for the head of the current word: stop after finding one
head.

Michael A. Covington. 2001. “A Fundamental Algorithm for Dependency Parsing”, 39th Annual ACM Southeast Conference
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Dependency Parsing Rule Based

Strategy-3 (Enforcing Uniqueness)

Given an n-word sentence:
[1] for i := 1 to n do
[2] begin
[3] for j := i - 1 down to 1 do
[4] begin
[5] If no word has been

linked as head of word i, then
[6] if the grammar permits,

link word j as head of word i;
[7] If word j is not a dependent

of some other word, then
[8] if the grammar permits,

link word j as dependent of word i
[9] end
[10] end

}

Michael A. Covington. 2001. “A Fundamental Algorithm for Dependency Parsing”, 39th Annual ACM Southeast Conference
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM
Support Vector Machines

Binary classifier based on maximum margin strategy.
In svm’s we find a hyperplane w .x + b = 0 which correctly separates
training examples and has maximum margin which is the distance
between hyper planes: w .x + b ≥= +1 and w .x + b ≤ −1

Figure: Support Vector Machine

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

This is a multiclass classification problem.
There are three classes (parsing actions)

1 Shift
2 Right
3 Left

We construct three binary classifiers corresponding to each action
1 Left Vs. Shift
2 Left Vs. Right
3 Right Vs. Shift

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

Let us take two neighboring words (Target words)
Shift: No dependencies between the target nodes and the point of
focus simply moves to right

Figure: An example of the action shift

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

Right: Left node of target nodes becomes a child of right one

Figure: An example of the action right

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

Left: Right node of target nodes becomes a child of left one

Figure: An example of the action left

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

Learning dependency structure
POS tag and words are used as the candidate features for the nodes
within left and right context.

Table: Summary of the feature types and their values

Type Value
pos part of speech(POS) tag string
lex word string
ch-L-pos POS tag string of the child node modifying to the parent node from left side
ch-L-lex word string of the child node node modifying to the parent node from left side
ch-R-pos POS tag string of the child node modifying to the parent node from right side
ch-R-lex word string of the child node modifying to the parent node from right side

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.

(IIT Bombay) Dependency Parsing CS626 Seminar 26 / 50



Dependency Parsing Machine Learning Based

Dependency parsing with SVM(cont..)

Parsing Algorithm
Estimate appropriate parsing actions using contextual information
surrounding the target node.
The parser constructs a dependency tree by executing the estimated
action.

Hiroyasu Yamada, Yuji Matsumoto, 2003. “STATISTICAL DEPENDENCY ANALYSIS WITH SUPPORT VECTOR

MACHINES,”, Graduate School of Information Science,.
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Dependency Parser Evaluation

Dependency Parser Evaluation

1 Evaluation Methodology
1 Sentence based :

Quantitative
2 Token based : Qualitative

2 Input data tracks
1 Multilingual
2 Domain Adaptation

    Sentence

(W0,W1, ...,Wn)

Input

Dependecy Parser

e.g.  MaltParser etc.

Head Dependent/

 Lable

Output

Figure: Dependency Parsing
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Dependency Parser Evaluation

Evaluation Methodology

Quantitative Evaluation
It takes into account the number of sentence which were parsed
correctly[6].

Metrics
1 Correct Sentences

i.e. Sentences with correct labeled graph
2 Incorrect Sentences

i.e. Sentences with not correct labeled graph
3 Sentence Length

Critique
Does not analyze linguistic errors
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Dependency Parser Evaluation

Evaluation Methodology(cont...)

Qualitative Evaluation
It takes into account type of mistakes performed by the parser.

Metrics [5]
1 Labeled attachment score (LAS):

i.e. Tokens with correct head and label
2 Unlabeled attachment score (UAS):

i.e. Tokens with correct head
3 Label accuracy (LA):

i.e. Tokens with correct label

Sabine Buchholz and Erwin Marsi. 2006. “CoNLLX shared task on Multilingual Dependency Parsing.”„ Proceedings of the 10th

Conference on Computational Natural Language Learning New York City. Association for Computational Linguistic.
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Dependency Parser Evaluation

Quantitative Analysis

Experiment conducted with 46 sentences on dependency parser (e.g.
Standford, Malt, Rasp etc) and manually checked correctness of head
and label output of parser.[6]

Table: Parser Evaluation

Parser Correct Sentences Incorrect Sentences
Stanford 67% 33%
DeSR 54% 46%
RASP 45% 55%
MINIPAR 56% 44%
MALT 63% 37%

Elisabet Comelles, Victoria Arranz, Irene Castellon 2010 “Constituency and Dependency Parsers Evaluation”, Sociedad Espanola

para el Procesamiento del Lenguaje Natural.
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Dependency Parser Evaluation

Qualitative Analysis

Identification of more than one Head[6]

Elisabet Comelles, Victoria Arranz, Irene Castellon 2010 “Constituency and Dependency Parsers Evaluation”, Sociedad Espanola

para el Procesamiento del Lenguaje Natural.
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Dependency Parser Evaluation

Qualitative Analysis (cont..)

Wrong Identification of Head[6]

Elisabet Comelles, Victoria Arranz, Irene Castellon 2010 “Constituency and Dependency Parsers Evaluation”, Sociedad Espanola

para el Procesamiento del Lenguaje Natural.
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Dependency Parser Evaluation

Qualitative Analysis (cont..)

Wrong Dependencies[6]

Elisabet Comelles, Victoria Arranz, Irene Castellon 2010 “Constituency and Dependency Parsers Evaluation”, Sociedad Espanola

para el Procesamiento del Lenguaje Natural.
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Dependency Parser Evaluation

Input data tracks

Multilingual Tracks[5]
Consist of different languages
Annotated training data
Test data

Domain Adaptation data
The goal is to adopt annotated resources from sources domain to a
target domain of interest.
Source training data: Wall Street Journal
Target data:

Biomedical abstract
Chemical abstract

Sabine Buchholz and Erwin Marsi. 2006. “CoNLLX shared task on Multilingual Dependency Parsing.”„ Proceedings of the 10th

Conference on Computational Natural Language Learning New York City. Association for Computational Linguistic.
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Dependency Parser Evaluation

Observations

Data Driven parsing System, it performs worse on data that does not
come from the training domain[5]
Parsing accuracy differed greatly between languages[5]
LAS

Low (76.31 - 76.94%)
Arabic,Greek
Medium (79.19 - 80.21%)
Hungarian, Turkish
High (84.40 - 89.61%)
Chines, English

Sabine Buchholz and Erwin Marsi. 2006. “CoNLLX shared task on Multilingual Dependency Parsing.”„ Proceedings of the 10th

Conference on Computational Natural Language Learning New York City. Association for Computational Linguistic.
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Pros and Cons of Dependency Parsing Word order

Word Order

Dependency structure independent of word order
Suitable for free word order languages
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Pros and Cons of Dependency Parsing Transparency

Transparency

Direct encoding of predicate-argument structure
Fragments directly interpretable
But only with labeled dependency graphs
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Pros and Cons of Dependency Parsing Expressivity

Expressivity

Limited expressivity:
The Dependency tree contains one node per word and word at a time
operation.
Impossible to distinguish between phrase modification and head
modification in unlabeled dependency structure
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Applications Semantic Role Labeling:

Semantic Role Labeling:

Identifying semantic arguments of the verb or predicate of a sentence.
Classifying those semantic arguments to their specific semantic roles.
Used in Question Answering System
Example: MiniPar, Prague Treebank, etc.
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Applications Semantic Role Labeling:

MINIPAR

MINIPAR is a principle-based parser.
It represents its grammar as a network where the nodes represent
grammatical categories and the links represent types of (dependency)
relationships.
Output of MINIPAR is a dependency tree: It uses the heads of the
phrases to decide the governor and dependent of a dependency
relation.
MINIPAR constructs all possible parses of an input sentence, then
gives as output the one with the highest probability value.
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Applications Semantic Role Labeling:

MINIPAR(cont..)

Evaluation with the SUSANNE corpus[7]
Achieves about 88% precision and 80% recall with respect to
dependency relationships.
It parses about 300 words per second.

Lin, D. 1998. A Dependency-based Method for Evaluating Broad-Coverage Parsers. Journal of Natural Language Engineering,

p. 97â114.
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Applications Semantic Role Labeling:

Text Mining in Biomedical domain

Goal Extracting information from statements concerning relations
of biomedical entities, such as protein-protein interactions.

Evaluation 94% dependency coverage on GENIA corpus[8]
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Conclusion

Conclusion

A Dependency Parsing Approach is suitable for free word order
languages.
A Dependency Parsing Approach is applicable to many NLP and
Machine Learning applications ex. Biomedical Text Mining, Semantic
Role Labeling, etc.
Data Driven parsing System, it performs worse on data that does not
come from the training domain[5]
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