
Automated Construction Of Domain Ontologies From
Lecture Notes

M.Tech Project Dissertation

Submitted in partial fulfillment of the
requirements for the degree of

Master of Technology
by

Neelamadhav Gantayat
Roll No : 09305045

under the guidance of

Prof. Sridhar Iyer

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

June, 2011

Declaration

I declare that this written submission represents my ideas in my own words and where others
ideas or words have been included, I have adequately cited and referenced the original sources.
I also declare that I have adhered to all principles of academic honesty and integrity and have
not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I un-
derstand that any violation of the above will be cause for disciplinary action by the Institute and
can also evoke penal action from the sources which have thus not been properly cited or from
whom proper permission has not been taken when needed.

Neelamadhav Gantayat
(09305045)

Date: 28th June, 2011

iii

Acknowledgement

I would like to express my deep gratitude for my guide Prof. Sridhar Iyer, who has always
been making things simple to understand. Without his deep insight into this domain and his
valuable time for this project, it would not have been possible for me to move ahead properly.
He has been remarkable in his attempt to keep me motivated in this project and has always tried
to improve me with proper feedback.

I would like to thank my friend Sagar Kale for his help in checking some sections for
grammatical errors.

I would like to thank Ramkumar Rajendran and Souman Mandal, for their constant feed-
back and motivation.

I would like to thank each and every one who helped me throughout my work.

Neelamadhav Gantayat
(09305045)

v

Abstract

Nowadays e-learning has become popular, especially with the availability of large course-ware
repositories such as MIT’s OCW, NPTEL and CDEEP. A variety of searching techniques, e-
learning tools and systems are also available. Courseware repositories contain large amounts of
lecture videos and text. When searching for lecture material on a given topic, it would be useful
if the repository also indicates the topics that are pre-requisites. However, suppose a user wants
to learn about a particular topic of a subject, the search tools typically return a large number of
links to the user in response to his/her query (topic). Many of these are not directly related to the
topic. Some of them are more advanced topics and some other links contains some irrelevant
data which is nothing to do with the desired topic, so the user does not know which links to
follow in order to enhance his knowledge.

In this paper we present a technique that automatically constructs the ontology (dependency
graph) from the given lecture notes. We show how this ontology can be used to identify the
pre-requisites and follow-up modules for a given query (lecture topic). We also provide the user
with a dependency graph which gives a conceptual view of the domain. Our system extracts
the concepts using “term frequency inverse document frequency (tf-idf) weighting scheme” and
then determines the associations among concepts using “apriori algorithm”. We have evalu-
ated our system by comparing its results with the dependencies determined by an expert in the
subject area.

vii

Contents

1 Introduction 1
1.1 Abbreviations and acronyms . 1
1.2 Motivation for MTP . 2
1.3 Goal of MTP . 2
1.4 Solution Approach . 3
1.5 Organization of the report . 3

2 Background 5
2.1 Ontology . 5

2.1.1 Domain Ontology . 5
2.1.2 Applications of Ontology . 6

2.2 Dependency graph . 6
2.3 Repositories surveyed . 7
2.4 Searching Tools surveyed . 9

3 Literature Survey 11
3.1 Mining based Automatic Ontology Construction[Ivan07] 11

3.1.1 TERMINAE[Term99]: . 11
3.1.2 Ontology Development using SALT[SALT02] 13
3.1.3 Learning OWL ontology from free text [LIU04] 14
3.1.4 Ontology Construction for Information Selection [Khan02] 15
3.1.5 Comparison of Ontology construction methods 15

3.2 Various Methods of Developing Ontology . 16
3.2.1 Skeletal methodology . 17
3.2.2 Practical Approach . 18
3.2.3 Knowledge Engineering Approach . 19
3.2.4 Seven-Step Method . 20

3.3 Ontology languages . 23
3.3.1 History of Ontology Languages [Fern03] 24
3.3.2 XML (Extended Markup Language) 25
3.3.3 RDF (Resource Description Framework) 29

ix

3.3.4 OIL (Ontology Interchange Language) 30
3.3.5 OWL (Web Ontology Language) . 31

3.4 Ontology Editors . 33
3.4.1 Ontolingua . 33
3.4.2 Protégé . 34
3.4.3 WebODE . 35
3.4.4 OntoStudio . 36

4 System Overview 39
4.1 Problem Statement . 39
4.2 Proposed Solution . 40
4.3 Solution Outline . 41

5 Implementation Details 43
5.1 system-1 . 43

5.1.1 Parsing . 43
5.1.2 Indexing . 43
5.1.3 Keyword Extraction . 44
5.1.4 Ontology Construction . 45
5.1.5 Generating the Dependency Graph & ontology 46

5.2 System - 2 . 46
5.2.1 Stemming . 47
5.2.2 Name Entity Recognizer . 50
5.2.3 Ontology Construction . 52

6 Evaluation 53
6.1 Precision and Recall . 53
6.2 Performance Analysis . 55
6.3 Results of System -1 . 56
6.4 Results of System - 2 . 60
6.5 System-1 Vs. System-2 . 64
6.6 Observations and Interpretations . 64

7 Conclusion & Future Work 67

Appendices 67

A Stop Words 69

B Other Results 71

List of Figures

2.1 Dependency Graph for “Operating System” 7

2.2 MIT’s OCW search for “Operating system Threads” 8

3.1 Ontology generation process . 14

3.2 Skeletal Ontology Approach . 17

3.3 Practical Ontology Approach . 18

3.4 Knowledge Engineering Approach, Taken from [YUN09] 19

3.5 Seven-Step Ontology Approach . 20

3.6 Defining classes of “Operating System” . 22

3.7 Types of “Threads” . 22

3.8 Stack of Ontology Markup Languages taken from [Fern03] 24

3.9 graphical representation . 27

3.10 Predicate . 30

4.1 Desired solution . 39

4.2 Dependency Graph for operating system . 40

4.3 Ontology Development from Text, taken from[Grub95] 40

4.4 System overview of system-1 . 41

4.5 System overview of system-2 . 42

5.1 System Design . 44

5.2 System Design . 47

6.1 Confusion matrix for the example . 55

6.2 Classification Diagram . 55

6.3 Computer Networks . 56

6.4 Operating Systems . 57

6.5 DAG for Computer Networks by System-1 . 59

6.6 Computer Networks . 60

6.7 Operating Systems . 61

6.8 DAG for Computer Networks by System-2 . 63

B.1 Computer Networks ontology developed by our system using protégé 71

xi

B.2 DAG for Operating System . 72
B.3 DAG for Software Engg . 73
B.4 DAG for Cryptography . 74
B.5 DAG for Numerical Analysis . 75
B.6 DAG for Embedded System . 76
B.7 DAG for System Analysis and Design . 77

List of Tables

2.1 Comparison of different course-ware repositories 9

3.1 Comparison of Ontology construction methods, taken from[Ivan07] 15
3.2 Book Store . 26
3.3 Message . 28
3.4 Student Information . 29
3.5 OWL Example. 32
3.6 Comparison of Ontology development tools, taken from [?] 37

6.1 Confusion Matrix . 54
6.2 Results for Computer Networks . 56
6.3 Results for Operating Systems . 57
6.4 Results for Software Engineering . 57
6.5 Results for Cryptography . 58
6.6 Results for Embedded Systems . 58
6.7 Results for Numerical . 58
6.8 Results for System Analysis And Design . 58
6.9 Results for Computer Networks . 60
6.10 Results for Operating Systems . 61
6.11 Results for Software Engineering . 61
6.12 Results for Cryptography . 62
6.13 Results for Embedded Systems . 62
6.14 Results for Numerical Analysis . 62
6.15 Results for System Analysis And Design . 62
6.16 Confusion Matrix for System - 1 . 64
6.17 Confusion Matrix for System - 2 . 64

xiii

Chapter 1

Introduction

Courseware repositories, such as OCW1 and NPTEL2, contain large amounts of data in the form
of videos and text. A fine-grain (topic-level) search facility and automatic identification of pre-
requisites and follow-ups for a given topic is desirable and would be useful to students. Such
a feature (identification of pre-requisites of a given topic) is not available in these repositories.
This feature could be built by manual tagging of the contents, but it is cumbersome to do so.

In this paper we present a technique that automatically constructs the ontology (dependency
graph) from given lecture notes. We show how this ontology can be used to identify the pre-
requisites and follow-up modules for a given query (lecture topic). In domain ontology, relation-
ships between different concepts of a domain are identified. In our case, a concept corresponds
to a lecture module and a relationship corresponds to whether it is a prerequisite or a follow-up
of the topic. We also provide the user with a dependency graph which corresponds to a con-
cept map and gives a conceptual view of the domain. People can often grasp ideas much more
quickly by looking into the graphical representation than by reading them in a book[Cmap08].
To the best of our knowledge, there is no such system to automatically determine dependencies
of topics from a repository of lecture notes.

Our system extracts the concepts using “term frequency inverse document frequency (tf-
idf) weighting scheme” and then determines the associations among concepts using “apriori
algorithm”. We have evaluated our system by comparing its results with the dependencies
determined by an expert in the subject area.

1.1 Abbreviations and acronyms

• Ontology: Large number of ideas and concepts to gather in a hierarchical order.
• Query, Learning-module or concept: Any topic related to a particular subject.
• Most Relevant: The PDF file which contains the topic that we are searching.

1http://ocw.mit.edu
2http://nptel.iitm.ac.in

http://ocw.mit.edu
http://nptel.iitm.ac.in

• Prerequisite: Prior information which is needed before proceeding with the topic.
• Follow-up: Information that can be read after finishing the topic.
• Stemming: Finding the root (base) form of a word.
• Name entity identification: Finding the proper nouns, naming specific things.
• OWL: Web Ontology Language.
• ngram: Groups of n written letters, n syllables, or n words.

1.2 Motivation for MTP

The course-ware repositories like NPTEL, CDEEP and MIT’s OCW provides lecture notes in
the form of PDF’s for a wide range of courses. Some repositories provide searching only for
courses, but not for topics. If we search for any topic though it is present in a course, searching
provided by these repositories cannot give the result. Most of the current search engines and
search techniques available in courseware repositories use only keyword based searching, which
will produce some PDF’s which contains the keyword but not related to the topic.

More over current search techniques do not provide us with the prerequisites and follow-ups
for a given topic. Suppose user want to learn about a particular topic, the search tool returns a
large number of links to the user in response to his/her query. Instead the search tools should
provide the PDF file which contains learning module for his query, and the prerequisites and
follow up modules that can be learned. To achieve this objective we use Domain Ontology to
create a dependency graph which will have the relation between concepts in a particular domain.

As a user we tried to search topics like Threads, TCP/IP, Ethernet etc., in some reposito-
ries. Although these topics were covered in those repositories, it showed that the topic was not
available there. And in some other repositories, most of the times the search results consisted
more advanced topics before the topic we searched. A detailed survey of repositories is given
in the next section. Hence, an effective search facility has to be provided so that the user can
get desired topics along with some related topics. Related topics can either be pre-requisites or
follow-ups. Detailed repository survey is described in the next chapter.

1.3 Goal of MTP

Given a set of lecture files (PDF or Text) for a particular subject from a course-ware repository,
or a Text book (soft copy), Our aim is to come up with a system which will provide the user
with correct reference (link for the PDF file in case of lecture files or chapter in case of the
book.) for the desired topic of the given subject. We also show a dependency graph so that the
user can refer to the previous and advanced topics as required. Dependency graph will provide
conceptual view of the subject to the user. We do not assume any ordering of the files or the
concepts.

2

The system will also provide the pre-requisites and follow-ups for the topic. User can re-
view the pre-requisite before starting the module or can refer the pre-requisites in case of any
difficulties in understanding the topic. At the same time user can also refer to the follow-up to
enhance his/her knowledge about the topic.

We have divided our system into three modules:

• Providing user with the link to the PDF file which consists the learning module for the
query (Keyword).

• Creating a dependency graph for the entire course so that the user can have a conceptual
view of the course.

• Suggestion of previous and advanced topics as required.

1.4 Solution Approach

Our technique is to extract the topics (keywords) from the given PDF files using “term frequency
inverse document frequency (tf-idf) weighting scheme”. Then we determine the associations
among different concepts (topics) using “apriori algorithm”. Then we arrange the relations in
a hierarchical order. For any user query, our system provides the link for the topic, and two
topics above it as pre-requisites and two topics below it as follow-ups, from the hierarchy of the
ontology.

Given the contents of a course from a repository (NPTEL in our case), we do the following:

• We indexed the given text using Lucene, the index is used for searching, and also for
finding the dependencies between different concepts.

• We used Tf-idf weighting to find out the important concepts and apriori algorithm to find
out the relation between the different concepts.

• We implemented and tested our system on several courses taken from NPTEL. For effec-
tive evaluation we tested the results against the dependencies determined by an expert in
the subject area.

1.5 Organization of the report

In Chapter 2, we explained the background required by a reader in order to proceed with the
report and also different course-ware repositories like CDEEP, NPTEL, and MIT’s OCW, and
their searching strategies. Chapter 3 contains different methodologies, techniques, tools and
languages for developing ontologies. Chapter 4 describes different approaches to our system.
The implementation of our systems is described in Chapter 5. Our experiments to evaluate the
performance of the system are shown in Chapter 6 and conclusions in Chapter 7.

3

4

Chapter 2

Background

This chapter describes courseware repositories, gives a brief overview of domain ontology and
defines dependency graph.

2.1 Ontology

Ontology Borrowed from philosophy - the study of “The nature of being”1. Ontology in in-
formation system is a large number of ideas and concepts to gather in a hierarchical order. It
provides a mechanism to capture information about the objects, Classes and the relationships
that hold between them in some domain. The aim of ontology is to develop knowledge repre-
sentations that can be shared and reused. Guber[Grub95] defined an ontology as

“A formal explicit specification of a shared conceptualization.”

In ontology classes describe concepts in the domain. A class can have subclasses that rep-
resent concepts that are more specific than the superclass. Slots describe properties of classes
and instances.

2.1.1 Domain Ontology

Domain Ontology is an ontology Model which provides definitions and relationships of the
concepts, major theories, principles and activities in the domain. Domain ontologies provide
shared and common understanding of a specific domain. Domain ontology provides particular
meaning of term as they apply to that domain. For example the word thread has many different
meaning. An ontology about the domain of operating system would model “process threads”,
while an ontology about the domain of ”textiles” would model thread with different meaning.

1Taken from: http://en.wikipedia.org/wiki/Ontology

5

http://en.wikipedia.org/wiki/Ontology

2.1.2 Applications of Ontology

Main application areas of ontology are knowledge management, Web commerce, electronic[OIL]
business and e-learning.

Knowledge Management is concerned with acquiring, maintaining, and accessing an or-
ganization’s data. Nowadays organizations are distributed around the world. Ontology will
help in these organizations in searching, extracting and maintaining the large number of on-line
documents. Ontology will give efficient searching techniques other than keyword matching.

Web commerce is extending the exiting business models with reduced costs. Some exam-
ples where web commerce can be used is online market places and auction houses. Ontology
will help the customers in finding the shops that sells the desired product with quality, quantity
and reduced cost. Ontology can describe the various products and help navigate and search
automatically for the required information.

Electronic Business is nothing but automation of business transactions. Ontology included
eBusiness will help in automation of data exchange.

E-learning To find out the dependencies between the keywords of a topic in the repositories,
and to facilitate the user with more recent and relevant data.

The key difficulties in developing ontology are: (i) extensive knowledge about a subject
is required and (ii) it is time-consuming. We have automated this process, in the context of
lecture notes. We use domain ontology to represent relations between topics for a given course.
Here we consider only one relation, which is “follows”. Topic-2 follows Topic-1 means that
Topic-1 is a pre-requisite for Topic-2 and Topic-2 is a follow-up of Topic-1. In our system we
first develop the domain ontology from the given set of notes. Then we refer the node which
represents the user’s desired topic and also provide two of its ancestor nodes as pre-requisites
and two descendants as follow-ups.

The domain ontology developed by our system is also presented to the user by a graphical
representation called dependency graph.

2.2 Dependency graph

A dependency graph is a directed graph which represents dependencies of several objects to-
wards each other.

“Given a set of objects S and a transitive relation R = S × S with (a, b) ∈ R modeling
a dependency ‘a needs b evaluated first’, the dependency graph is a graph G = (S, T) with
T ⊆ R and R being the transitive closure of T.”[Wikidep]

Dependency graphs are represented in hierarchical order, i.e., most general concepts are at
the top of the graph and the more specific and less general concepts in lower orders. Using
dependency graphs we can represent the dependencies between different concepts as shown in
Figure 2.1; concepts are shown by ellipses and dependencies by arrows.

6

Figure 2.1: Dependency Graph for “Operating System”

A dependency graph being similar to a concept-map[Cmap08], enhances the learner’s un-
derstanding of a given subject and is useful for providing summary of various interconnected
and dependent topics. The key difference between a dependency graph and a concept-map is
that: a concept-map can have any relation between two concepts, whereas in a dependency
graph there is only one relation, that is, depends.

2.3 Repositories surveyed

We surveyed MIT’s OCW, NPTEL, and CDEEP repositories which provide access to all of its
course content for free of cost.

MIT’s OCW

MIT OpenCourseWare is an initiative by MIT faculty to educate the students in science, tech-
nology and other areas. There are over 2,000 courses in 36 academic disciplines2. This content
is available for download freely in the form of MIT’s OpenCourseWare and there is a dedicated
website http://ocw.mit.edu/ for this. Most of the content has been made available in
the form of PDF documents. Our search for the topic “Operating system Threads” gave the link
for “Micro-kernels” first. It does not really help the user as more advanced topic links come
before the desired links. The screen-shot is shown in Figure 2.2.

Difficulties:

• Here Micro-kernels came before the actual kernels. It will not really help the user as more
advanced topic links were coming before the desired link.

• It gives some results which are not at all related to operating system threads.

• It is hard to decide from the large results, which are basic, and which are advanced topics.

2http://ocw.mit.edu/about/site-statistics/monthly-reports/

7

http://ocw.mit.edu/
http://ocw.mit.edu/about/site-statistics/monthly-reports/

Figure 2.2: MIT’s OCW search for “Operating system Threads”

National Program on Technology Enhanced Learning (NPTEL)

The National Programme on Technology Enhanced Learning (NPTEL)3 is a project from the
Ministry of Human Resource Development (MHRD), which was initiated in 19994. The main
idea behind NPTEL is to introduce multimedia and web technology in teaching. There are two
modes of courses available. One is digital video lectures of some courses, and the other one is
lectures notes in the form of PDF files. Here only course search is available, there is no topic
search provided.

Difficulties:

• The search option provided works for the course names. One can’t get any information
about a particular query (Topic) if it does not appear in the course name.

CDEEP

The Centre for Distance Engineering Education Programme (CDEEP)5 was started by the In-
dian Institute of Technology (IIT) Bombay. The main objective of CDEEP is to provide distance
education in engineering and science to students outside IIT. CDEEP is offering 53 courses in
6 major areas. Different activities of CDEEP include laboratory demonstrations, transmitting
classroom lectures live to the destination, develop web-based course material, tutorials, assign-
ments, and studio recording of lectures etc. There is no search facility available in CDEEP.
There is no search facility available in CDEEP. Table 2.1 shows the summary of the course-
ware repositories that we surveyed.

3http://nptel.iitm.ac.in
4http://nptel.iitm.ac.in/pdf/NPTEL%20Document.pdf
5http://www.cdeep.iitb.ac.in

8

http://nptel.iitm.ac.in
http://nptel.iitm.ac.in/pdf/NPTEL%20Document.pdf
http://www.cdeep.iitb.ac.in

Table 2.1: Comparison of different course-ware repositories
MIT’s OCW NPTEL CDEEP

Developers MIT MHRD India IITBombay
Course Search Yes Yes No
Keyword Search Yes No No
Search for “Operating
System Threads”

215 Results No Result No Result

Difficulties More advanced
Results came
first.

No topic Search No Search

Pre-Requisites/ Follow-
Ups

No No No

2.4 Searching Tools surveyed

Google Custom Search or Google Site search

Google Custom Search or Google Site Search6 applies the power of Google to create a cus-
tomized search box for our own website. Google Site Search is a hosted search solution that
enables Customize search box. It retrieves results using XML. Custom Search for our website
or blog, provides fast search results.

Our search in google site search of www.iitb.ac.in for “Threads” returned around 409
results. None of the resultant links were related to Operating system, our domain of concern.

Google search

Google is a General purpose search engine for searching Audio, Video and text material. Our
search for “operating system Threads” returned huge number of results. None of them have the
link for “operating system threads” PDF of any of the repositories we surveyed. User has to try
almost all the results on the first page to get into the correct link. It is very difficult for the user
to search from these many options. Google does not provide the prerequisite and follow-ups for
any course modules.

6http://www.google.com/cse/

9

www.iitb.ac.in
http://www.google.com/cse/

10

Chapter 3

Literature Survey

This chapter deals with different automatic ontology generation tools, Ontology Languages and
editors.

3.1 Mining based Automatic Ontology Construction[Ivan07]

Mining based techniques implement some mining techniques to retrieve the keywords from the
given text documents. Mining techniques incorporate automatic key word extraction techniques
in order to construct the ontology. Here the text documents can be web pages or files.

3.1.1 TERMINAE[Term99]:

The purpose of TERMINAE is to build automatic ontology from text as well as a new ontology
manually. It is a computer aided Knowledge-Engineering tool written in java. TERMINAE is
composed of two tools.

1. Linguistic Engineering Tool
2. Knowledge Engineering Tool

Linguistic Engineering Tool: This module allows the extraction of terminological forms (key-
words) from the given corpus (Text file). Terminological forms define each meaning of
a term called a notion using some linguistic relation (Parts-of-Speech) between notions
such as synonyms.

Knowledge Engineering Tool: This module involves knowledge base (Ontology) management
with an editor and browser for the ontology. The tool helps to represent a notion (topic or
keyword) as a concept. If we want to create a new ontology then we can directly use this
module which can create the ontology from scratch.

11

Conceptual view of TERMINAE:

• LEXTER, a term extractor, is used to extract the candidate terms (keywords) from the
corpus.

• With the help of an expert, effective terms from the candidate terms are selected.

• Then conceptualize each term. That is, give definition in natural language for each notion
and then translate the definition into formalism.

• Depending on the validity of the insertion we may or may not insert the concept into the
ontology.

• At each step of insertion Validate the Ontology whether it serves our purpose or not.

Practical view of TERMINAE

Prerequisites1: First convert the PDF files into text using the pdfBox. Then use TreeTagger
to extract the keywords and its parts-of-speech. Now process the TreeTagger output file with
YaTeA, it will produce a XML file.
Process: TERMINAE assumes that the acquisition corpus has been tagged by TreeTagger
and then processed by YaTeA beforehand. When we open TERMINAE it creates a folder with
the project name and some sub-folders in the main folder. In the corpus folder place the corpus
data and the output file of the TreeTagger. and in the YaTeA folder keep the XML file
which was generated by YaTeA.

Now click on Linguistic level then go to YaTeA and then to valid occurrences/Create ter-
minological forms, it will ask for the XML output of the YaTeA. Select the one that we pasted
then it will ask the text file select the corpus. It will display all the unique words present in the
corpus along with its frequency and List of occurrences. The main role of this term extractor
results window is to allow cleaning and reorganizing the table of terms provided by Yatea.
We can clean single word terms numbers as well as words containing some special characters
according to our choice.

An expert will now select the concepts required for the creation of ontology and then for
each concept go to terminological form. this module will save each concept as a XML file in
the fichesTerminologique subfolders.

According to the users requirement the concepts which are selected in the above step may
or may not be inserted into the ontology. TERMINAE can also be used individually to create a
new operating system from scratch.

1http://www-lipn.univ-paris13.fr/˜szulman/logi/

12

http://www-lipn.univ-paris13.fr/~szulman/logi/

TERMINAE is not suitable for our system because

• Not fully automatic.

– User should process the corpus through TreeTagger and YaTeA manually and follow
the instructions.

– An expert is required to select the most important notions(concepts) for the target
ontology from the list of terms (Keywords) extracted by the tool.

– Domain expert is also required to provide a definition of the meaning for each term
in natural language.

• YaTeA will fail if there is any XML or HTML code present in the corpus text.

• Static i.e., we cannot insert new topic after creating the final ontology.

3.1.2 Ontology Development using SALT[SALT02]

It is the common idea of two different projects: The standardization of lexical and terminolog-
ical resources (SALT) and the use of conceptual ontologies for information extraction and data
integration (TIDIE). This approach assumes the availability of 3 types of knowledge sources

• More general and well defined ontology for the domain.

• A dictionary or any external source to discover lexical and structural relationships like
WordNet.

• Consistent set of training text documents.

To extract Ontology knowledge source must

• Be of a general nature.

• Contain meaningful relations.

• Already exist in Machine readable form.

• Have a straight forward conversion into XML.

Conceptual view

The proposed architecture is given in the following figure 3.1 [SALT02].

Concept selection: Select the user required concepts from the domain. This is done by string
matching between textual content and ontological data. Here two assumptions are made
(1) word synonyms are considered through the use of WordNet synonym sets. (2) Multi-
word terms will undergo word-level matches. For example capital-city is considered as
the synonym of both capital and city.

13

Figure 3.1: Ontology generation process

Relationship retrieval: First find out the conceptual relationships from the knowledge sources.
Now construct a directed graph whose nodes are concepts. And the relationships between
these concepts can be represented by paths among the concepts. To find the relationships
more accurately use Dijkstra’s algorithm, to find out the shortest path (more appropriate)
relations among the concepts.

Constraint Discovery: constraints such as a person can have only one Date of Birth, two par-
ents and several phone numbers follows adopted conventions.

Refining results: The output ontology may not be the final ontology which user can directly
use. An expert will revise and refine the ontology.

This approach is not suitable for our system because

• It assumes more general and well defined ontology for the domain.

• It requires dictionary or any external source to discover lexical and structural relationships
like WordNet.

• User intervention is required at the end of the process because it can generate more con-
cepts then required.

3.1.3 Learning OWL ontology from free text [LIU04]

Automatic generation of ontology based on an analysis of a set of texts followed by the use of
WordNet.

• First the keywords of the text are analyzed.

• These words are then searched in WordNet to find the concepts associated with these
words.

• Here the Ontology generation is most automated.

14

This approach is not suitable for our system because

• Detail of how the terms are extracted from text is not available.

• This technique works well if there is more general reference knowledge like WordNet is
available.

3.1.4 Ontology Construction for Information Selection [Khan02]

1. Terms are extracted from documents with text mining techniques.

2. Documents are grouped hierarchically according to their similarities using a modified
version of SOTA algorithm.

3. Assign concepts to the tree nodes starting from leaf nodes with a method based on the
Rocchio algorithm.

4. Concept assignment is based on WordNet hyponyms.

5. Bottom up approach for ontology generation.

This approach is not suitable for our system because

• It needs a more general ontology (WordNet) to define concept for the targeted ontology.

3.1.5 Comparison of Ontology construction methods

Table 3.1: Comparison of Ontology construction methods, taken from[Ivan07]
Extraction Analysis Generation Validation

TERMINAE NLP tools are used,
Human intervention
is optional

Concept Rela-
tionship analysis
(Semi-automated)

No standard Ontology
representation

Purely by
human

SALT NLP Techniques
fully automated

Similarity analy-
sis of concepts

No standard Ontology
representation

Limited
human
intervention

Learning OWL
Ontology from
Text

NLP Techniques,
human intervention
is optional,WordNet
is used for key-
words.

Not provided OWL format (Human
intervention optional)

Not pro-
vided

Ontology Con-
struction for
information
selection

Human intervention
is optional

Not provided Human intervention
optional

Not pro-
vided

Definitions:

15

• Extraction: Getting the information (concepts) needed to generate the ontology, from
text documents.

• Analysis: Arranging the concepts in a hierarchical order.

• Generation: Formalizing the data i.e. generating the OWL or RDF/S file.

• Validation: It can be done after each step or at the end to check whether the ontology fits
for our requirements or not.

3.2 Various Methods of Developing Ontology

Practically, developing an Ontology includes[NOY01]

• Defining classes in the ontology

• Arranging classes in a taxonomic (subclass-superclass) hierarchy

• Defining slots and describing allowed values for these slots.

• Filling in the values for slots for instances.

Before getting into various methods of constructing ontologies let us first emphasize on the
fundamental rules in Ontology design[NOY01].

1. There is no one correct way to model a domain. There are always alternatives.

2. Ontology development is necessarily an iterative process.

3. Concepts in the ontology should be close to objects (Physical or logical) and relationship
in your domain of interest. There are mostly nouns (Objects) or verbs (relationships) in
sentences that describes the domain.

4. An ontology is a model of reality of the world and the concepts in the ontology must
reflect this reality.

There are different methods and methodologies for developing Ontologies. Out of them we
have chosen the following for study purpose. For our development we have chosen Seven-Step
Method proposed by Noy and Deborah. All the methodologies more or less have the same
iterative process for developing the ontology in seven-step method the steps are elaborated
more and presented more clearly. We explained different methodologies in brief and Seven-
Step Method in detail with an example.

16

3.2.1 Skeletal methodology

Proposed by Uschold and King[Grun95], Dif-
ferent Phases of Developing Ontology are:

1. Identifying a purpose and scope

2. Building the ontology

(a) Ontology capture

(b) Ontology coding

(c) Integrating existing Ontologies

3. Evaluation

4. Documentation Figure 3.2: Skeletal Ontology Approach

Purpose: It is important to be clear about the purpose of ontology and the intended users of the
particular ontology. Some ontologies were developed to structure a knowledge base and
some other ontologies are used as a part of a knowledge base.

Building the Ontology: Ontology construction includes:

1. Capture:

• Identification of the key concepts and relationships in the domain of interest
(scoping).

• Production of unambiguous text definitions for the concepts and relationships.

• Identification of terms to refer to such concepts and relationships.

2. Coding: Coding is nothing but explicit representation of the conceptualization cap-
ture in the above stage in some formal language.

3. Integrating existing ontologies:
In order to agree on ontologies that can be shared among multiple user communities,
much work must be done to achieve agreement. One way forward is to make explicit
all assumptions underlying the ontology.

Evaluation: Evaluation mainly deals with verification and validation that is validating the re-
lations and verifying the purpose.

Documentation: All important assumptions should be documented, both about the main con-
cepts defined in the ontology, as well as the primitives used to express the definitions in
the ontology.

17

3.2.2 Practical Approach

proposed by Gavrilova[GAV05], It consists of
5-steps for creating ontology:

1. Glossary development

2. Laddering

3. Disintegration

4. Categorization

5. Refinement Figure 3.3: Practical Ontology Approach

Glossary development Gather all the information relevant to the described domain. The main
goal of the step is selecting and verbalizing all the essential objects and concepts in the
domain.

Laddering Define the main levels of abstraction. Specify the type of Ontology classification
such as taxonomy, partonomy, and genealogy.

Disintegration Break high level concepts, built in the previous step, into a set of detailed ones
where it is needed. This could be done via a top-down strategy trying to break the high
level concept from the root of previously built hierarchy.

Categorization Detailed concepts are revealed in a structured hierarchy and the main goal at
this stage is generalization via bottom-up structuring strategy. This could be done by
association similar concepts to create meta-concepts from leaves of the aforementioned
hierarchy.

Refinement The final step is to updating the visual structure by excluding the excessiveness,
synonymy, and contradictions. As mentioned before, the main goal is harmony and clar-
ity.

18

3.2.3 Knowledge Engineering Approach

It was better described in “Develop-
ment of Domain ontology for e-learning
courses”[YUN09] which was appeared in
ITIME - 09 IEEE international symposium.

1. Identify purpose and requirement specifi-
cation

2. Ontology acquisition

3. Ontology implementation

4. Evaluation/Check

5. Documentation
Figure 3.4: Knowledge Engineering Approach,
Taken from [YUN09]

Identify purpose and requirement specification: Ontology purpose, scope and its intended
use, i.e. the competence of the ontology.

Ontology acquisition: Capture the domain concepts based on the ontology competence. It
involves

1. Enumerate important concepts and terms in this domain

2. Define concepts, properties and relations of concepts, and organize them into hier-
archy structure.

3. Consider reusing existing ontology.

Ontology implementation Explicitly represent the conceptualization captured in a formal lan-
guage

Evaluation/Check The ontology must be evaluated to check whether it satisfies the specifica-
tion requirements.

Documentation All the ontology development must be documented, including purposes, re-
quirements, textual descriptions of the conceptualization, and the formal ontology.

19

3.2.4 Seven-Step Method

It is proposed by Noy and Deborah[NOY01]. It describes
the process of developing ontologies in following steps:

1. Determine the domain and scope of the ontology.

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

4. Define the classes and the terms in the ontology.

5. Define the properties of classe’s slots.

6. Define the faces of the slots.

7. Create instances. Figure 3.5: Seven-Step Ontology Approach

Determine Scope

Scope is nothing but the purpose of ontology. It should answer the following questions.

• What is domain that the ontology will cover?

• For what we are going to use the ontology?

• For what type of questions the ontology should provide answers?

• Who will use and maintain the ontology?

For Example: Let us consider that we have to develop an ontology for operating system. The
purpose for development may be to find out the dependencies between the different topics
of operating system.

Consider Reuse

Check if we can refine and extend existing sources for our particular domain and task. There
are reusable ontologies on the web and in the literature.
Ex:

• www.ksl.stanford.edu/software/ontolingua
• www.daml.org/ontologies/
• www.unspc.org
• www.roselternet.org
• www.dmoz.org

For the development of our Operating System we are not able to find out the existing ontol-
ogy from these repositories.

20

www.ksl.stanford.edu/software/ontolingua
www.daml.org/ontologies/
www.unspc.org
www.roselternet.org
www.dmoz.org

Enumerate Terms

Write down a list of all terms related to the domain that we would like to explain to a user. It
is important to get comprehensive list of terms without worrying about concepts they represent
relation among the terms, or any property of concepts or whether concepts or classes or slots.
We can refine the terms in the subsequent steps. We used tf-idf algorithm to automatically
identify the keywords.

For Example: In operating system ontology the keywords may be Types of Computing, Types

of Systems, Process Management, Memory Management, File Management etc.,

Define Classes

There are several approaches in developing a class hierarchy

Top-down approach: This process starts with the definition of the most general concepts in
the domain and subsequent specialization of the concepts.

Bottom-up approach: This type of development process starts with the definition of the most
specific classes that leaves of the hierarchy with subsequent grouping of these classes into
more general concepts.

Combination Approach: This is a combination of the top-down and bottom-up approaches.
We define the more salient concepts first and then generalize and specialize them appro-
priately. We might start with a few top-level concepts and a few specific concepts. We
can then relate them to a middle-level concept.

None of these three methods are better than one another. The approach to take depends
strongly on the domain and the Ontology developer. The combination approach is often the
easiest for many ontology developers. Whatever the approach it is we start by defining classes.
From the list which is derived from Step-3 select the terms that describe objects having inde-
pendent existence rather than terms that describe these objects. These terms will be classes in
the ontology and will become anchors in the class hierarchy. If a class A is a superclass of class
B, then every instance of B is also an instance of A, i.e., Class B represents a concept that is a
“kind of” A.

For Example: If we arrange the keywords gathered above we will get an intermediate graph
as shown in Figure 3.6.

21

Figure 3.6: Defining classes of “Operating System”

Define Properties

Once we have defined some of the classes, we must describe internal structures of concepts.
After selecting the classes from the list created by Step-3 most of the remaining terms are likely
to be properties of these classes. For each property in the list we must determine which class it
describes. These properties become slots attached to classes. In general, there are several types
of object properties that can become slots in an ontology.

• “intrinsic” properties such as taste, and flavor of vegetables,

• “extrinsic” properties such as vegetable name and “area” it comes from.,

• Relationship to other individuals: relationship between individual member of the class
and other items.

All subclasses of a class inherit the slot of that class. A slot should be attached at the most
general class that can have that property.

For Example: The properties (type) of “Thread” are shown in the Figure 3.7.

Figure 3.7: Types of “Threads”

Define Constraints

Slots can have different aspects (facets, values). The facets may describe the value type, allowed
values, the number of the values (cardinality), and other features of the values the slot can take.
Example:

• Value of a name slot is one string i.e. name is a slot with value type string.

22

Several common facets:

Slot cardinality: Slot cardinality defines how many values slot can have, for example single
cardinalities (allows at most one value) and multiple cardinality (allows any number of
values). Some systems allow specification of a minimum and maximum cardinality to
describe the number of slot values more precisely. i.e. minimum cardinality of ‘n’ means
a slot must have at least ‘n’ values. And similarly Maximum cardinality of ‘m’ means
that a slot can have at most ‘m’ values.

Slot-value type: A value type facet describes what type of values can fill in the slot. Following
are some of the examples of slots.

String: the value is a simple string used for slots such as name.

Number: describes slots with numeric values, more precisely can have integer and float.

Ex: price

Boolean: Slots simply Yes-No (True-False) flags.

Enumerated: It specify a list of specific allowed values for the slot

Ex: flavor slot can take strong, moderate, and delicate

Instance: These types of slots allow definition of relationships between individuals. Slots with

value type instance must also define a list of allowed classes from which the instances can

come.

Create instance

Define an individual instance of each class. It requires

1. Choosing a class.
2. Creating an individual instance of the class.
3. Filling in the slot values.

3.3 Ontology languages

Ontology languages are formal languages used to construct ontologies. It can formally describe
the meaning of terminology used in web documents.

Need of Ontology languages Ontologies can be viewed as Database Schema but we cannot
utilize the database schema. Because database schema is more rigid and can fit into set of tables
whereas ontology will not fit into tables. Fensel [XMLS] points out the following differences
between ontologies and schema definitions:

23

• A language for defining ontologies is syntactically and semantically richer than common
approaches for databases.
• The information that is described by an ontology consists of semi-structured natural lan-

guage texts and not tabular information.
• An ontology must be a shared and legal terminology because it is used for information

sharing and exchange.

3.3.1 History of Ontology Languages [Fern03]

At the beginning of the 1990’s, a set of AI-based ontology implementation languages were
created. Following Figure - 3.8 describes the hierarchy of different ontology languages.

Figure 3.8: Stack of Ontology Markup Languages taken from [Fern03]

SHOE was built in 1996 as an extension of HTML, in the University of Maryland. It uses set
of tags which are different form the HTML specification thus it allows insertion of ontologies in
HTML documents. SHOE just allows representing concepts, their taxonomies, n-ary relations,
instances and deduction rules.

Then XML was created and widely used as a standard language for exchanging information
on the web. Then SHOE syntax was modified to includes XML, and some other ontology
languages are also built on XML.

XOL was developed by the AI center of SRI international, in 1999. It is a very restricted
language where only concepts, concept taxonomies and binary relations can be specified. No
inference mechanisms are attached to it. It is mainly designed for the exchange of ontologies in
the biomedical domain.

Then RDF was developed by the W3C (The world wide web consortium) as a semantic-
network based language to describe Web resources. RDFSchema was built by the W3C as an
extension to RDF with frame-based primitives. The combination of both RDF and RDFSchema
is normally known as RDF(S). RDF(S) is not very expressive. It just allows the concepts,
concept taxonomies and binary relations.

Three more languages have been developed as extensions to RDF(S): OIL, DAML + OIL
and OWL. OIL was developed in the framework of the European IST project On-To-Knowledge.

24

It adds frame-based Knowledge Representation primitives to RDF(S), and its formal semantics
is based on description logics.

DAML + OIL was created by a joint committee from the US and the EU in the context of
the DARPA project DAML. DAML + OIL also adds DL-based KR primitives to RDF(S). Both
OIL and DAML + OIL allow representing concepts, taxonomies, binary relations, functions and
instances. Many efforts are being put to provide reasoning mechanisms for DAML + OIL.

Finally, in 2001, the W3C formed a working group called Web-Ontology (WebOnt) Working
Group. The aim of this group was to make a new ontology markup language for the Semantic
Web, called OWL (Web Ontology Language).
Brief Description of the Languages

3.3.2 XML (Extended Markup Language)

XML[XML] is a markup language for delivery of documents containing structured informa-
tion over the web. Structured information contains both content and some indication of what
role that content plays. In HTML the tag semantics and the tag set are fixed. It does not provide
arbitrary structure. XML specifies neither semantics nor a tag set i.e., there is no fixed tags in
XML, and XML provides a facility to define tags and the structural relationships between them.
XML is created so that richly structured documents can be used over the web.

XML documents are composed of markup and content. Following kind of markups can occur
in XML document: elements, comments, processing instructions etc.
Elements: elements identify the nature of the content they surround, some elements may be
empty or non-empty if an element is not empty, it begins with a start-tag, <element> and ends
with an end-tag, <\element> attributes, are name-value pairs that occur inside start-tags after
the element name. For example

<div class="preface">

is a div element with the attribute class having the value preface. In XML all attribute values
must be quoted.
Comments: Comments begin with <!- - and end with - ->. Comments can contain any data
except the literal string - -. We can place comments between markups, anywhere in the docu-
ment.
Processing Instructions: Processing instructions are an escape sequences to provide informa-
tion to an application. Like comments, they are not textually part of the XML document, but
the XML processor is required to pass them to an application. Processing instructions have the
form:

<?name pidata?>

25

Table 3.2: Book Store
Book Id Title Author Year Price
059600 XML John 2005 30
059601 Javascript David 2003 29.99

Basic XML code looks like

For the above text the XML code is

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book Id="059600">

<title lang="en">XML</title>

<author>John</author>

<year>2005</year>

<price>30.00</price>

</book>

<book Id="059601">

<title lang="en">Javascript</title>

<author>David</author>

<year>2003</year>

<price>29.99</price>

</book>

</bookstore>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding
used (ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: “this document is
for bookstore”) i.e. <bookstore>, The next 4 lines describe 4 child elements of the root (title,
author, year, price), And finally the last line defines the end of the root element <bookstore>

We can attach cascaded style sheet to the XML document by adding the following code in
the second line

<?xml-stylesheet type="text/css" href="book.css"?>

For the above data we can draw a graph for each book. the following figure shows the
graphical representation for the book JavaScript

26

Book JavaScript

059601

David

Title

BookId

Author

Figure 3.9: graphical representation

XMLS(XML Schema)

XML Schema[XMLS] is a means for defining constraints on well formed XML documents. It
provides basic vocabulary and predefined structuring mechanisms for providing information in
XML. XML Schemas are extensible, because they are written in XML.

That is we can reuse our Schema in other Schemas, we can create our own data types derived
from the standard types and we can Reference multiple schemas in the same document. XML
Schema provides several significant improvements:

• XML Schema definitions are themselves XML documents. The clear advantage is that all
tools developed for XML (e.g., validation or rendering tools) can be immediately applied
to XML schema definitions, too.
• XML Schemas provides a rich set of datatypes that can be used to define the values of

elementary tags.
• XML Schemas provides a much richer means for defining nested tags (tags with subtags)
• XML Schemas provides the namespace mechanism to combine XML documents with

heterogeneous vocabulary.

With XML Schemas, the sender can describe the data in a way that the receiver will under-
stand. A date like: ”03-11-2004” will, in some countries, be interpreted as 3.November and in
other countries as 11.March.

However, an XML element with a data type like this:

<date type="date">2004-03-11</date>

ensures a mutual understanding of the content, because the XML data type “date” requires the
format “YYYY-MM-DD”.

It provides syntax for structured documents but no semantic constraints on the meaning of
these documents.

Let us consider an example

27

Table 3.3: Message
To From Heading Body

John David Reminder Meeting is cancelled.

For the above XML code the XML Schema will be

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.cse.iitb.ac.in"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

<xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The note element is a complex type because it contains other elements. The other elements
(to, from, heading, body) are simple types (string) because they do not contain other elements.
Final XML code with reference to the XML Schema

<?xml version="1.0"?>

<note

xmlns="http://www.cse.iitb.ac.in"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cse.iitb.ac.in note.xsd">

<to>John</to>

<from>David</from>

<heading>Reminder</heading>

28

<body>Meeting is cancelled.</body>

</note>

3.3.3 RDF (Resource Description Framework)

Resource Description Framework (RDF)[RDF] is a graphical language used for representing
information about resources on the web. It is a basic ontology language. RDF is written in
XML. By using XML, RDF information can easily be exchanged between different types of
computers using different types of operating systems and application languages. RDF was
designed to provide a common way to describe information so it can be read and understood
by computer applications. RDF descriptions are not designed to be displayed on the web. Data
model for objects and relations between them, provides a simple semantics for datamodel. Data
models can be represented in XML syntax. Basic RDF code looks like

Table 3.4: Student Information
Student Id Name Subject Marks Percentage

059600 John Networks 40 80
059601 David Networks 45 85

For the above data the RDF code is

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:st="http://www.cse.iitb.ac.in/st#">

<rdf:Description

rdf:about="http://www.cse.iitb.ac.in/st/059600">

<st:name>John</st:name>

<st:subject>Networks</st:subject>

<st:marks>40</st:marks>

<st:percentage>80</st:percentage>

</rdf:Description>

<rdf:Description

rdf:about="http://www.recshop.fake/st/059601">

<st:name>David</st:name>

<st:subject>Networks</st:subject>

29

<st:marks>45</st:marks>

<st:percentage>90</st:percentage>

</rdf:Description>

</rdf:RDF>

The first line of the RDF document is the XML declaration. The XML declaration is fol-
lowed by the root element of RDF documents: <rdf:RDF>.

The xmlns:rdf namespace, specifies that elements with the rdf prefix are from the namespace

"http://www.w3.org/1999/02/22-rdf-syntax-ns#".

The xmlns:cd namespace, specifies that elements with the cd prefix are from the namespace

"http://www.iitb.ac.in/st#".

The <rdf:Description>element contains the description of the resource identified by the
rdf:about attribute.

The elements: <st:name>, <st:subject>, <st:marks>, etc. are properties of the resource.
RDF identifies with Uniform Resource Identifiers (URI) these are called resources. The

base element of the RDF model is the triple: a subject linked through a predicate to object. We
will say that <subject>has a property <predicate>valued by <object>

The RDF triple (S,P,O) can be viewed as a labeled edge in graph.

Student

Subject

David

ObjectPredicate

Name

Figure 3.10: Predicate

RDFS (RDFSchema)

Vocabulary for describing properties and classes of RDF resources[Wikirdfs], with a seman-
tics for generalization - hierarchies of such properties and classes. It defines a simple ontology
that particular RDF documents may be checked against to determine consistency. Many RDFS
components are included in the more expressive language Web Ontology Language (OWL).

3.3.4 OIL (Ontology Interchange Language)

OIL is also known as Ontology Inference Layer[OIL]. OIL is derived from RDFS. OIL is
based on descriptive logic. Descriptive logic describes knowledge in terms of concepts and role
restrictions that can automatically derive classification taxonomies.

30

OIL is better than its ancestors in the following ways. It has rich set of modeling primitives
and nice ways to define concepts and attributes. The definitions of a formal semantics were
included in OIL. Customized editors and interface engines for OIL also exist. Any RDFS
ontology is a valid ontology in OIL and vice versa. Much of the work in OIL was subsequently
incorporated into DAML+OIL and the Web Ontology Language (OWL).

3.3.5 OWL (Web Ontology Language)

In 2001, the W3C formed a working group called Web-Ontology (WebOnt) Working Group.
The aim of this group was to make a new ontology markup language for the Semantic Web,
called OWL (Web Ontology Language)[OWL]. OWL is used when the information contained
in documents needs to be processed by application. OWL can be used to explicitly represent
the meaning of terms in vocabularies and the relationships between the terms. It is a revised
version of the DAML + OIL web ontology language. OWL adds more vocabulary for describing
properties and classes.
Siblings of OWL are

1. OWL Lite

2. OWL DL

3. OWL Full

OWL Lite

OWL lite supports classification hierarchy and simple constraints. OWL Lite provides a quick
migration path for thesauri and other taxonomies. OWL Lite has a lower formal complexity
then OWL DL.

OWL DL

Maximum expressiveness while retaining computational completeness and decidable i.e. all
computations will be finished in time. OWL DL is named due to its correspondence with
Description Logic, and it includes all the OWL language constructs.

OWL Full

OWL Full gives syntactic freedom of RDF, with no computational guarantees. OWL Full allows
an ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary

31

The following set of relations hold. Their inverses do not.

• Every legal OWL Lite ontology is a legal OWL DL ontology.
• Every legal OWL DL ontology is a legal OWL Full ontology.
• Every valid OWL Lite conclusion is a valid OWL DL conclusion.
• Every valid OWL DL conclusion is a valid OWL Full conclusion.

The choice between OWL-Lite and OWL-DL is based on whether the simple constructs of
OWL-Lite is sufficient or not. Whereas the choice between OWL-DL and OWL-Full may be
based upon whether it is important to be able to carry out automated reasoning on the ontology
or whether it is important to be able to use highly expressive and powerful modeling facilities
such as meta-classes (classes of classes).

OWL Full can be viewed as an extension to RDF. whereas OWL Lite and OWL DL can be
viewed as an extension of a restricted view of RDF.

Every OWL (Lite, DL, Full) document is an RDF document and every RDF document is an
OWL Full document. Only some RDF documents can be OWL lite or OWL DL.

Table 3.5: OWL Example.

Person Animal Relation
Rex John Pet

OWL code for the above table is:

[Namespaces:

rdf = http://www.w3.org/1999/02/22-rdf-syntax-n\#

xsd = http://www.w3.org/2001/XMLSchema#

rdfs = http://www.w3.org/2000/01/rdf-schema#

owl = http://www.w3.org/2002/07/owl#

pp = http://cohse.semanticweb.org/ontologies/people#

]

Ontology(

Class(pp: person)

Class(pp: animal)

ObjectProperty(pp:has_pet domain(pp:person) range(pp:animal))

//Property

Individual(pp:Rex type(pp:dog) value(pp:is_pet_of pp:John))

//Instance

)

32

3.4 Ontology Editors

Ontology editors are designed to assist in the creation or modification of ontologies. These
editors are the applications which support one or more ontology languages. And some editors
also have the facility to export from one to another ontology languages.

3.4.1 Ontolingua

The Ontolingua Server was the first ontology tool created2. It was developed in the Knowledge
Systems Laboratory (KSL) at Stanford University. The public server is available at http:
//www-ksl-svc.stanford.edu:5915/, we must have an account to use the system.
All work takes place with in a session, which has a duration and a description. Ontolingua
uses Object-Oriented presentation, and full logical representation. The ontology is stored on
the server. we can download our work to a local file system or we can email our work to any
system. Ontolingua runs in port 5915.
Uses of Ontolingua are:

1. Runtime query

2. Translation

Runtime Query, remote applications may query an ontology server

• To determine if a term is defined

• To determine the relationship between terms

• To manipulate the contents of an ontology

Translation, from one language to another language. It includes the following challenges

• Semantics - ensure that the meaning is preserved.

• Syntax - ensure that target syntax is correct.

• Style - ensure that target idioms are preserved.

Ontolingua is not suitable for our system because

Ontolingua runs in port 5915. There is a firewall in our network which is blocking HTTP
connections to ports other than port 80. So we were not able to open Ontolingua server.

2http://ksl.stanford.edu/software/ontolingua/

33

http://www-ksl-svc.stanford.edu:5915/
http://www-ksl-svc.stanford.edu:5915/
http://ksl.stanford.edu/software/ontolingua/

3.4.2 Protégé

Protégé is a free, open source ontology editor and a knowledge acquisition system3. It was de-
veloped by the Stanford Medical Informatics(SMI) at Stanford University. It is an opensource,
standalone application with an extensible architecture. It is extensible in the sense that we can
add plug-ins to the tool. It is written in Java and heavily uses Swings to create the complex user
interface. Protégé ontologies can be exported into a variety of formats including RDF(S), OWL,
and XML Schema. The Protégé platform supports two main ways of modeling ontologies

1. Protégé-OWL

2. Protégé-Frames

Protégé-OWL

The Protégé-OWL editor is an extension of Protégé that supports the Web Ontology Language
(OWL). An OWL ontology may include descriptions of classes, properties and their instances.
The Protégé-OWL editor enables users to:

1. Load and save OWL and RDF ontologies.

2. Edit and visualize classes, properties, and rules.

3. Define logical class characteristics as OWL expressions.

protégé-frames

The Protégé-Frames editor provides user interface to support users in constructing and storing
domain ontologies. In this model, an ontology consists of a set of classes organized in hier-
archical order to represent a domain’s concepts. Classes are associated with a set of slots to
describe their properties and relationships, and a set of instances of those classes.

Developing Ontology

To create Ontology using protégé user should have all the keywords and their relationships in
hierarchical order. First of all install protégé in the system go to the classes tab. insert each
keyword in hierarchical order. A sample computer networks ontology developed by our system
using protégé is shown in the Figure B.1.

Reason why we have taken protégé:

• Open-source: Protégé is available as free software under the open-source Mozilla Public

License.
3http://Protege.stanford.edu/

34

http://Protege.stanford.edu/

• Extensible: we can add the add-ons so that it will fit into our purpose.
• Standalone: Unlike other tools protégé can be downloaded to work with it. No internet

is required for development of ontology.

3.4.3 WebODE

WebODE is a tool for building ontologies in the World Wide Web4. It was developed in the
Artificial Intelligence Lab from the Technical University of Madrid(UPM). Web ODE can’t
be used as a standalone application, but we can use it as a Web server with a Web interface.
Multiple concurrent users are allowed to work at the same time, proper synchronization and
blocking mechanisms are provided. Ontology designers can make their best with this tool either
working alone or in a team.

WebODE is based on a central ontology repository implemented using a relational database.
A very simple and powerful mechanism to export and import ontologies using the XML stan-
dard is also supplied by default with the tool. Technical requirements

1. Browser (Internet Explorer 5.0 or above)

2. Java plug-in version 1.2.x must be installed in the browser

3. Configure the Web browser so that the pages are retrieved from the server every time
they are visited. This can be done by navigating to “Tools / Internet Options / Internet
Temporal Files / Configuration / Every Time the page is Visited”.

4. Do not use the proxy for the WebODE URL. This option can be configured selecting:
Tools / Internet Options/Connection / LAN Configuration.

Usage Login in this website http://www.oeg-upm.net/webode

New Ontology: Give a name and description for the ontology that is being created. Where
name is compulsory and description is optional.

List of Ontologies: We can list the ontologies that we are able to access (and modify) by click-
ing on the list ontologies tab from the main menu.

Open Ontology: We can open ontologies, to insert new components, to update them and to
simply remove some of them.

Export Ontology: We can export the ontology into several languages like UML, XML, RDF(S),
OIL, DAML+OIL, OWL and so on, and we can get the target code.

4http://webode.dia.fi.upm.es/WebODEWeb/Documents/usermanual.pdf

35

http://www.oeg-upm.net/webode
http://webode.dia.fi.upm.es/WebODEWeb/Documents/usermanual.pdf

Developing Ontology

First we have to register for WebODE, after registration we will get a username and password.
Log on to the WebODE website http://www.oeg-upm.net/webode using the username
and the password. Here also the keywords and the relationships between the keywords should
be known prior to the ontology creation.

WebODE is not suitable for our system because

WebODE is not a standalone application. It is a web based application. And one more reason
is WebODE doesn’t support OWL2.

3.4.4 OntoStudio

OntoStudio is an modeling environment to create and maintain ontologies5, with particular
emphasis on rule-based modeling. It was originally developed for F-Logic but now also includes
some support for OWL, RDF, and OXML. It also includes functions such as the OntoStudio
Evaluator. Evaluator is used for the implementation of rules during modeling. It is the successor
of OntoEdit.

Data Models

OntoStudio can be operated with a RAM-based- as well as database-data-model; therefore it is
scalable and suitable for the modeling of large ontologies in business domain.

1. RAM Data Model:
The complete ontology data is loaded into the main memory of the workstation. All
changes made in the ontology are written in files when you save the new ontologies. It is
appropriate for small and medium-size ontologies (dependent on main memory size)

2. Database Data Model
Only the actual presented parts of the ontology are loaded from a database into main
memory and will be written back to the database immediately when changes happen in
the ontology. It is appropriate for large ontologies.

OntoStudio supports the ontology languages F-Logic, RDF/RDFS and OWL.

Developing Ontology

For creating ontologies using OntoStudio install OntoStudio in the system and run from the
command prompt.

5http://www.ontoprise.de/en/home/products/ontostudio/

36

http://www.oeg-upm.net/webode
http://www.ontoprise.de/en/home/products/ontostudio/

OntoStudio is not suitable for our system because

OntoStudio is not open-source software. It is licensed under ontoprise. It is a commercial
modeling environment for the creation and maintenance of ontologies. So it is not helpful for
our system. Summary of different ontology tools we studied, their comparison with respect to
languages they support, mode of access, export and import options were given in the table - 3.6.

Table 3.6: Comparison of Ontology development tools, taken from [?]

Ontolingua Protégé WebODE OntoStudio

Developers KSL (Stanford University) SMI (Stanford Uni-
versity)

UPM Ontoprise

Current Release and
Tools

0.1.45(Aug 2003) 4.1Alpha(Mar 2010) 2.0(Dec 2002) 2.3.3(Dec 2009)

Pricing Policy Free Web Access Free Ware Lincences Freeware & Licences
Mode of Access Web Access Stand Alone Web Access Stand Alone
Export to Languages CLIPS CML, ATP CML XML, RDF(S),

XMLSchema, OWL
XML, RDF(S), OIL,
DAML+OIL

XML, RDF(S), F-
Logic, OWL

Import from Languages IDL KIF XML, RDF(S),
XMLSchema, OWL

XML, RDF(S) XML, RDF(S), F-
Logic, OWL

Ontology Library Yes Yes No Yes

37

38

Chapter 4

System Overview

4.1 Problem Statement

Given a repository of lecture notes for a particular subject (or the soft-copy of a text book), our
aim is to build a system that provides the user with: (i) a mechanism to query for a desired topic,
(ii) identify the pre-requisites and follow-ups for the topic and (iii) a dependency graph of the
pre-requisites and follow-ups of all topics in the subject.

Suppose user wants to learn about particular topic say Threads, of particular subject say
Operating system, we will provide user with the reading material (The PDF file which contains

the topic Threads) and we will recommend the user with prior knowledge(Link to the previous

PDF files) required by the user to start his desired topic and also the advanced topics(Link to

the next PDF files) which he can cover after finishing the topic. The sample user interface for
the desired solution is given in the Figure 4.1.

Figure 4.1: Desired solution

The desired system will also provide a dependency graph for the user so that the user can
have a conceptual view of the course. A sample dependency graph generated manually and
drawn using DOT language1 is shown in Figure 4.2.

1http://en.wikipedia.org/wiki/DOT_language

39

http://en.wikipedia.org/wiki/DOT_language

Figure 4.2: Dependency Graph for operating system

4.2 Proposed Solution

As the examined solutions mentioned in the previous chapter, which are available for genera-
tion of ontology, are not useful directly or indirectly for our purpose we propose the following
solution.
Use some Natural Language processing tool to extract the keywords from the text files. Then
find out the parts of speech, Noun-verb-Noun phrases. Find out the concepts and classes their
dependencies and relationships. This can be done by many methods like finding the word fre-
quencies, Noun verb patterns etc. Then build domain concepts and relationships and construct
the dependency graph in hierarchical order which is the final formal domain ontology. The
complete process is shown in the Figure 4.3, Taken from[Grub95]. Now take the User query
and provide the output with help of the ontology.

Figure 4.3: Ontology Development from Text, taken from[Grub95]

40

4.3 Solution Outline

System-1

The steps for our solution are as follows and also shown in Figure 4.4:

1. Convert the given PDF files into text, and index the text files.

2. Extract the keywords from the text files.

3. For each keyword: Identify its relation with other keywords. If there is a relation, then
determine whether it is a pre-requisite or a follow-up.

4. Construct and store the ontology with the identified relations, in the form of a dependency
graph in a hierarchical order.

5. Given a user query, lookup the ontology and provide the pre-requisites (ancestors) and
follow-ups (descendants), as a reply to the query.

Figure 4.4: System overview of system-1

41

System-2

We modified our basic system in order to increase the performance of legitimate keyword ex-
traction accuracy and system performance. Modified algorithm is shown in the Figure - 4.5.
The modifications that were done to the above system are.

• After converting the PDF files to text files, we identified the Name entities and we re-
moved the name entities from the corpus.

• To increase the number of legitimate keywords we used stemming (Root word identifica-
tion) technique.

• Now extract the keywords from the stemmed corpus

• We modified the above proposed Apriori algorithm in order to increase the efficiency of
relationship identification.

Other steps are same as our first system such as construction and storage of final ontology and
query module.

Figure 4.5: System overview of system-2

42

Chapter 5

Implementation Details

5.1 system-1

The implementation of our system has the following five phases:

1. Parsing: Parse the PDF files of the course to get the corpus text files, using PDFBox
[PDFB].

2. Indexing: Index the Text files, using Lucene[WikiLuc].

3. Keyword Extraction: Extract the keywords, using tf-idf weighting scheme[RAM03].

4. Ontology Construction: Find the relations between the keywords, using the apriori algo-
rithm [APR94].

5. Dependency Graph Generation: Generate the dependency graph for the whole course,
using DOT [DOT], and ontology using OWL language[OWL].

The flow of input to output of system-1 is shown in Figure 5.1 and the details are described
in the subsequent sections.

5.1.1 Parsing

We made use of a Nutch utility called PDFbox [PDFB] to parse the PDF files and to convert
them into text (as required by our indexing utility, Lucene). In case there is only one big PDF
file containing all the topics (such as soft-copy of a book), we used PDFBox also to divide it
into multiple PDF files, since our algorithm requires multiple PDF files for identifying relations.

5.1.2 Indexing

Lucene[WikiLuc] is embedded in our system to index and search the given text documents.
It lets one add indexing and searching capabilities to the application. Lucene can index any

43

Figure 5.1: System Design

data that can be converted to textual format, and make it searchable. We used Lucene index to
search and to calculate the tf-idf weight of each term (as described below), and also to identify
the relationship between two keywords, i.e., whether one is a pre-requisite for other or a follow-
up to the other.

5.1.3 Keyword Extraction

Keyword extraction is the process of extracting important phrases which can summarize the
meaning of a document. Keywords can be extracted using linguistic techniques or machine
learning techniques. Linguistic techniques make use of part-of-speech tagging or phrase chunk-
ing [Wikikey]. On the other hand, machine learning techniques use statistical or probabilistic
data for keyword extraction. Machine learning based keyword extraction is once again di-
vided into supervised and unsupervised techniques. Supervised techniques require some data
for which the keywords are known (this is called training data) for its operation, while unsuper-
vised techniques do not require any training data.

We used tf-idf (an unsupervised technique), to identify terms with high relevance to the doc-
ument. We used “topia”[Topia] (which makes use of part-of-speech (POS) tagging technique),
to find other keywords which are missed by tf-idf algorithm, if any.

Term Frequency Inverse Document Frequency (tf-idf)[RAM03]

Term frequency inverse document frequency (tf-idf) is defined as the number of occurrences of
a term in a given document multiplied by the inverse of the number of documents where the
term appears. Given a document collection D, a word w, and an individual document d ∈ D

44

wd = fw,d ∗ log(|D|/fw,D)

where

• fw,d equals the number of times w appears in d,

• |D| is the size of the corpus (number of documents), and

• fw,D equals the number of documents in which w appears in D.

Logarithm of document frequency in the above formula is used for smoothing purpose. The
tf-idf value is

• high when a term occurs many times within a small number of documents,

• low when the term occurs fewer times in a document, or occurs in many documents,

• lower when the term occurs in virtually all documents.

Using tf-idf weighting scheme, we scored each word (unigram, bigram, trigram, and four-
gram) in the given text corpus. Then we found out the top unigrams, bigrams, trigrams, and
fourgrams according to the tf-idf weights. Ngrams are groups of n written letters, n syllables,
or n words. In this way, we extracted top keywords for the given text.

We defined our own set of stop words in order to increase the accuracy of the extracted
keywords. Stop words are common words like numbers, digits, articulations, conjunctions etc.
We did not allow any stop words in bigrams. We allowed stop words as a second word for
conjunction purpose in trigrams. In fourgrams, the third and the fourth words can be stop words
but the first and the last words cannot be stop words. All the keywords extracted are stored in a
file called tfidf.txt.

We performed experiments to determine the optimal number of unigrams, bigrams, trigrams,
fourgrams, and total number of keywords to include. These are discussed in the evaluation
section.

5.1.4 Ontology Construction

To identify the relation between different keywords and to construct the ontology, we used
apriori algorithm, a classical algorithm for learning association rules.

Apriori Algorithm

“Given a set of documents, generate all association rules that have support and confidence
greater than the user-specified minimum support and minimum confidence respectively”[APR94].
Where Association Rule: i1, i2, ..., ik → j means, “if a document contains all of i1, ..., ik

45

then it is likely to contain j”. Support is the number of documents containing all the words
i1, i2, ..., ik, j and Confidence of this association rule is the probability of j given i1, ..., ik.

We modified the apriori algorithm according to our requirement. Our modified version is as
follows:

• Step 1: Read documents and count the occurrences of each item. It requires only memory
proportional to the number of words in the documents. This step was modified by using
tf-idf weight.

• Step 2: Read documents again and count only those pairs which were found in Step 1 to
be frequent. So if we find n frequent keywords, then we will have n(n−1)/2 pairs. Now,
find out the frequent wordsets with the given confidence. The frequent wordsets establish
an Association between the two words.

The support is a configurable parameter. If the support is less (minimum number of docu-
ments in which the pair of words should be repeated), then the algorithm will find more number
of relations. On the other hand, if the support is more then, the algorithm will identify less num-
ber of relations. We considered the confidence as 0%. That is, if the support is satisfied, then
we consider it as a relation, though other documents may contain only word-1 but not word-2.

For each pair of keywords in tfidf.txt, we calculated the frequency among different
documents, and listed the pair of words having greater frequency than the support provided as
relations. All the relations are stored in a file called relation.dot in a form which can be
read by DOT language.

5.1.5 Generating the Dependency Graph & ontology

Having found the relations between the keywords, we show them in a graphical representation,
i.e., the dependency graph. The purpose of creating the dependency graph is to let the users
decide what they should know before learning any specific topic. Using DOT language, we
constructed a directed acyclic graph for the relations that we identified above, and converted the
file relation.dot into dag.pdfwhich is the dependency graph. From the above identified
relations we construct ontology using OWL language, which can then be exported to protégé,
so that we can add or delete concepts in future.

5.2 System - 2

The flow of input to output of system-2 is shown in Figure 5.2 and the details are described in
the subsequent sections.

46

Figure 5.2: System Design

5.2.1 Stemming

We used stemming to decrease the number of words to be indexed and also to increase the per-
formance of keyword identification. If the root word is present in different places in different
forms then it is difficult to identify it as a keyword using Tf-idf algorithm. So we used stem-
ming to identify the stem of the words and replaced different form of the words by its stem.
This process reduces the number of words to be indexed and helps identifying the legitimate
keywords.

We converted the given text files into vectors of words or terms. Words or terms are the root
words derived from the original word after removal of the suffix by the stemming algorithm.
Then we identified the keywords using keyword extraction algorithm.

To improve the number of legitimate keyword identification and to increase the performance
of the system, we used a stemming. “Stemming is the process for reducing inflected (or some-
times derived) words to their stem, base or root form”[Wikistem]. Terms having the same root
(stem) will have similar meanings. Consider the example of root word create:

- create, created, creating, creates, creative, creativity, creatively, creation, creationism, cre-

ationisms, creationist, creationists, creations, creativeness, creator, creators....

If we stem all these words then we will get only one root word that is create which will
decrease the number of unique words in the given corpus, resulting efficient keyword extraction.

As morphological variant words are grouped together into a single term, it will reduce the
number of words in the system and hence increase the performance of the system. There are

47

many methods for stemming some uses linguistic dictionary for stemming whereas others use
algorithmic rules based on suffixes list to get the root word. Two major assumptions that were
made to use stemming are[Stem80]:

Suffixes are removed only to increase the performance of the system (accuracy of the key-
words), and not as a linguistic exercise. That is suffixes are removed automatically (Me-
chanically) without using any linguistic means. Example: The algorithm will stem oper-

ating to operate, which is not acceptable in the domain of operating system.

100% accuracy cannot be achieved by using suffix list approach. For example Probe and
probation have different meanings and stemming will not be a good option.

The above mentioned problems were some what subsidized in our algorithm by defining a
fixed set of words for which stemming is not required.

For stemming we used a modified version of the algorithm written by M.F.Porter[Stem80].
In this algorithm linguistic dictionary is not used instead suffix list is used. The main motto of
using this algorithm is to increase the performance of the system not linguistic accuracy. The
modified version of the stemming algorithm is described in the following subsection.

Stemming Algorithm

Step-1 This step deals with plurals (-s,-ies, -sses) and past participles (-ed,-eed,-ing).

Step-1a Stem the plurals to its base form. (-s, -ies, -sses)

Rule Example
SSES → SS accesses → access
IES → Y carries → carry
SS → SS access → access
S → ε works → work

Step-1b Stem the past participles to its base form. (-ed, -eed, -ing)

Rule Example Remarks
EED → EE freed → free If there are more than one VC pair

seed → seed If there is only one VC pair

ED → ε worked → work If the stem contains at least one vowel (∗v∗)ED
red → red If there is no vowel in the stem

ING → ε working → work If the stem contains at least one vowel (∗v∗)ING
string → string If there is no vowel in the stem

48

Step-2 After checking for plurals and past participles, map double suffices to single ones. This
step is checked only when there is at least one V C pair, where V is combination of vowels
and C is a combination of consonants.

Rule Example
ATIONAL → ATE relational → relate
TIONAL → TION conditional → condition

rational → rational
ENCI → ENCE valenci → valence
ANCI → ANCE hesitanci → hesitance
IZER → IZE digitizer → digitize
ABLI → ABLE conformabli → conformable
ALLI → AL radicalli → radical
ENTLI → ENT differentli → different
ELI → E vileli → vile
OUSLI → OUS analogousli → analogous
IZATION → IZE vietnamization → vietnamize
ATION → ATE predication → predicate
ATOR → ATE operator → operate
ALISM → AL feudalism → feudal
IVENESS → IVE decisiveness → decisive
FULNESS → FUL hopefulness → hopeful
OUSNESS → OUS callousness → callous
ALITI → AL formaliti → formal
IVITI → IVE sensitiviti → sensitive
BILITI → BLE sensibiliti → sensible

Step-3 this step deals with -ic-, -full, -ness etc, Similar to Step-2 this step is also considered
only when there is at least one V C pair, where V is combination of vowels and C is a
combination of consonants.

Rule Example
ICATE → IC triplicate → triplic
ATIVE → ε formative → form
ALIZE → AL formalize → formal
ICITI → IC electriciti → electric
ICAL → IC electrical → electric
FUL → ε hopeful → hope
NESS → ε goodness → good

49

Step-4 Last step is to takes off -ant, -ence etc., Unlike Step-2 and Step-3 this Step is checked
against more than one V C pair, where V is combination of vowels andC is a combination
of consonants.

Rule Example
AL → ε revival → reviv
ANCE → ε allowance → allow
ENCE → ε inference → infer
ER → ε airliner → airlin
IC → ε gyroscopic → gyroscop
ABLE → ε adjustable → adjust
IBLE → ε defensible → defens
ANT → ε irritant → irrit
EMENT → ε replacement → replac
MENT → ε adjustment → adjust
ENT → ε dependent → depend
(*S or *T)) ION → ε adoption → adopt
OU → ε homologou → homolog
ISM → ε communism → commun
ATE → ε activate → activ
ITI → ε angulariti → angular
OUS → ε homologous → homolog
IVE → ε effective → effect
IZE → ε bowdlerize → bowdler

Complex suffixes are removed step by step. For example, computerizations is stripped to
computerization in Step-1, then to computerize in Step-2, and to computer in Step-3

5.2.2 Name Entity Recognizer

Driven idea behind using named entity recognition is, named entities do not have any pre-
requisites and follow-ups. A person, place or an organization will not have any pre-requisites
and follow-ups.

Named Entity Recognition (NER) involves identifying named entities (proper nouns) and
classifying them as person-name, location, organization, time, date, etc. The categories into
which proper nouns are to be classified vary according to the applications, but common cate-
gories include, person names, location and organization names, medicine names, disease names
and so on. In our case we considered only three types of named entities they are person names,
location (Place) and organization. We identified these three categories of named entities and
removed them from the corpus.

50

Consider the example:

My name is Neelamadhav. I go to IITBombay, which is in Mumbai.

I study computer science. I grew up in Parvathipuram.

This can be tagged as:

My name is <PERSON>Neelamadhav</PERSON>. I go to

<ORGANIZATION>IITBombay</ORGANIZATION>, which is in

<LOCATION>Mumbai</LOCATION>. I study computer science.

I grew up in <LOCATION>Parvathipuram</LOCATION>.

Applications of NER

1. NER is very useful for search engines. NER helps in structuring textual information, and
structured information helps in efficient indexing and retrieval of documents for search.

2. Before reading an article, if the reader could be shown the named entities, the user would
be able to get a fair idea about the contents of the article.

3. Automatic indexing of Books: Most of the words indexed in the back index of a book are
Named Entities.

4. Useful in Biomedical domain to identify Proteins, medicines, diseases, etc.

Named entities can be identified using supervised approaches or rule based approaches.
Supervised approaches uses tagged data for which the named entities are already tagged, this
data is known as training data. On the other hand rule based approaches use some predefined
rules to identify the named entities. We used a CRF-based Named Entity Recognizer (NER)
system[NER05] (Supervised Approach), developed by Stanford University to recognize the
named entities and we removed them from the corpora.

CRF-based NER

We used Stanford NER mainly because of the following reasons

1. The NER is trained on CoNLL, MUC and ACE English training data

2. By default it recognizes the entities: Person, Location, Organization, Which we need for
our experiment

3. Finally the NER is trained on both British and American newswire, so robust across both
domains

51

5.2.3 Ontology Construction

To identify the relation between different keywords and to construct the ontology, we modified
the previous defined apriori algorithm. Here we count number of lines which contain the pair of
key words instead of number of documents. There is a possibility this will give more legitimate
relations. . Because nearby terms have a strong relationship.

Modified Apriori Algorithm

Association Rule: i1, i2, ..., ik → j is formed only, “if a line instead of document contains all of
i1, ..., ik then it is likely to contain j”. Support is the number of lines containing all the words
i1, i2, ..., ik, j and Confidence of this association rule is the probability of j given i1, ..., ik.

52

Chapter 6

Evaluation

We used Computer Networks, Operating Systems, System analysis and Design, Software Engi-
neering, Embedded Systems, Numerical Analysis, and Cryptography courses of NPTEL course-
ware repository for our testing purpose. The dependency graph for Computer Networks course
is shown in the Figure 6.5. The graphs were generated using DOT language. DOT language
orders the nodes in such a way that, node with less number of incoming edges comes at the top
levels, and nodes with more number of incoming edges in the next levels. So, the order shown
in the graph is not the exact output of our system, it is a graphical simulation of the output. In
the dependency graph shown in Figure 6.5, concepts like tcp, ospf, rip are the keywords iden-
tified by our system. For a particular node the ancestors are pre-requisites and descendants are
follow-ups. For example, the pre-requisites of the concept tcp is topology and the follow-up
topic is congestion control.

We evaluated our system by manually comparing its results with the results given by an
expert. We compared the keywords generated by our program with the expert generated key-
words. Similarly we compared the relations generated by our system with those of the expert
generated relations. We used precision, recall and confusion matrix to find the
accuracy of the system. Formula for Precision and Recall is given in the following equations.
Here, Rw, Pw denotes recall, and precision, respectively, for the keywords identified.
Whereas, Rr, Pr denote recall, and precision, respectively, for the relations determined.
Precision is, the correct keywords given by system with respect to the expert results. On the
other hand, recall is, the correct keywords given by system with respect to keywords given
by the system.

6.1 Precision and Recall

Let

• We and Re denote the total number of keywords and relations suggested by the expert,
respectively,

53

• Ws and Rs denote the total number of keywords and relations generated by our system,
respectively, and

• Wc and Rc denote the common keywords and relations in both expert given and system
generated, respectively, then

Recall (R) is the ratio of the number of relevant keywords/relations retrieved to the total number
of keywords/relations suggested by the expert. It is usually expressed as a percentage.

Rw =
Wc

We

∗ 100% Rr =
Rc

Re

∗ 100%

Precision (P) is the ratio of the number of relevant keywords/relations retrieved to the total
number of keywords/relations identified by the system. It is usually expressed as a percentage.

Ppw =
Wc

Ws

∗ 100% Pr =
Rc

Rs

∗ 100%

Confusion matrix in our case contains keywords/relations suggested by experts and
keywords/relations identified by our system. It contains two rows and two columns, which de-
scribes true positive, true negative, false positive and false negative.
Confusion matrix relevant to our system is shown in the following table 6.1

System Results
Positive Negative

Expert True True Positive False Negative
Results False False Positive True Negative

Table 6.1: Confusion Matrix

Where

True Positive is the number of correct keywords/relations that were correctly identified,

False Positive is the number of incorrect keywords/relations that were incorrectly classified as
positive,

True Negative is the number incorrect keywords/relations that were identified as negative, it is
difficult to identify Negative keywords as we don’t have the list of negative keywords.

False Negative is the number of correct keywords/relations that were incorrectly classified as
negative.

For example, for a given subject as shown in the following Figure 6.2, let w, x, y, and z
be the keywords identified by an expert, and let x, y, and p be the keywords identified by our
system. In this case, the confusion matrix is as follows. True Positive is {x, y}, so the recall
is |{x, y}|/|{w, x, y, z}| = 2/4 = 0.5, whereas the precision is |{x, y}|/|{x, y, p}| =
2/3 = 0.66.

54

System Results(x, y, p)
Expert Positive Negative
Results True x, y w, z

(w, x, y, z) False p -

Figure 6.1: Confusion matrix for the example Figure 6.2: Classification Diagram

6.2 Performance Analysis

We manually identified the keywords for all the subjects, and then compared them with those
of the results generated by our system. The results are given in the following tables. Table 6.2
shows the results for Computer Networks and Figure 6.3 is the graph for Computer Networks
with respect to the results. In the same way, Table 6.3 and Figure 6.4 show the results for
Operating Systems.

As recall increases precision decreases, conversely if precision increases recall
decreases.

From the graph, we can observe that with increase in the number of system generated key-
words, recall (R) increases. This is because, the expert given keywords (We) are fixed. At
the same time with increase in number of keywords, precision (Sp) also increases up to a
certain value. After this value if we further increase the number of keywords, it will result in
more number of spurious keywords, than the number of legitimate keywords. So, precision
will start decreasing with increase in number of system generated keywords after this maximum
value. We considered the value where precision (P) is maximum as the optimum number of
keywords. In the domain of “Computer Networks” the optimum value for number of keywords
is 140. At this point 63.84% (Rc

Rs
) of system answers are correct which happens to be finding

48.26% (Rc

Re
) of all correct answers. Similarly for “Operating System” domain the optimum

value of keywords is 130.

55

6.3 Results of System -1

Table 6.2: Results for Computer Networks
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

98 19.76 14.89 34.69 29.93
136 47.09 42.47 59.56 54.79
155 48.84 43.84 54.19 51.32
175 51.16 46.57 50.29 47.21
195 52.33 47.29 46.15 41.82
234 57.56 50.18 42.31 38.19
243 57.56 50.18 40.74 36.88
252 57.56 50.18 39.29 35.43
262 57.56 50.18 37.79 33.16
272 57.56 50.18 36.40 32.74

Figure 6.3: Computer Networks

56

Table 6.3: Results for Operating Systems
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

92 27.10 23.48 31.52 27.34
125 57.01 53.18 48.80 44.03
144 60.75 56.97 45.14 42.73
163 67.29 63.09 44.17 41.26
181 67.29 63.09 39.78 37.14
218 70.09 67.87 34.40 31.17
228 71.03 68.28 33.33 30.06
237 71.03 68.28 32.07 29.93
245 71.03 68.28 31.02 28.76
255 71.03 68.28 29.80 26.88

Figure 6.4: Operating Systems

Table 6.4: Results for Software Engineering
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

94 25.8 21.12 34.04 30.27
131 64.52 57.29 61.07 54.09
149 68.55 59.81 57.05 51.34
167 74.19 64.33 55.09 50.01
186 76.61 67.18 51.08 48.76
223 79.84 70.94 44.39 40.32
230 81.45 73.15 43.91 39.16
240 81.45 73.15 42.08 38.25
249 81.45 73.15 40.56 36.64
259 81.45 73.15 39 36.11

57

Table 6.5: Results for Cryptography
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

100 31.85 27.19 43.00 39.26
139 58.52 55.24 56.83 53.74
155 62.22 58.93 54.19 51.09
173 70.37 66.38 54.91 51.29
193 70.37 66.38 49.22 44.96
232 71.11 67.94 41.38 37.86
242 71.11 67.94 39.67 34.62
251 71.11 67.94 38.25 34.13
261 71.85 68.06 37.16 33.47
271 71.85 68.06 35.79 32.15

Table 6.6: Results for Embedded Systems
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

97 28.67 24.47 42.27 39.07
136 49.65 46.09 52.21 48.68
153 55.24 51.23 51.63 48.09
172 55.94 51.84 46.51 43.16
192 55.94 51.84 41.67 37.56
230 58.74 54.95 36.52 32.62
239 60.84 56.36 36.40 32.24
249 60.84 56.36 34.94 31.08
258 60.84 56.36 33.72 29.51
268 60.84 56.36 32.46 28.46

Table 6.7: Results for Numerical
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

94 38.70 34.69 24.49 21.38
131 67.74 64.08 30.66 26.74
149 72.58 68.86 29.03 25.86
167 79.03 76.28 28.16 25.04
186 79.03 76.28 25.39 22.91
223 83.87 79.81 22.71 19.27
230 85.48 82.05 22.18 19.01
240 87.10 84.46 21.69 18.67
249 87.10 84.46 21.01 18.03
259 87.10 84.46 20.22 17.75

Table 6.8: Results for System Analysis And De-
sign

Recall(%) Precision(%)
keywords Rw Rr Pw Pr

99 23.52 19.46 28.28 24.56
138 52.10 48.34 44.93 40.83
158 56.30 53.78 42.41 39.06
177 58.82 54.91 39.55 35.89
197 58.82 54.91 35.53 31.79
236 59.66 55.24 30.08 27.11
246 63.03 59.86 30.49 27.34
255 63.03 59.86 29.41 26.84
265 63.03 59.86 28.30 26.03
275 63.03 59.86 27.27 25.09

58

Figure 6.5: DAG for Computer Networks by System-1

59

6.4 Results of System - 2

Table 6.9: Results for Computer Networks
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

97 45.93 42.19 81.44 78.86
135 52.91 48.26 67.41 63.84
153 54.65 51.09 61.44 57.32
173 56.98 53.46 56.65 53.21
193 60.47 56.94 53.89 50.82
232 65.12 61.77 48.28 45.19
241 65.70 61.98 46.89 43.88
251 68.02 64.28 46.61 43.43
260 70.93 67.35 46.92 43.56
270 72.67 69.33 46.30 43.16

Figure 6.6: Computer Networks

60

Table 6.10: Results for Operating Systems
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

98 42.06 34.10 53.06 48.52
136 54.21 50.01 47.79 44.80
154 57.94 52.75 44.81 44.14
173 68.22 65.29 46.24 45.17
193 69.16 66.29 41.97 42.78
228 73.83 70.09 37.72 38.40
238 73.83 70.09 36.13 37.33
248 75.70 71.03 35.48 37.07
258 78.50 75.03 34.88 37.02
266 80.37 76.58 34.96 36.80

Figure 6.7: Operating Systems

Table 6.11: Results for Software Engineering
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

95 59.68 55.37 77.89 73.22
131 70.97 67.46 67.18 64.94
149 76.61 73.19 63.76 60.28
167 82.26 79.16 61.08 57.09
186 82.26 79.16 54.84 51.14
226 86.29 83.48 47.35 44.24
232 87.10 84.27 46.55 43.67
241 90.32 86.74 46.47 43.32
249 91.94 86.98 45.78 42.18
257 92.74 88.45 44.75 41.29

61

Table 6.12: Results for Cryptography
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

100 54.81 51.19 74.00 70.26
97 60.74 56.24 58.99 55.74
156 68.15 65.93 58.97 56.09
174 77.04 73.38 59.77 57.29
194 78.52 74.39 54.64 50.96
231 82.96 78.94 48.48 44.86
241 83.70 80.67 46.89 43.62
251 85.19 81.07 45.82 42.13
260 85.19 81.07 44.23 41.47
269 86.67 82.91 43.49 41.15

Table 6.13: Results for Embedded Systems
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

96 48.25 44.47 71.88 67.07
135 58.74 55.09 62.22 59.68
152 62.94 59.23 59.21 56.09
170 68.53 64.84 57.65 54.16
190 70.63 67.04 53.16 50.56
226 71.33 68.95 45.13 41.62
235 74.83 71.36 45.13 41.61
245 77.62 74.36 45.31 41.79
253 80.42 77.96 45.45 41.92
262 81.82 78.28 44.66 40.46

Table 6.14: Results for Numerical Analysis
Recall(%) Precision(%)

keywords Rw Rr Pw Pr

99 61.29 57.69 38.38 34.18
138 64.52 61.08 28.99 26.74
156 67.74 64.86 26.92 25.86
174 80.65 76.68 28.74 25.04
194 82.26 78.28 26.29 22.91
232 91.94 89.81 24.57 21.78
242 95.16 92.05 24.38 21.61
250 98.39 94.46 24.40 21.67
255 98.39 94.46 23.92 20.03
263 98.39 94.46 23.19 19.75

Table 6.15: Results for System Analysis And
Design

Recall(%) Precision(%)
keywords Rw Rr Pw Pr

98 45.38 41.52 55.10 51.28
138 48.74 44.10 42.03 39.93
158 53.78 50.30 40.51 37.41
177 59.66 56.82 40.11 37.25
197 59.66 56.82 36.04 32.53
236 62.18 59.66 31.36 27.58
246 64.71 61.03 31.30 27.49
256 67.23 63.25 31.25 27.41
266 70.59 65.52 31.58 27.80
276 70.59 65.52 30.43 26.27

62

Figure 6.8: DAG for Computer Networks by System-2

63

6.5 System-1 Vs. System-2

Table - 6.16 and 6.17 depicts the confusion metrics for the best results of system-1, and system-
2, respectively.

Table 6.16: Confusion Matrix for System - 1
Subject System Generated Expert identified True Positive False Positive False Negative

Keywords Relations Keywords Relations Keywords Relations Keywords Relations Keywords Relations

Software 131 224 124 211 80 121 51 103 44 90
Networks 136 250 172 323 81 137 55 113 91 186

Cryptography 139 322 135 313 79 173 60 149 56 140
Embedded 136 296 143 313 71 144 65 152 72 169
Numerical 131 228 62 95 42 61 89 167 20 34
Operating 125 286 107 237 61 126 64 160 46 111

SAD 138 193 119 163 62 79 76 114 57 84

Table 6.17: Confusion Matrix for System - 2
Subject System Generated Expert identified True Positive False Positive False Negative

Keywords Relations Keywords Relations Keywords Relations Keywords Relations Keywords Relations

Software 95 160 124 211 74 117 21 43 50 94
Networks 97 173 172 323 79 136 18 37 93 187

Cryptography 100 228 135 313 74 160 26 68 61 153
Embedded 96 208 143 313 69 139 27 69 74 174
Numerical 99 160 62 95 38 55 61 105 24 40
Operating 98 195 107 237 45 81 53 114 62 156

SAD 98 132 119 163 54 68 44 64 65 95

From the above tables, it is clear that System-1 generated more number of False Positives

than System-2. This is because System-2 gives good performance at lower number of keywords
whereas System-1 gives same performance at hight number of keywords. As we have to gener-
ate more keywords checking relation between more keywords takes more time.

The processing time of System-2 is lesser than System-1. This is because, stemming de-
creases the total number of unique words in the given corpora. Legitimate keywords also got
good tfidf score due to stemming, as stemming increased the count of the root words,
tfidf score increased.

As person, place or an organization do not have any pre-requisites or follow-up, remov-
ing them through named entity recognition and elimination helped us in finding the legitimate
keywords in System-2.

6.6 Observations and Interpretations

After conducting different experiments, we observed that Recall was maximum when the
number of keywords was nearly equivalent to 130. The optimum value of Recallwas obtained
when the number of unigrams was 50, number of bigrams was 40, number of trigrams was 30,
and number of fourgrams was 20. This is because most of the keywords in any subject are
unigrams, there are very few fourgrams, and there may be hardly any fivegrams. However,

64

more experiments with lecture notes in various subjects are required before these results can be
generalized. Moreover, the goodness metric can be improved by considering a higher number
of keywords, at the cost of increase in execution time.

To calculate precision and recall, keyword/relation must be either correct or incor-
rect. But most of the times keywords/relations may be somewhat relevant or somewhat irrele-
vant. Others may be very relevant and others completely irrelevant. This problem is complicated
by individual perception: what is correct keywords/relations to one person may not be correct
to another.

Measuring recall is difficult because it is often difficult to identify the correct keywords
for a given subject, It completely depends on the individual perspective as discussed above. So
recall can be identified by getting the correct keywords from more than one experts against
getting the keywords from single expert.

Measuring True Negative is difficult as neither our system, nor expert gives the list of
wrong keywords. So in confusion matrix we take only three cells and ignore True Negative.

65

66

Chapter 7

Conclusion & Future Work

Here we presented a completely automatic ontology generator whose performance is fairly
good. We have observed some conflicts in the system and the expert answers in the sense that
some relations which were generated by our system is not valid. and some important results
which should present were not generated. Keywords found are fairly good, overall system
performance, recall can be increased by taking top 200 keywords instead of taking top 130
keywords by compromising time complexity.

Currently many methodologies, tools and languages are available for building ontologies.
Too many ways will mislead the Ontology developers and users, also it will create difficulties in
integrating the existing Ontologies. A single centralized platform will help developers and the
users of ontology to understand better and integration also can be made easy. The future work
in this field should be done towards the creation of a common platform for ontology developers
to facilitate ontology development, exchange, evaluation, evolution and management.

67

68

Appendix A

Stop Words

Following is the list of common words which are used frequently in any text. These filtered
words are known as “Stop words”. Our searching technique doesn’t consider the following
words in the process of constructing ontology as well as in searching.

a, able, about, above, abst, accordance, according, accordingly, across, act, actually, added,
adj, adopted, affected, affecting, affects, after, afterwards, again, against, ah, all, almost, alone,
along, already, also, although, always, am, among, amongst, an, and, announce, another, any,
anybody, anyhow, anymore, anyone, anything, anyway, anyways, anywhere, apparently, ap-
proximately, are, aren, arent, arise, around, as, aside, ask, asking, at, auth, available, away,
awfully, b, back, be, became, because, become, becomes, becoming, been, before, beforehand,
begin, beginning, beginnings, begins, behind, being, believe, below, beside, besides, between,
beyond, biol, both, brief, briefly, but, by, c, ca, came, can, cannot, can’t, cause, causes, cer-
tain, certainly, co, com, come, comes, contain, containing, contains, could, couldnt, d, date,
did, didn’t, different, do, does, doesn’t, doing, done, don’t, down, downwards, due, during, e,
each, ed, edu, effect, eg, eight, eighty, either, else, elsewhere, end, ending, enough, especially,
et, et-al, etc, even, ever, every, everybody, everyone, everything, everywhere, ex, except, f, far,
few, ff, fifth, first, five, fix, followed, following, follows, for, former, formerly, forth, found,
four, from, further, furthermore, g, gave, get, gets, getting, give, given, gives, giving, go, goes,
gone, got, gotten, h, had, happens, hardly, has, hasn’t, have, haven’t, having, he, hed, hence,
her, here, hereafter, hereby, herein, heres, hereupon, hers, herself, hes, hi, hid, him, himself,
his, hither, home, how, howbeit, however, hundred, i, id, ie, if, i’ll, im, immediate, immediately,
importance, important, in, inc, indeed, index, information, instead, into, invention, inward, is,
isn’t, it, itd, it’ll, its, itself, i’ve, j, just, k, keep, keeps, kept, keys, kg, km, know, known, knows,
l, largely, last, lately, later, latter, latterly, least, less, lest, let, lets, like, liked, likely, line, little,
’ll, look, looking, office, figure, version, substitution, attribute, kharagpur, looks, ltd, m, made,
mainly, make, makes, many, may, maybe, me, mean, means, meantime, meanwhile, merely,
mg, might, million, miss, ml, more, moreover, most, mostly, mr, mrs, much, mug, must, my,
myself, n, na, name, namely, nay, nd, near, nearly, necessarily, necessary, need, needs, neither,

69

never, nevertheless, new, next, nine, ninety, no, nobody, non, none, nonetheless, noone, iit, cse,
nor, normally, nos, not, noted, nothing, now, nowhere, o, obtain, obtained, obviously, of, off,
often, oh, ok, okay, old, omitted, on, once, one, ones, only, onto, or, ord, other, others, other-
wise, ought, our, ours, ourselves, out, outside, over, overall, owing, own, p, page, pages, part,
particular, particularly, past, per, perhaps, placed, please, plus, poorly, possible, possibly, po-
tentially, pp, predominantly, present, example, previously, primarily, probably, promptly, proud,
provides, put, q, que, quickly, quite, qv, r, ran, rather, rd, re, readily, really, recent, recently, ref,
refs, regarding, regardless, regards, related, relatively, research, respectively, resulted, resulting,
results, right, run, s, said, same, saw, say, saying, says, sec, section, see, seeing, seem, seemed,
seeming, seems, seen, self, selves, sent, seven, several, shall, she, shed, she’ll, shes, should,
shouldn’t, show, showed, shown, showns, shows, significant, significantly, similar, similarly,
since, six, slightly, so, some, somebody, somehow, someone, somethan, something, sometime,
sometimes, somewhat, somewhere, soon, sorry, specifically, specified, specify, specifying, state,
states, still, stop, strongly, sub, substantially, successfully, such, sufficiently, suggest, sup, sure,
t, take, takes, taken, taking, tell, tends, th, than, thank, thanks, thanx, that, that’ll, thats, that’ve,
the, their, theirs, them, themselves, then, thence, there, thereafter, thereby, thered, therefore,
therein, there’ll, thereof, therere, theres, thereto, thereupon, there’ve, these, they, theyd, they’ll,
theyre, they’ve, think, this, those, thou, though, thoughh, thousand, throug, through, through-
out, thru, thus, til, tip, to, together, too, took, toward, towards, tried, tries, truly, try, trying, ts,
twice, two, u, un, under, unfortunately, unless, unlike, unlikely, until, unto, up, upon, ups, us,
use, used, useful, usefully, usefulness, uses, using, usually, v, value, various, ’ve, very, via, viz,
vol, vols, vs, w, want, wants, was, wasn’t, way, we, wed, welcome, we’ll, went, were, weren’t,
we’ve, what, whatever, what’ll, whats, when, whence, whenever, where, whereafter, whereas,
whereby, wherein, wheres, whereupon, wherever, whether, which, while, whim, whither, who,
whod, whoever, whole, who’ll, whom, whomever, whos, whose, why, widely, will, willing,
wish, with, within, without, won’t, words, world, would, wouldn’t, www, x, y, yes, yet, you,
youd, you’ll, your, youre, yours, yourself, yourselves, you’ve, z, zero

70

Appendix B

Other Results

Protégé out put for computer networks is shown in the figure - B.1.

Figure B.1: Computer Networks ontology developed by our system using protégé

In the Evaluation chapter, we have shown the experiments for “Computer Networks” course
only. The other courses for which we have also done experiments for are “Operating Sys-
tem”,“Artificial Intelligence”, “Embedded Systems”, “Software Engineering”, “System Analy-
sis and Design”, “Embedded Systems”, “Cryptography” and “Numerical Analysis”. The final
ontology in the form of Directed Acyclic graph is shown in the following figures. Here ellipses
(Nodes) represents the keywords, whereas Arrows (links) represent the relationship.

71

Figure B.2: DAG for Operating System

72

Figure B.3: DAG for Software Engg

73

Figure B.4: DAG for Cryptography

74

Figure B.5: DAG for Numerical Analysis

75

Figure B.6: DAG for Embedded System

76

Figure B.7: DAG for System Analysis and Design

77

78

Bibliography

[APR94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In Proceedings of the 20th International Conference

on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[Cmap08] J. D. Novak and A. J. Ca nas. The theory underlying concept maps and how
to construct and use them. In Technical Report IHMC CmapTools 2006-01 Rev

01-2008. Florida Institute for Human and Machine Cognition, 2008.

[DOT] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with
dot, Jan 2006.

[Fern03] Óscar Corcho, Mariano Fernández-lópez, and AsunciÓn GÓmez-pérez. Method-
ologies, tools and languages for building ontologies: Where is their meeting
point. Data & Knowledge Engineering, 46:41–64, 2003.

[GAV05] Tatiana Gavrilova, Rosta Farzan, and Peter Brusilovsky. One practical algorithm
of creating teaching ontologies. 2005.

[Grub95] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43:907–928, December 1995.

[Grun95] Michael Gruninger and Mark S. Fox. Methodology for the design and evaluation
of ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing.
IJCAI-95, 1995.

[Ivan07] Ivan Bedini and Benjamin Nguyen. Automatic ontology generation: State of the
art. In PRiSM Laboratory Technical Report. University of Versailles, 2007.

[Khan02] Latifur Khan and Feng Luo. Ontology construction for information selection. In
Proceedings of the 14th IEEE International Conference on Tools with Artificial

Intelligence, ICTAI ’02, pages 122–, Washington, DC, USA, 2002. IEEE Com-
puter Society.

79

[LIU04] DA-YOU LIU. Learning owl ontologies from free texts. In Machine Learning

and Cybernetics, volume 2, pages 1233 –1237, 2004.

[NER05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by gibbs sampling. In
In ACL, pages 363–370, 2005.

[NOY01] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A
guide to creating your first ontology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report,
March 2001.

[OIL] Dieter Fensel, Frank Van Harmelen, Ian Horrocks, Deborah L. Mcguinness, and
Peter F. Patel-schneider. Oil: An ontology infrastructure for the semantic web.
IEEE Expert / IEEE Intelligent Systems, 16:38–45.

[OWL] D. L. Mcguinness and F. Van Harmelen. Owl web ontology language overview.
World Wide Web, 2004.

[PDFB] Apache. The apache software foundation — pdfbox. Accessed 16-February-
2011.

[RAM03] Juan Ramos. Using tf-idf to determine word relevance in document queries. First

International Conference on. Machine Learning, 2003.

[RDF] Pierre-Antoine Champin June. Rdf tutorial, April 2001.

[SALT02] Deryle Lonsdale, Yihong Ding, David W. Embley, and Alan Melby. Peppering
knowledge sources with salt: Boosting conceptual content for ontology genera-
tion. In AAAI Workshop for Semantic Web Meets Language Resources, The Eigh-

teenth National Conference on Artificial Intelligence, pages 30–36. AAAI Press,
2002.

[Stem80] Martin Porter. An algorithm for suffix stripping. In Workshop on Multimedia

Information Systems, 1980.

[Term99] Brigitte Biebow and Sylvie Szulman. Terminae: A linguistic-based tool for the
building of a domain ontology. In Knowledge Acquisition, Modeling and Man-

agement, pages 49–66, 1999.

[Topia] Python. package index — topia.termextract 1.1.0. Accessed 16-February-2011.

[WikiLuc] Wikipedia. Lucene — wikipedia, the free encyclopedia, 2011. [Online; accessed
16-February-2011].

80

[Wikidep] Wikipedia. Dependency graph — wikipedia, the free encyclopedia, 2011. [On-
line; accessed 16-February-2011].

[Wikikey] Wikipedia. Terminology extraction — wikipedia, the free encyclopedia, 2011.
[Online; accessed 16-February-2011].

[Wikirdfs] Wikipedia. Rdf schema — wikipedia, the free encyclopedia, 2010. [Online;
accessed 15-June-2011].

[Wikistem] Wikipedia. Stemming — wikipedia, the free encyclopedia, 2011. [Online; ac-
cessed 27-May-2011].

[XML] Wikipedia. Xml — wikipedia, the free encyclopedia, 2011. [Online; accessed
15-June-2011].

[XMLS] Michel Klein, Dieter Fensel, Frank van Harmelen, and Ian Horrocks. The rela-
tion between ontologies and xml schemas. Electronic Transactions on Artificial

Intelligence, 2001.

[YUN09] Yun Hong-yan, Xu Jian-liang, Wei Mo-ji, and Xiong Jing. Development of do-
main ontology for e-learning course. In IT in Medicine Education, 2009. ITIME

’09. IEEE International Symposium on, 2009.

81

82

	Introduction
	Abbreviations and acronyms
	Motivation for MTP
	Goal of MTP
	Solution Approach
	Organization of the report

	Background
	Ontology
	Domain Ontology
	Applications of Ontology

	Dependency graph
	Repositories surveyed
	Searching Tools surveyed

	Literature Survey
	Mining based Automatic Ontology ConstructionIvan07
	TERMINAETerm99:
	Ontology Development using SALTSALT02
	Learning OWL ontology from free text LIU04
	Ontology Construction for Information Selection Khan02
	Comparison of Ontology construction methods

	Various Methods of Developing Ontology
	Skeletal methodology
	Practical Approach
	Knowledge Engineering Approach
	Seven-Step Method

	Ontology languages
	History of Ontology Languages Fern03
	XML (Extended Markup Language)
	RDF (Resource Description Framework)
	OIL (Ontology Interchange Language)
	OWL (Web Ontology Language)

	Ontology Editors
	Ontolingua
	Protégé
	WebODE
	OntoStudio

	System Overview
	Problem Statement
	Proposed Solution
	Solution Outline

	Implementation Details
	system-1
	Parsing
	Indexing
	Keyword Extraction
	Ontology Construction
	Generating the Dependency Graph & ontology

	System - 2
	Stemming
	Name Entity Recognizer
	Ontology Construction

	Evaluation
	Precision and Recall
	Performance Analysis
	Results of System -1
	Results of System - 2
	System-1 Vs. System-2
	Observations and Interpretations

	Conclusion & Future Work
	Appendices
	Stop Words
	Other Results

