
Building domain ontologies from lecture notes

Seminar Report

Submitted in partial fulfillment of the
requirements for the degree of

Master of Technology

by

Neelamadhav Gantayat
Roll No : 09305045

under the guidance of

Prof.Sridhar Iyer

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

April 2010

Abstract

Now a days many methodologies, tools and languages are available for
building ontologies. Too many ways will mislead the Ontology developers
and users, also it will create difficulties in integrating the existing Ontolo-
gies. A single centralized platform will help developers and the users of
ontology to understand better and integration also can be made easy.

When a new ontology is going to be built, several basic question arise
related to the methodologies, languages and tools. This study will present
the main characteristics of methodologies, langauages and tools which
can help developers to obtain knowledge about the available tools. The
main objective here is to compare and review the main methodologies,
languages and tools for building ontologies.

The future work in this field should be done towards the creation of a
common platform for ontology developers to facilitate ontology develop-
ment, exchange, evaluation, evoluation and management.

1

Contents

1 Introduction 5

2 Background 5
2.1 Domain Ontology . 5
2.2 Developing Ontology from Text 5
2.3 Necessity of Ontology . 5
2.4 Applications of Ontology . 6
2.5 Differences between Object Oriented and Ontology: 7

3 Various Methods of Developing Ontology: 7
3.1 Skeletal methodology . 8

3.1.1 Purpose . 8
3.1.2 Building the Ontology . 8
3.1.3 Evaluation . 9
3.1.4 Documentation . 9

3.2 Seven-Step Method: . 9
3.2.1 Determine Scope . 10
3.2.2 Consider Reuse . 11
3.2.3 Enumerate Terms . 11
3.2.4 Define Classes . 11
3.2.5 Define Properties . 12
3.2.6 Define Constraints . 13
3.2.7 Create instance . 14

3.3 Practical Approach: . 14
3.3.1 Glossary development . 15
3.3.2 Laddering . 15
3.3.3 Disintegration . 15
3.3.4 Categorization . 15
3.3.5 Refinement . 15

3.4 Knowledge Engineering Approach: 15
3.4.1 Identify purpose and requirement specification 16
3.4.2 Ontology acquisition . 16
3.4.3 Ontology implementation 17
3.4.4 Evaluation/Check . 17
3.4.5 Documentation . 17

4 Ontology languages 17
4.1 History of Ontology Languages 18
4.2 XML (Extended Markup Language) 19

4.2.1 XMLS(XML Schema) . 21
4.3 RDF (Resource Description Framework) 23

4.3.1 RDFS (RDFSchema) . 24
4.4 OIL (Ontology Interchange Language) 24
4.5 OWL (Web Ontology Language) 24

4.5.1 OWL Lite . 25
4.5.2 OWL DL . 25
4.5.3 OWL DL . 25

2

5 Ontology Editors 26
5.1 Ontolingua . 26
5.2 Protégé . 26

5.2.1 Protégé-OWL . 27
5.2.2 protégé-frames . 27
5.2.3 Developing Ontology . 27

5.3 WebODE . 27
5.3.1 Developing Ontology . 29

5.4 OntoStudio . 29
5.4.1 Data Models . 30
5.4.2 developing Ontology . 30

6 Future Work 31

7 Conclusion 31

3

List of Figures

1 Ontology Development from Text, Taken from[6] 6
2 Operating System dependency graph 9
3 Skeletal Ontology Approach . 10
4 Defining classes of Process . 12
5 Properties of Threads . 12
6 Seven-Step Ontology Approach 14
7 Operating System dependency graph 15
8 Complete Operating System ontology 16
9 Practical Ontology Approach . 16
10 Operating System dependency graph 17
11 Knowledge Engineering Approach 18
12 Stack of Ontology Markup Languages taken from [9] 18
13 graphical representation . 21
14 Predicate . 24
15 protégé welcome screen . 27
16 Operating system ontology developed using protégé 28
17 Operating system ontology developed using protégé 29
18 Operating system ontology developed using protégé 29
19 Operating system ontology developed using protégé 30
20 protégé welcome screen . 31

List of Tables

1 Book Store . 20
2 Message . 22
3 Student Information . 23
4 Comparision of Ontology development tools 32

1 Introduction

The aim of ontology research is to develop knowledge representations that
can be shared and reused. The main objective here is to compare the main
methodologies, tools and languages for building ontologies. The main aim of
this study is to develop a system which not only provides the user with the
most relevant learning module for his query, but also provides him/her with the
relevant information which is necessary for the user to know before proceeding
with the querry. Suppose a user want to learn about a particular subject, the
search tools typically just returns a large number of links to the user in reponse
to his/her querry. Instead the search tools should provide the most relevant
learning module for his query, and the pre-requisites and follow up modules
that should be learned. This can be done by creating domain based ontology
from the lecture videos. But right now no such tool exists[5].

2 Background

Ontology Borrowed from philosophy - the study of ”The nature of being”.
In general, an ontology provides a mechanism to capture information about the
objects, Classes and the relationships that hold between them in some domain
of interest. Ontology represents the particular meanings of terms and relations
among them as they apply to that domain. Ontology is nothing but large
number of ides and concepts to gather in a hierarchical order. The aim of
ontology is to develop knowledge representations that can be shared and reused.
Guber[6] defined an ontology as

“A formal explicit specification of a shared conceptualization.”

2.1 Domain Ontology

Domain Ontology is one type of ontology Model which provides definitions and
relationships of the concepts, and major theories and principles and activities
in the domain. Domain ontologies provide shared and common understanding
of a specific domain.

2.2 Developing Ontology from Text

Use some Natural Language processing tool to extract the keywords from the
text files. Then find out the parts of speech, Noun-verb-Noun phrases. Find out
the concepts and classes their dependencies and relationships. This can be done
by many methods like finding the word frequencies, Noun ver patterns etc. Then
build domain concepts and relationships and construct the dependency graph
in hierarchical order which is the final formal domain ontology. The completely
process is shown in the Figure 1.

2.3 Necessity of Ontology

• To share common understanding of the structure of information among
people.

• To enable reuse of domain knowledge.

5

Figure 1: Ontology Development from Text, Taken from[6]

• To analyze domain knowledge.

sharing common understanding of the structure of information among people
or software agents is one of the common goals in developing ontologies. If the
web sites share and publish the ontology having common terms, then computer
agents can extract and aggregate information from these different sites.

Enabling reuse of domain knowledge is one of the important aspects now a
days. For example if some one develops ontology for the notion of time such as
notion of time intervals, relative measures in time then it can be reused by other
developers. We can also reuse a general ontology and extend it to describe our
domain of interest.

Analyzing domain knowledge is possible once a formal ontology with complete
specification of the terms is available.

Ontology together with a set of individual instances of classes constitutes a
knowledge base. Classes describe concepts in the domain. A class can have
subclasses that represent concepts that are more specific than the superclass.
Slots describe properties of classes and instances.

2.4 Applications of Ontology

Main application areas of ontology technology are knowedge management, Web
commerce, and electronic business and in e-learning.

6

Knowledge Managment is concerned with acquiring, maintaining, and ac-
cessing an organization’s knowledge. Nowadays organizations are distributed
geographically and organized around the globe. With the large number of On-
line documents there are difficulties with Searching, Extracting and Maintaining
these documents. Using Ontologies, semantic notations will allow structural and
semantic definitions of documents. And these notations will provided intelligent
search instead of keyword matching, query answering instead of information
retrieval and document exchange between departments through ontology map-
pings.

Web commerce is an important and growing business area as it extends
existing business models and reduces cost. examples of new business fields are
online market places, and auction houses. The new task for customers is to find a
shop that sells the product they are seeking, getting the desired quality, quantity
and time, and paying as little as possible. Ontology mappings, which translate
different product descriptions, can be used. It can describe the various products
and help navigate and search automatically for the required information.

Electronic Business is nothing but automation of business transactions. On-
tology based trading will significantly extend the degree to which data exchange
is automated and will create completely new business models.

E-learning To find ou the dependencies between the repositories, and to fe-
cilitate the user with more recent and relevant data.

2.5 Differences between Object Oriented and Ontology:

Object oriented programming and Ontology development both centers pri-
marily around methods on classes, but in Object oriented programming the
programmer makes design decisions based on the operational properties of a
class, whereas an ontology designer makes design decisions based on the struc-
tural properties of a class. Therefore structure and relations among classes in
an ontology are different from the structure for a similar domain in an object-
oriented program.

In Object oriented programming Classes and objects in a program are about
data structure where as in Ontology design Classes and objects in ontology are
about the real world.

In a program a Name may be a string. In ontology a name is an object with
many properties, it is not a string.

3 Various Methods of Developing Ontology:

Practically, developing an Ontology includes

• Defining classes in the ontology

• Arranging classes in a taxonomic (subclass-superclass) hierarchy

7

• Defining slots and describing allowed values for these slots.

• Filling in the values for slots for instances.

Before getting into various methods of constructing ontologies let us first em-
phasize on the fundamental rules in Ontology design[2].

1. There is no one correct way to model a domain. There are always alter-
natives.

2. Ontology development is necessarily an iterative process.

3. Concepts in the ontology should be close to objects (Physical or logical)
and relationship in your domain of interest. There are mostly nouns(Objects)
or verbs (relationships) in sentences that describe your domain.

4. An ontology is a model of reality of the world and the concepts in the
ontology must reflect this reality.

3.1 Skeletal methodology

Proposed by Uschold and King[1], It defines four main phases

1. Identifying a purpose and scope

2. Building the ontology

(a) Ontology capture

(b) Ontology coding

(c) Integrating existing Ontologies

3. Evaluation

4. Documentation

3.1.1 Purpose

It is important to be clear about the purpose of ontology and the intended
users of the particular ontology. Some ontologies were developed to structure
a knowledge base and some other ontologies are used as a part of a knowledge
base.
For Example: Let us consider that we have to develop and ontology of operat-
ing system. The purpose for development may be to find out the dependencies
between the course ware repositories for operating system object.

3.1.2 Building the Ontology

1. Capture:

• Identification of the key concepts and relationships in the domain of
interest (scoping).

• Production of unambiguous text definitions for the concepts and re-
lationships.

8

• Identification of terms to refer to such concepts and relationships.

For Example: In operating system onotlogy the keywords may be
Types of Computing, Types of Systems, Process Management, Memory
Management, File Management

2. Coding:

Coding is nothing but explicit representation of the conceptualization cap-
ture in the above stage in some formal language.
For Example: If we arrange the keywords gathered above using freemind[7]
the resultant is shown in Figure - 2

Figure 2: Operating System dependency graph

3. Integrating existing ontologies:
In order to agree on ontologies that can be shared among multiple user
communities, much work must be done to achieve agreement. One way
forward is to make explicit all assumptions underlying the ontology.

3.1.3 Evaluation

Gomez-Perez’s definition of evaluation in the context of knowledge sharing tech-
nology:

“to make a technical judgement of the ontologies, their associated software
environment, and documentation with respect to a frame of reference The frame
of reference may be requirements specifications, competency questions, and/or
the real world.”

Evaluation mainly dals with verification and validation that is validating the
relations and verifying the purpose.

3.1.4 Documentation

All important assumptions should be documented, both about the main con-
cepts defined in the ontology, as well as the primitives used to express the
definitions in the ontology.

3.2 Seven-Step Method:

It is proposed by Noy and Deborah[2]. It describes the process of developing
ontologies in following steps:

1. Determine the domain and scope of the ontology.

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

9

Figure 3: Skeletal Ontology Approach

4. Define the classes and the terms in the ontology.

5. Define the properties of classes slots.

6. Define the faces of the slots.

7. Create instances.

3.2.1 Determine Scope

Scope is nothing but the purpose of ontology. It should answer the following
questions.

• What is domain that the ontology will cover?

• For what we are going to use the ontology?

• For what type of questions the ontology should provide answers?

• Who will use and maintain the ontology?

One of the ways to determine the scope of the ontology is to sketch a list of
questions that a knowledge base based on the ontology should be able to answer
called competence questions. Some examples of competence questions are

• What resources does someone have authority to assign?

• Is someone allowed to perform some activity in any situation?

• What goal is some person committed to achieving?

• Is a goal achievable by an agent given its current commitments and the
commitments of other agents?

10

• What goals are solitarily unachievable?

For Example: Let us consider that we have to develop and ontology of operat-
ing system. The purpose for development may be to find out the dependencies
between the course ware repositories for operating system object.

3.2.2 Consider Reuse

Check if we can refine and extend existing sources for our particular domain
and task. There are reusable ontologies on the web and in the literature.
Ex:

• www.ksl.stanford.edu/software/ontolingua

• www.daml.org/ontologies/

• www.unspc.org

• www.roselternet.org

• www.dmoz.org

3.2.3 Enumerate Terms

Write down a list of all terms we would like either to make statements about or
to explain to a user. It is important to get comprehensive list of terms without
worrying about concepts they represent relation among the terms, or any prop-
erty of concepts or whether concepts or classes or slots.
For Example: In operating system onotlogy the keywords may be
Types of Computing, Types of Systems, Process Management, Memory Man-
agement, File Management

3.2.4 Define Classes

There are several approaches in developing a class hierarchy

Top-down approach: This process starts with the definition of the most
general concepts in the domain and subsequent specialization of the concepts.

Bottom-up approach: This type of development process starts with the
definition of the most specific classes the leaves of the hierarchy with subsequent
grouping of these classes into more general concepts.

Combination Approach: This is a combination of the top-down and bottom-
up approaches. We define the more salient concepts first and then generalize
and specialize them appropriately. We might start with a few top-level concepts
and a few specific concepts. We can then relate them to a middle-level concept.

11

None of these three methods is inherently better than any of the others the
approach to take depends strongly on the personal view of the domain. The
combination approach is often the easiest for many ontology developers, since
the concepts in the middle tend to be more descriptive concepts in the domain.
Which ever approach it is we start by defining classes. From the list which is
derived from step-3 select the terms that describe objects having independent
existence rather than terms that describe these objects. These terms will be
classes in the ontology and will become anchors in the class hierarchy. If a class
A is a superclass of class B, then every instance of B is also an instance of A.
I.e Class B represents a concept that is a “kind of” A.
For Example: If we arrange the keywords gathered above using freemind[7]
the resultant is shown in Figure - 2

Figure 4: Defining classes of Process

3.2.5 Define Properties

Once we have defined some of the classes, we must describe internal structures of
concepts. After selecting the classes from the list created by step-3 most of the
remaining terms are likely to be properties of these classes. For each property in
the list we must determine which class it describes. These properties becomes
slots attached to classes. In general, there are several type of object properties
that can become slots in an ontology.

• “intrinsic” properties such as flavor of a wine

• “extrinsic” properties such as wines name and “area” it comes from.,

• parts, if the object is structured: these can be both physical and abstract
“parts”.

• Relationship to other individuals: relationship between individual member
of the class and other items.

All subclasses of a class inherit the slot of that class . We can add additional
slots tenn in level (low, moderate (or) high) to the inherited classes. A slot
should be attached at the most general class that can have that property.
For Example: The properties for threads may be user level or kernel level
threads.

Figure 5: Properties of Threads

12

3.2.6 Define Constraints

slots can have different facets describing the value type, allowed values, the
number of the values (cardinality), and other features of the values the slot can
take. Example:

• value of a name slot is one string i.e. name is a slot with value type string.

• A slot produces can have multiple values and the values are instances of
the given class. i.e. produces in a slot with value type Instance with name
of the class as allowed class.

Several common facets:

Slot cardinality: Slot cardinality defines how many values slot can have, For
example single cardinality (allowing at most one value) and multiple cardinality
(allowing any number of values). Some systems allow specification of a minimum
and maximum cardinality to describe the number of slot values more precisely.
i.e. minimum cardinality of N means that a slot must have at least N values.
And similarly Maximum cardinality of M means that a slot can have at most
M values.

Slot-value type: A value type facet describes what type of values can fill in
the slot.
String: the value is a simple string used for slots such as name.
Number: describes slots with numeric values , more precisely can have integer
and float .

Ex: price

Boolean: Slots simply Yes-No (True-False) flags.
Enumerated: It specify a list of specific allowed values for the slot

Ex: flavor slot can take strong, moderate, delicate

Instance: These type of slots allow definition of relationships between indi-
viduals. Slots with value type instance must also define a list of allowed classes
from which the instances can come.
Domain and Range of a Class

Allowed classes for slots of type instance are often called a range of a slot.
The classes to which a slot is attached or a classes which property, a slot de-
scribes are called the domain of the slot. Basic rules for determining a domain
and a range of a slot are similar. When defining a domain or a range for a slot
find the most general classes or class that can be respectively the domain or the
range for the slots. On the otherhand do not define a domain and range that
is overly general. All the classes in the domain of a slot should be described by
the slot and instances of all the classes in the range of a slot should be potential
fillers for the slot. Do not close an overlay general class for range (i.e. one would
not want to make the range THING) but one would want to chose a class that
will cover all filters.
Some import rules in defining range and domain:

• If a list of classes defining a range or a domain of a slot includes a class
and its subclasses remove the subclass.

13

• If a list of classes defining a range or a domain of a slot contains all
subclasses of a class A, but not the class A itself the range should contain
only the class A and not the subclass.

• If a list of classes defining a range or a domain of a slot contains all but a
few subclasses of a class A consider if the class A make a more appropriate
range definition.

3.2.7 Create instance

Define an individual instance of a class requires

1. Choosing a class.

2. Creating an individual instance of the class.

3. Filling in the slot values.

Figure 6: Seven-Step Ontology Approach

3.3 Practical Approach:

proposed by Gavrilova[3], It consists of 5-steps recipe for creating ontology:

1. Glossary development

2. Laddering

3. Disintegration

4. Categorization

5. Refinement

14

3.3.1 Glossary development

Gather all the information relevant to the described domain. The main goal of
the step is selecting and verbalizing all the essential objects and concepts in the
domain. For Example: In operating system onotlogy the keywords may be
Types of Computing, Types of Systems, Process Management, Memory Man-
agement, File Management

3.3.2 Laddering

Define the main levels of abstraction. Specify the type of Ontology classification
such as taxonomy, partonomy, and genealogy.
For Example: If we arrange the keywords gathered above using freemind[7]
the resultant is shown in Figure - 2

Figure 7: Operating System dependency graph

3.3.3 Disintegration

Break high level concepts, built in the previous step, into a set of detailed ones
where it is needed. This could be done via a top-down strategy trying to break
the high level concept from the root of previously built hierarchy.

3.3.4 Categorization

Detailed concepts are revealed in a structured hierarchy and the main goal at
this stage is generalization via bottom-up structuring strategy. This could be
done by association similar concepts to create meta-concepts from leaves of the
aforementioned hierarchy.
For Example: If we arrange the keywords gathered above using freemind[7]
the resultant is shown in Figure - 8

3.3.5 Refinement

The final step is to updating the visual structure by excluding the excessiveness,
synonymy, and contradictions. As mentioned before, the main goal is harmony
and clarity.

3.4 Knowledge Engineering Approach:

It was better described in “Development of Domain ontology for e-learning
courses”[4] which was appeared in ITIME - 09 IEEE international symposium.

1. Identify purpose and requirement specification:

2. Ontology acquisition:

3. Ontology implementation:

15

Figure 8: Complete Operating System ontology

Figure 9: Practical Ontology Approach

4. Evaluation/Check:

5. Documentation:

3.4.1 Identify purpose and requirement specification

Ontology purpose, scope and its intended use, i.e. the competence of the on-
tology. For Example: Let us consider that we have to develop and ontology
of operating system. The purpose for development may be to find out the
dependencies between the course ware repositories for operating system object.

3.4.2 Ontology acquisition

Capture the domain concepts based on the ontology competence. It envolves

1. Enumerate important concepts and terms in this domain

16

2. Define concepts, properties and relations of concepts, and organize them
into hierarchy structure.

3. Consider reusing existing ontology.

For Example: In operating system onotlogy the keywords may be
Types of Computing, Types of Systems, Process Management, Memory Man-
agement, File Management. If we arrange the keywords gathered above using
freemind[7] the resultant is shown in Figure - 10

Figure 10: Operating System dependency graph

3.4.3 Ontology implementation

Explicitly represent the conceptualization captured in a formal language

3.4.4 Evaluation/Check

The ontology must be evaluated to check whether it satisfies the specification
requirements.

3.4.5 Documentation

All the ontology development must be documented, including purposes, require-
ments, textual descriptions of the conceptualization, and the formal ontology.

4 Ontology languages

ontology languages are formal languages used to construct ontologies. It can
formalloy describe the meaning of terminology used in web documents.

Need of Ontology languages Ontologies can be viewed as Database Schema
but we cannot utilize the database schema. because database schema is more
rigid and can fit into set of tables but where as ontology will not fit into tables.
Fensel [8] points out the following differences between ontologies and schema
definitions:

• A language for defining ontologies is syntactically and semantically richer
than common approaches for databases.

• The information that is described by an ontology consists of semi-structured
natural language texts and not tabular information.

• An ontology must be a shared and legal terminology because it is used for
information sharing and exchange.

17

Figure 11: Knowledge Engineering Approach

4.1 History of Ontology Languages

At the beginning of the 1990’s, a set of AI-based ontology implementation lan-
guages were created. Figure - 12 describes various ontology languages.

Figure 12: Stack of Ontology Markup Languages taken from [9]

SHOE was built in 1996 as an extension of HTML, in the University of Mary-
land. It uses set of tags which are different form the HTML specification thus
it allows insertion of ontologies in HTML documents. SHOE just allows rep-
resenting concepts, their taxonomies, n-ary relations, instances and deduction
rules.

Then XML was created and widely used as a standard language for exchanging
information on the web. Then SHOE syntax was modified to includes XML,
and some other ontology languages are also built on XML.

18

XOL was developed by the AI center of SRI international, in 1999. It is a
very restricted langauge where only concepts, concept taxonomies and binary
relations can be specified. No inference mechanisms are attached to it. It is
mainly designed for the exchange of ontologies in the biomedical domain.

Then RDF was developed by the W3C (The world wide web consortium)
as a semantic-network based language to describe Web resources. RDFSchema
was built by the W3C as an extensioin to RDF with frame-based primitives.
The combination of both RDF and RDFSchema is normally known as RDF(S).
RDF(S) is not very expressive. It just allows the concepts, concept taxonomies
and binary relations.
Three more languages have been developed as extensions to RDF(S): OIL,
DAML + OIL and OWL

OIL was developed in the framework of the European IST project On-To-
Knowledge. It adds frame-based Knowledge Representation primitives to RDF(S),
and its formal semantics is based on description logics.

DAML + OIL was created by a joint committee from the US and the EU in
the context of the DARPA project DAML. DAML + OIL also adds DL-based
KR primitives to RDF(S). Both OIL and DAML + OIL allow representing
concepts, taxonomies, binary relations, functions and instances. Many efforts
are being put to provide reasoning mechanisms for DAML + OIL.

Finally, in 2001, the W3C formed a working group called Web-Ontology (We-
bOnt) Working Group. The aim of this group was to make a new ontology
markup language for the Semantic Web, called OWL (Web Ontology Language).
Brief Description of the Languages

4.2 XML (Extended Markup Language)

XML[10] is a markup language for delivery of documents containing struc-
tured information over the web. structured information contains both content
and some indication of what role that content plays. In HTML the tag seman-
tics and the tag set are fixed. It doesnot provide arbitrary structure. XML
specifies neither semantics nor a tag set. i.e. there is no fixed tags in XML, and
XML provides a facility to define tags and the structural relationships between
them. XML is created so that richly structured documents can be used over the
web.

XML documents are composed of markup and content. Following kinds of
markups that can occur in an XML document: elements, comments, processing
instructions etc.
Elements: elements identify the nature of the content they surround, some
elements may be empty or non empty if an element is not empty, it begins with
a start-tag,

<element>

and ends with an end-tag,

19

</element>

attributes, are name-value pairs that occur inside start-tags after the element
name. For example

<div class="preface">

is a div element with the attribute class having the value preface. In XML all
attribute values must be quoted.
Comments: Comments begin with <!- - and end with - ->. Comments can
contain any data except the literal string - -. We can place comments between
markup anywhere in the document.
Processing Instructions: Processing instructions are an escape sequences to
provide information to an application. Like comments, they are not textually
part of the XML document, but the XML processor is required to pass them to
an application. Processing instructions have the form:

<?name pidata?>

Basic XML code looks like

Table 1: Book Store
Book Id Title Author Year Price
059600 XML John 2005 30
059601 Javascript David 2003 29.99

For the above text the XML code is

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/css" href="book.css"?>
<bookstore>
<book Id="059600">
<title lang="en">XML</title>
<author>John</author>
<year>2005</year>
<price>30.00</price>

</book>
<book Id="059601">
<title lang="en">Javascript</title>
<author>David</author>
<year>2003</year>
<price>29.99</price>

</book>
</bookstore>

The first line is the XML declaration. It defines the XML version (1.0) and
the encoding used (ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: ”this
document is for bookstore”) i.e. <bookstore>, The next 4 lines describe 4 child
elements of the root (title, author, year, price), And finally the last line defines
the end of the root element <bookstore>

we can attach cascaded style sheet can be attached to the XML document
by adding the following line

20

<?xml-stylesheet type="text/css" href="book.css"?>

The above XML code can be explained graphically as follows

Book JavaScript

059601

David

Title

BookId

Author

Figure 13: graphical representation

4.2.1 XMLS(XML Schema)

XML Schema[8] is a means for defining constraints on well formed XML docu-
ments. It provides basic vocabulary and predefined structuring mechanisms for
providing information in XML. XML Schemas are extensible, because they are
written in XML.

That is we can Reuse our Schema in other Schemas, we can Create our
own data types derived from the standard types and we can Reference multi-
ple schemas in the same document. XML Schema provides seveal significant
improvements:

• XML Schema definitions are themselves XML documents. The clear ad-
vantage is that all tools developed for XML (e.g., validation or rendering
tools) can be immediately applied to XML schema definitions, too.

• XML Schemas provide a rich set off datatypes that can be used to define
the values of elementary tags.

• XML Schemas provide a much richer means for defining nested tags (tags
with subtags)

• XML Schemas provide the namespace mechanism to combine XML doc-
uments with heterogeneous vocabulary.

With XML Schemas, the sender can describe the data in a way that the
receiver will understand. A date like: ”03-11-2004” will, in some countries, be
interpreted as 3.November and in other countries as 11.March.

However, an XML element with a data type like this:

<date type="date">2004-03-11</date>

Let us consider an example
for the above XML code the XML Schema will be

21

Table 2: Message
To From Heading Body

John David Reminder Meeting is cancelled.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"
elementFormDefault="qualified">

<xs:element name="note">
<xs:complexType>
<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

The note element is a complex type because it contains other elements. The
other elements (to, from, heading, body) are simple types (string) because
they do not contain other elements. Final XML code with reference to the
XML Schema

<?xml version="1.0"?>

<note
xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3schools.com note.xsd">

<to>John</to>
<from>David</from>
<heading>Reminder</heading>
<body>Meeting is cancelled.</body>

</note>

ensures a mutual understanding of the content, because the XML data type
”date” requires the format ”YYYY-MM-DD”.

It provides syntax for structured documents but no semantic constraints on
the meaning of these documents.

A language for restricting the structure of XML documents and extends XML
with data type.

22

4.3 RDF (Resource Description Framework)

Resource Description Framework(RDF)[11] is a graphical language used for
representing information about resources on the web. It is a basic ontology
language. RDF is written in XML, By using XML, RDF information can easily
be exchanged between different types of computers using diffferent types of
operating systems and application languages. RDF was designed to provide
a common way to describe information so it can be read and understood by
computer applications. RDF descriptions are not designed to be displayed to
the web. Data model for objects and relations between them. provides a simple
semantics for datamodel. Data models can be represented in an XML syntax.
Basic RDF code looks like

Table 3: Student Information
Student Id Name Subject Marks Percentage

059600 John Networks 40 80
059601 David Networks 45 85

For the above data the RDF code is

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:st="http://www.cse.iitb.ac.in/st#">

<rdf:Description
rdf:about="http://www.cse.iitb.ac.in/st/059600">

<st:name>John</st:name>
<st:subject>Networks</st:subject>
<st:marks>40</st:marks>
<st:percentage>80</st:percentage>

</rdf:Description>

<rdf:Description
rdf:about="http://www.recshop.fake/st/059601">
<st:name>David</st:name>
<st:subject>Networks</st:subject>
<st:marks>45</st:marks>
<st:percentage>90</st:percentage>

</rdf:Description>
</rdf:RDF>

The first line of the RDF document is the XML declaration. The XML
declaration is followed by the root element of RDF documents: ¡rdf:RDF¿.

The xmlns:rdf namespace, specifies that elements with the rdf prefix are
from the namespace

"http://www.w3.org/1999/02/22-rdf-syntax-ns#".

23

The xmlns:cd namespace, specifies that elements with the cd prefix are from
the namespace

"http://www.iitb.ac.in/st#".

The <rdf:Description>element contains the description of the resource iden-
tified by the rdf:about attribute.

The elements: <st:name>, <st:subject>, <st:marks>, etc. are properties
of the resource.

RDF identifies with Uniform Resource Identifiers (URI) These are called
resources. The base element of the RDF model is the triple: a subject linked
through a predicate to object. We will say that <subject>has a property <pred-
icate>valued by <object>

The RDF triple (S,P,O) can be viewed as a labelled edge in graph.

Student

Subject

David

ObjectPredicate

Name

Figure 14: Predicate

4.3.1 RDFS (RDFSchema)

Vocabulary for describing properties and classes of RDF resources[12], with a
semantics for generalization - hierarchies of such properties and classes. It de-
fines a simple ontology that particular RDF documents may be checked against
to determine consistency.Many RDFS components are included in the more ex-
pressive language Web Ontology Language (OWL).

4.4 OIL (Ontology Interchange Language)

OIL is also known as Ontology Inference Layer[13]. OIL is derived from RDFS.
OIL is based on descriptive logic. Descriptive logic describes knowledge in terms
of concepts and role restrictions that can automatically derive classification
taxonomies.

OIL is better then its ancestors in the following ways. it has rich set of mod-
elling primitives and nice ways to define concepts and attributes. The definitions
of a fomal semantics were included in OIL. Customized editors and interface en-
gines for OIL are also exist. Every RDFS ontology is an valid ontology in OIL
and vice versa. Much of the work in OIL was subsequently incorporated into
DAML+OIL and the Web Ontology Language (OWL).

4.5 OWL (Web Ontology Language)

In 2001, the W3C formed a working group called Web-Ontology (WebOnt)
Working Group. The aim of this group was to make a new ontology markup
language for the Semantic Web, called OWL (Web Ontology Language)[14].

24

OWL is used when the information contained in documents needs to be pro-
cessed by application. OWL can be used to explicitly represent the meaning of
terms in vocabularies and the relationships between the terms. It is a revised
version of the DAML + OIL web ontology language. OWL adds more vocabu-
lary for describing properties and classes.
Sibilings of OWL are

1. OWL Lite

2. OWL DL

3. OWL Full

4.5.1 OWL Lite

OWL lite supports classification hierarchy and simple constraints. OWL Lite
provides a quick migration path for thesauri and other taxonomies. OWL Lite
has a lower formal complexity then OWL DL.

4.5.2 OWL DL

Maximum expressiveness while reatining computational completeness and de-
cidable i.e. all computations will be finished in time. OWL DL is named due to
its correspondence with Description Logic. and it includes all the OWL language
constructs.

4.5.3 OWL DL

OWL Full gives syntactic freedom of RDF with no computational guarantees.
OWL Full allows an ontology to augment the meaning of the pre-defined (RDF
or OWL) vocabulary

The following set of relations hold. Their inverses do not.

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

The choice between OWL-Lite and OWL-DL may be based upon whether
the simple constructs of OWL-Lite are sufficient or not. Where as the choice
between OWL-DL and OWL-Full may be based upon whether it is important
to be able to carry out automated reasoning on the ontology or whether it is
important to be able to use highly expressive and powerful modelling facilities
such as meta-classes (classes of classes).

OWL Full can be views as an extension to RDF. where as OWL Lite and
OWL DL can be viewed as and extension of a restricted view of RDF.

25

Every OWL (Lite, DL, Full) document is an RDF document and every RDF
document is an OWL Full document. Only some RDF documents can be OWL
lite or OWL DL.

5 Ontology Editors

Ontology editors are designed to assist in the creation or modification of ontolo-
gies and for the subsequent ontology usage. These editors are the applications
which support one or more ontology languages. And some editors also have the
facility to export from one to another ontology language.

5.1 Ontolingua

The Ontolingua Server was the first ontology tool created[15]. It was developed
in the Knowledge Systems Laboratory (KSL) at Stanford University. The public
server is available at http://www-ksl-svc.stanford.edu:5915/, we must have an
account to use the system. All work takes place with in a session, which has
a duration and a description. Ontolingua uses Object-Oriented presentation,
and full logical representation. The ontology is stored on the server. we can
download our work to a local file system or we can email our work to any system.
Uses of Ontolingua are:

1. Runtime query

2. Translation

Runtime Query, remote applications may query and ontology server

• To determine if a term is defined

• To determine the relationship between terms

• To manipulate the contents of an ontology

Translation, from one language to another language. It includes the following
challenges

• Semantics - ensure that the meaning is preserved.

• Syntax - ensure that target syntax is correct.

• Style - ensure that target idioms a re preserved.

5.2 Protégé

Protégé is a free, open source ontology editor and a knowledge acquisition
system[16]. It was developed by the Stanford Medical Informatics(SMI) at
Stanford University. It is an opensource, standalone application with an ex-
tensible architecture. It is written in Java and heavily uses Swing to create
the complex user interface. Protégé ontologies can be exported into a variety
of formats including RDF(S), OWL, and XML Schema. The Protégé platform
supports two main ways of modeling ontologies via

26

1. Protégé-OWL

2. Protégé-Frames

5.2.1 Protégé-OWL

The Protégé-OWL editor is an extension of Protégé that supports the Web
Ontology Language (OWL). An OWL ontology may include descriptions of
classes, properties and their instances.
The Protégé-OWL editor enables users to:

1. Load and save OWL and RDF ontologies.

2. Edit and visualize classes, properties, and rules.

3. Define logical class characteristics as OWL expressions.

5.2.2 protégé-frames

The Protégé-Frames editor provides a full-fledged user interface and knowledge
server to support users in constructing and storing domain ontologies. In this
model, an ontology consists of a set of classes organized in hierarchical order
to represent a domain’s concepts. classes are associated with a set of slots
to describe their properties and relationships, and a set of instances of those
classes.

5.2.3 Developing Ontology

For creating ontologies using protégé install protégé in the system and run from
the command prompt then a dialoug box similar to as shown in the system will
appear. We can create our own Ontology using protégé. A sample operating

Figure 15: protégé welcome screen

system ontology developed using protege is shown in the below figure.

5.3 WebODE

WebODE is a tool for building ontologies in the World Wide Web[18]. It was
developed in the Artificial Intelligence Lab from the Technical University of
Madrid(UPM). Web ODE is not used as a standalone application, but we can

27

Figure 16: Operating system ontology developed using protégé

use it as a Web server with a Web interface. Multiple concurrent users are
allowed to work at the same time, and the proper synchronisation and blocking
mechanisms are provided so that ontology designers can make their best with
this tool either working alone or in a team. WebODE is based on a central
ontology repository implemented using a relational database. A very simple and
powerful mechanism to export and import ontologies using the XML standard
is also supplied by default with the tool. Technical requirements

1. Browser (Internet Explorer 5.0 or above)

2. Java plug-in version 1.2.x must be installed in the browser

3. configure the Web browser so that the pages are retrieved from the server
everytime they are visited. this can be done by
Tools / Internet Options / Internet Temporal Files / Configuration /
Every Time the page is Visited.

4. Do not use the proxy for the WebODE URL. This option can be configured
selecting:
Tools / Internet Options/Connection / LAN Configuration.

Usage Login in this website http://www.oeg-upm.net/webode

New Ontology: give a name and description for the ontology that is being
created. where name is compulsary and description is optional.

List of Ontologies: we can list the ontologies that we are able to access (and
modify) by clicking on the list ontologies tab from the main menu.

Open Ontology: we can open ontologies, to insert new components, to up-
date them and to simply remove some of them.

28

Export Ontology: , We can export the ontology into several langauages like
UML, XML, RDF(S), OIL, DAML+OIL, OWL and so on, and we can get the
target code.

5.3.1 Developing Ontology

First we have to register for WebODE, after registration we will get a user-
name and password. Log on to the webode website http://www.oeg-upm.net/
webode using the username and the password. We can create new ontology us-

Figure 17: Operating system ontology developed using protégé

ing webode the new ontology scree will appear as shown in the following figure.
After creating the ontology it will look like the following figure. Here we have

Figure 18: Operating system ontology developed using protégé

created the Ontology for Operating system course.

5.4 OntoStudio

OntoStudio is an modeling environment to create and maintain ontologies[17],
with particular emphasis on rule-based modelling. It was originally developed
for F-Logic but now also includes some support for OWL, RDF, and OXML.
It also includes functions such as the OntoStudio Evaluator. The Evaluator is
used for the implementation of rules during modelling. It is the successor of
OntoEdit.

29

Figure 19: Operating system ontology developed using protégé

5.4.1 Data Models

OntoStudio can be operated with a RAM-based- as well as database-data-model;
therefore it is scalable and suitable for the modeling of large ontologies.

1. RAM Data Model:
The complete ontology data is loaded into the main memory of the work-
station. All changes made in the ontology are written in files when you
save the new ontologies. It is appropriate for small and medium-size on-
tologies (dependent on main memory size)

2. Database Data Model
Only the actual presented parts of the ontologies are loaded from a database
into main memory and will be written back to the database immediately
when changes happens in the ontology. It is appropriate for large ontolo-
gies.

OntoStudio supports the ontology languages F-Logic, RDF/RDFS and OWL.

5.4.2 developing Ontology

For creating ontologies using OntoStudio install OntoStudio in the system and
run from the command prompt. After creating the ontology it will look like
the following figure. Here we have created the Ontology for Operating system
course.

30

Figure 20: protégé welcome screen

6 Future Work

A model can be developed which will use Natural Language Processing tools
to find out the keywords and their dependencies. According to the relationship
between the keywords we can derive a heirarichy and finally we can construct
an ontology which not only provides the user with the most relevant learning
module for his query, but also provides him/her with the relevant information.
For example we can construct the ontology from the lecture notes provided in
NPTEL repository which can help users in getting the pre-requisite and follow-
up modules for a particular module.

7 Conclusion

There is no one correct way to model a domain. There are always alternatives.
Ontology development is necessarily an iterative process. There is no corre-
spondence between ontology building methodologies and tools. since there is
no technological support for most of the existing methodologies, they cannot be
easily applied in the ontology construction task. Most of the tools just focus
on few activities of the ontologyh lifecycle (Design and implementation). There
are many similar tools are available for building ontology but they do not inter-
operate. That means we can use the ontology developed by one tool in another
tool.

Ontology development languages are still in development phases, and they are
continuously evolving, which makes it difficult to have up-to-date technology for
managing them. The following table is the summary of

31

Table 4: Comparision of Ontology development tools
Ontolingua Protégé WebODE OntoStudio

Developers KSL (Stanford
University)

SMI (Stanford
University)

UPM Ontoprise

Current
Release
and Tools

0.1.45(Aug
2003)

4.1Alpha(Mar
2010)

2.0(Dec 2002) 2.3.3(Dec 2009)

Pricing
Policy

Free Web Access Free Ware Lincences Freeware & Li-
cences

Mode of
Access

Web Access Stand Alone Web Access Stand Alone

Export to
Languages

CLIPS CML,
ATP CML

XML, RDF(S),
XMLSchema,
OWL

XML,
RDF(S), OIL,
DAML+OIL

XML, RDF(S),
F-Logic, OWL

Import
from Lan-
guages

IDL KIF XML, RDF(S),
XMLSchema,
OWL

XML, RDF(S) XML, RDF(S),
F-Logic, OWL

Ontology
Library

Yes Yes No Yes

References

[1] Gruninger, M. and Fox, M.S, “Methodology for the Design and Evaluation
of Ontologies”, Workshop on Basic Ontological Issues in Knowledge Sharing,
IJCAI-95, 1995.

[2] Natalya F. Noy and Deborah L. McGuinness, “Ontology Develop-
ment 101: A Guide to Creating Your First Ontology”, Available from
Internet:<http://protege.standford.edu/publications/ontology_
development/ontolgogy101.html>

[3] Gavrilova, T., Farzan, R. and Brusilovsky, P., “One Practical Algorithm of
Creating Teaching Ontologies”, Proceedings of Network Based Education,
2005.

[4] YUN Hong-yan, XU Jian-liang, WEI Mo-ji, XIONG Jing, “Development
of Domain Ontology for E-learning Course”, ITIME-09IEEE international
symposium, 2009.

[5] Nidhi Malik, under the Guidance of Prof.Sridha Iyer “Discovering Depen-
dencies in Courseware Repositories”, M.Tech. Dissertation, 2008.

[6] T.R.Guber “Towards principles for the design of ontologies used for knowl-
edge sharing,”, Int..J.Human-Computer Studies,, 43(5-6), p.p 9.7-928, 1993.

[7] Freemind http://freemind.sourceforge.net/wiki/index.php/Main_
Page

[8] Michel Klein, Dieter Fensel, Frank van Harmelen, and Ian Horrocks, “The
relation between ontologies and XML schemas”.

32

[9] Oscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez, “Method-
ologies, tools and languages for building ontologies. Where is their meeting
point”, Data & Knowledge Engineering 46(2003) 41-64.

[10] XML: http://en.wikipedia.org/wiki/XML

[11] Pierre-Antoine Champin ‘‘RDFTutorial’’ April 5, 2001.

[12] RDF Schema: http://en.wikipedia.org/wiki/RDF_schema

[13] Dieter Fensel and Frank van Harmelen “OIL: An Ontology INfrastructure
for the semantic web” IEEE Intelligent Systems, The semantic web maga-
zine, 2001.

[14] Deborah L. McGuinness, Frank van Harmelen “OWL Web Ontology Lan-
guage Overview”, http://www.w3.org/TR/owl-features/, W3C Recom-
mendation 10 February 2004.

[15] Ontolingua:, http://ksl.stanford.edu/software/ontolingua/

[16] Protégé: http://protege.stanford.edu/

[17] OntoPrise: http://www.ontoprise.de/en/home/products/
ontostudio/

[18] WebODE: http://webode.dia.fi.upm.es/WebODEWeb/Documents/
usermanual.pdf

33

