
Automated building of domain ontologies from lecture notes in courseware

Neelamadhav Gantayat
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

Email: neelamadhavg@cse.iitb.ac.in

Sridhar Iyer
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

Email: sri@it.iitb.ac.in

Abstract—Courseware repositories contain large amounts
of lecture videos and text. When searching for lecture
material on a given topic, it would be useful if the repository
also indicates the topics that are pre-requisites. In this paper
we present a technique that automatically constructs the
ontology (dependency graph) from the given lecture notes.
We show how this ontology can be used to identify the pre-
requisites and follow-up modules for a given query (lecture
topic). We also provide the user with a dependency graph
which gives a conceptual view of the domain. Our system
extracts the concepts using term frequency inverse document
frequency (tf-idf) weighting scheme and then determines the
associations among concepts using apriori algorithm. We
have evaluated our system by comparing its results with the
dependencies determined by an expert in the subject area.

Keywords-Ontology; Tf-idf; Apriori Algorithm; Pre-
requisites; Follow-ups; Dependency Graph.

I. INTRODUCTION

Courseware repositories, such as OCW1 and NPTEL2,
contain large amounts of data in the form of videos
and text. A fine-grain (topic-level) search facility and
automatic identification of pre-requisites and follow-ups
for a given topic is desirable and would be useful to
students. Such a feature (identification of pre-requisites of
a given topic) is not available in these repositories. This
feature could be built by manual tagging of the contents,
but it is cumbersome to do so.

In this paper we present a technique that automatically
constructs the ontology (dependency graph) from given
lecture notes. We show how this ontology can be used
to identify the pre-requisites and follow-up modules for
a given query (lecture topic). In domain ontology, re-
lationships between different concepts of a domain are
identified. In our case, a concept corresponds to a lecture
module and a relationship corresponds to whether it is a
prerequisite or a follow-up of the topic. We also provide
the user with a dependency graph which corresponds to a
concept map and gives a conceptual view of the domain.
People can often grasp ideas much more quickly by
looking into the graphical representation than by reading
them in a book [1].

Our system extracts the concepts using term frequency
inverse document frequency (tf-idf) weighting scheme and
then determines the associations among concepts using

1http://ocw.mit.edu
2http://nptel.iitm.ac.in

apriori algorithm. We have evaluated our system by com-
paring its results with the dependencies determined by an
expert in the subject area.

Our technique is to extract the topics (keywords) from
the given PDF files using “term frequency inverse docu-
ment frequency (tf-idf) weighting scheme” (described in
Section 3). Then we determine the associations among
different concepts (topics) using “apriori algorithm” (de-
scribed in Section 3). Then we arrange the relations in a
hierarchical order. The implementation of our system is
described in Section 4. For any user query, our system
provides the link for the topic, and two topics above
it as pre-requisites and two topics below it as follow-
ups, from the hierarchy of the ontology. Our experiments
to evaluate the performance of the system are shown in
Section 5 and conclusions in Section 6. To the best of
our knowledge, there is no such system to automatically
determine dependencies of topics from a repository of
lecture notes.

II. BACKGROUND

This section describes courseware repositories, gives a
brief overview of domain ontology and defines depen-
dency graph.

A. Courseware Repositories

We surveyed OCW and NPTEL repositories and
searched for topics like Threads, TCP/IP and Ethernet.
Although these topics are covered in these repositories,
the search results often gave links to more advanced
topics than our desired topic. We believe that a user not
already familiar with the domain would find it difficult to
determine the sequence of links to follow.

1) OCW: MIT OpenCourseWare is an initiative by MIT
and has over 2,000 courses in 36 academic disciplines [2].
This content is available from http://ocw.mit.edu/. A lot
of the content is in the form of PDF documents. We used
the existing search facility for the topic “Operating system
Threads”. The first link of the results was “Micro-kernels”,
which is an advanced topic and does not help a user who
is not familiar with the domain.

2) NPTEL: The National Programme on Technology
Enhanced Learning (NPTEL) is a project from the Min-
istry of Human Resource Development (MHRD), India,
initiated in 1999 [3]. There are more than 260 courses,
available in two modes: Some courses have video lectures,

while others have lectures notes in the form of PDF files.
We used the existing search facility at NPTEL and found
that it is course-grain and limited to only course titles.
Currently it does not support topic-level search.

Hence we believe that a facility to not only support ac-
curate topic-level search but also to identify pre-requisites
and follow-ups of a topic would be useful. In the next
section we provide the background on domain ontology
that forms the basis of the techniques used in our system.

B. Ontology

Ontology provides a mechanism to capture information
about the ideas, concepts, and the relationships between
them in some domain [4]. The aim of ontology is to
develop knowledge representations that can be shared and
reused. Guber [5] defined ontology as

“A formal explicit specification of a shared conceptual-
ization.”

Domain ontology provides particular meanings of terms
as they apply to that domain. For example the word
thread has many different meanings. An ontology for
the domain of operating system would model process
threads, while an ontology for the domain of textiles would
model thread as “long object resembling a thin line”. Main
application areas of ontology are knowledge management,
web commerce, electronic business, and e-learning [6].

The key difficulties in developing ontology are: (i)
extensive knowledge about a subject is required and (ii)
it is time-consuming. We have automated this process, in
the context of lecture notes. We use domain ontology to
represent relations between topics for a given course. Here
we consider only one relation, that is “follows”. Topic-
2 follows Topic-1 means that Topic-1 is a pre-requisite
for Topic-2 and Topic-2 is a follow-up of Topic-1. In our
system we first develop the domain ontology from the
given set of notes. Then we refer the node which represents
the user’s desired topic and also provide two of its ancestor
nodes as pre-requisites and two descendants as follow-ups.

The domain ontology developed by our system is also
presented to the user by a graphical representation called
dependency graph.

C. Dependency graph

A dependency graph is a directed graph which repre-
sents dependencies of several objects towards each other.

“Given a set of objects S and a transitive relation R =
S × S with (a, b) ∈ R modeling a dependency ‘a needs
b evaluated first’, the dependency graph is a graph G =
(S, T) with T ⊆ R and R being the transitive closure of
T.” [7]

Dependency graphs are represented in hierarchical or-
der, i.e., most general concepts are at the top of the
graph and the more specific and less general concepts in
lower orders. Using dependency graphs we can represent
the dependencies between different concepts as shown in
Figure 1; concepts are shown by ellipses and dependencies
by arrows.

A dependency graph being similar to a concept-map [1],
enhances the learner’s understanding of a given subject

Figure 1. Dependency Graph

and is useful for providing summary of various intercon-
nected and dependent topics. The key difference between
a dependency graph and a concept-map is that: a concept-
map can have any relation between two concepts, whereas
in a dependency graph there is only one relation, that is,
depends.

III. SYSTEM OVERVIEW

A. Problem Statement

Given a repository of lecture notes for a particular
subject (or the soft-copy of a text book), our aim is to
build a system that provides the user with: (i) a mechanism
to query for a desired topic, (ii) identify the pre-requisites
and follow-ups for the topic and (iii) a dependency graph
of the pre-requisites and follow-ups of all topics in the
subject.

B. Solution Outline

The steps for our solution are as follows and also shown
in Figure 2:

1) Convert the given PDF files into text, and index the
text files.

2) Extract the keywords from the text files.
3) For each keyword: Identify its relation with other

keywords. If there is a relation, then determine
whether it is a pre-requisite or a follow-up.

4) Construct and store the ontology with the identified
relations, in the form of a dependency graph in a
hierarchical order.

5) Given a user query, lookup the ontology and pro-
vide the pre-requisites (ancestors) and follow-ups
(descendants), as a reply to the query.

IV. IMPLEMENTATION DETAILS

The implementation of our system has the following
five phases:

1) Parsing: Parse the PDF files of the course to get the
corpus text files, using PDFBox [8].

2) Indexing: Index the Text files, using Lucene [9].
3) Keyword Extraction: Extract the keywords, using tf-

idf weighting scheme [10].
4) Ontology Construction: Find the relations between

the keywords, using the apriori algorithm [11].

Figure 2. System overview

5) Dependency Graph Generation: Generate the depen-
dency graph for the whole course, using DOT [12].

The flow of input to output is shown in Figure 3 and
the details are described in the subsequent sections.

Figure 3. System Design

A. Parsing

We made use of a Nutch utility called PDFbox [8] to
parse the PDF files and to convert them into text (as
required by our indexing utility, Lucene). In case there
is only one big PDF file containing all the topics (such
as soft-copy of a book), we used PDFBox also to divide
it into multiple PDF files, since our algorithm requires
multiple PDF files for identifying relations.

B. Indexing

Lucene [9] is embedded in our system to index and
search the given text documents. It lets one add indexing
and searching capabilities to the application. Lucene can
index any data that can be converted to textual format, and
make it searchable. We used Lucene index to search and
to calculate the tf-idf weight of each term (as described
below), and also to identify the relationship between two
keywords, i.e., whether one is a pre-requisite for other or
a follow-up to the other.

C. Keyword Extraction
Keyword extraction is the process of extracting im-

portant phrases which can summarize the meaning of a
document. Keywords can be extracted using linguistic
techniques or machine learning techniques. Linguistic
techniques make use of part-of-speech tagging or phrase
chunking [13]. On the other hand, machine learning tech-
niques use statistical or probabilistic data for keyword
extraction. Machine learning based keyword extraction
is once again divided into supervised and unsupervised
techniques. Supervised techniques require some data for
which the keywords are known (this is called training data)
for its operation, while unsupervised techniques do not
require any training data.

We used tf-idf (an unsupervised technique), to identify
terms with high relevance to the document. We used
“topia” [14] (which makes use of part-of-speech (POS)
tagging technique), to find other keywords which are
missed by tf-idf algorithm, if any.

1) Term Frequency Inverse Document Frequency (tf-idf)
[10]: Term frequency inverse document frequency (tf-idf)
is defined as the number of occurrences of a term in a
given document multiplied by the inverse of the number
of documents where the term appears. Given a document
collection D, a word w, and an individual document d ∈
D

wd = fw,d ∗ log(|D|/fw,D)

where
• fw,d equals the number of times w appears in d,
• |D| is the size of the corpus (number of documents),

and
• fw,D equals the number of documents in which w

appears in D.
Logarithm of document frequency in the above formula

is used for smoothing purpose. The tf-idf value is
• high when a term occurs many times within a small

number of documents,
• low when the term occurs fewer times in a document,

or occurs in many documents,
• lower when the term occurs in virtually all docu-

ments.
Using tf-idf weighting scheme, we scored each word

(unigram, bigram, trigram, and fourgram) in the given text
corpus. Then we found out the top unigrams, bigrams,
trigrams, and fourgrams according to the tf-idf weights.
Ngrams are groups of n written letters, n syllables, or
n words. In this way, we extracted top keywords for the
given text.

We defined our own set of stop words in order to
increase the accuracy of the extracted keywords. Stop
words are common words like numbers, digits, articula-
tions, conjunctions etc. We did not allow any stop words
in bigrams. We allowed stop words as a second word for
conjunction purpose in trigrams. In fourgrams, the third
and the fourth words can be stop words but the first and
the last words cannot be stop words. All the keywords
extracted are stored in a file called tfidf.txt.

We performed experiments to determine the optimal
number of unigrams, bigrams, trigrams, fourgrams, and
total number of keywords to include. These are discussed
in the evaluation section.

D. Ontology Construction

To identify the relation between different keywords and
to construct the ontology, we used apriori algorithm, a
classical algorithm for learning association rules.

1) Apriori Algorithm: “Given a set of documents, gen-
erate all association rules that have support and confidence
greater than the user-specified minimum support and min-
imum confidence respectively” [11]. Where Association
Rule: i1, i2, ..., ik → j means, “if a document contains
all of i1, ..., ik then it is likely to contain j”. Support
is the number of documents containing all the words
i1, i2, ..., ik, j and Confidence of this association rule is
the probability of j given i1, ..., ik.

We modified the apriori algorithm according to our
requirement. Our modified version is as follows:

• Step 1: Read documents and count the occurrences
of each item. It requires only memory proportional
to the number of words in the documents. This step
was modified by using tf-idf weight.

• Step 2: Read documents again and count only those
pairs which were found in Step 1 to be frequent. So if
we find n frequent keywords, then we will have n(n−
1)/2 pairs. Now, find out the frequent wordsets with
the given confidence. The frequent wordsets establish
an Association between the two words.

The support is a configurable parameter. If the support
is less (minimum number of documents in which the pair
of words should be repeated), then the algorithm will find
more number of relations. On the other hand, if the support
is more then, the algorithm will identify less number of
relations. We considered the confidence as 0%. That is, if
the support is satisfied, then we consider it as a relation,
though other documents may contain only word-1 but not
word-2.

For each pair of keywords in tfidf.txt, we calcu-
lated the frequency among different documents, and listed
the pair of words having greater frequency than the support
provided as relations. All the relations are stored in a file
called relation.dot in a form which can be read by
DOT language.

E. Generating the Dependency Graph

Having found the relations between the keywords, we
show them in a graphical representation, i.e., the depen-
dency graph. The purpose of creating the dependency
graph is to let the users decide what they should know
before learning any specific topic. Using DOT language,
we constructed a directed acyclic graph for the rela-
tions that we identified above, and converted the file
relation.dot into dag.pdf which is the dependency
graph.

V. EVALUATION

We used Computer Networks and Operating Systems
courses of NPTEL courseware repository for our testing
purpose. The dependency graph for Computer Networks
course is shown in the Figure 4. It has been generated
using DOT language. DOT language orders the nodes in
such a way that, node with less number of incoming edges
comes at the top levels, and nodes with more number of
incoming edges in the next levels. So, the order shown
in the graph is not the exact output of our system, it is
a graphical simulation of the output. In the dependency
graph shown in Figure 4, concepts like tcp, ospf, rip are
the keywords identified by our system. For a particular
node the ancestors are pre-requisites and descendants are
follow-ups. For example, the pre-requisites of the concept
tcp is topology and the follow-up topic is congestion
control.

We evaluated our system by manually comparing its
results with the results given by an expert. We compared
the keywords generated by our program with the expert
generated keywords. Similarly we compared the relations
generated by our system with those of the expert generated
relations. We modeled a goodness metric as shown in
the following equations. Here, Epw, Spw, Enw, Snw de-
notes Expert Positive, Self Positive, Expert Negative, and
Self Negative, respectively, for the keywords identified.
Whereas, Epr, Spr, Enr, Snr denote Expert Positive, Self
Positive, Expert Negative, and Self Negative, respectively,
for the relations determined. Expert positive is, the correct
keywords given by system with respect to the expert
results. On the other hand, self positive is, the correct
keywords given by system with respect to keywords given
by the system. Similarly, Expert Negative is the items
given by expert but missed out by the system, and Self
Negative is the spurious items reported by the system.

A. Goodness Metrics

Let
• We and Re denote the total number of keywords and

relations suggested by the expert, respectively,
• Ws and Rs denote the total number of keywords and

relations generated by our system, respectively, and
• Wc and Rc denote the common keywords and re-

lations in both expert given and system generated,
respectively, then

Expert Positive (Ep)

Epw =
Wc

We
Epr =

Rc

Re

Self Positive (Sp)

Spw =
Wc

Ws
Spr =

Rc

Rs

Expert Negative (En)

Enw =
We −Wc

We
Enr =

Re −Rc

Re

Figure 4. DAG for Computer Networks

Self Negative (Sn)

Snw =
Ws −Wc

Ws
Snr =

Rs −Rc

Rs

For example, for a given subject as shown in the
following Figure 5, let w, x, y, and z be the key-
words identified by an expert, and let x, y, and p
be the keywords identified by our system. In this
case, True Positive is {x, y}, so the Expert Positive is
|{x, y}|/|{w, x, y, z}| = 2/4 = 0.5, whereas the Self
Positive is |{x, y}|/|{x, y, p}| = 2/3 = 0.66. False
Positive is {p}, so the Self Negative is |{p}|/|{x, y, p}| =
1/3 = 0.33, and False Negative is{w, z}, so the Expert
Negative is |{w, z}|/|{w, x, y, z}| = 2/4 = 0.5.

Figure 5. Classification Diagram

B. Performance Analysis

We manually identified the keywords for both the sub-
jects Computer Networks and Operating Systems, then
compared them with those of the results generated by our
system. The results are given in the following tables. Table
II shows the results for Computer Networks and Figure 6
is the graph for Computer Networks with respect to the
results. In the same way, Table III and Figure 7 show the
results for Operating Systems.

From the graph, we can observe that with increase in
the number of system generated keywords, Expert Positive
(Ep) increases. This is because, the expert given keywords
(We) are fixed. At the same time with increase in number
of keywords, Self Positive (Sp) increases upto a certain
value. After this value if we further increase the number
of keywords, it will result in more number of spurious
keywords, than the number of legitimate keywords. So, it
will start decreasing with increase in number of system
generated keywords after this maximum value. We con-
sidered the value where Self Positive (Sp) is maximum
as the optimum number of keywords. In the domain of
“Computer Networks” the optimum value for number of
keywords is 140. At this point 40.97% (Rc

Rs
) of system

answers are correct which happens to be finding 28.03%
(Rc

Re
) of all correct answers. Similarly for “Operating

System” domain the optimum value of keywords is 130.
The number of relevant keywords found was “fairly

good”. We have observed “some conflicts” when we com-
pared the system results and the expert answers. “Some”

relations which were generated by our system were not
valid. And “some” important relations, which should have
been obtained, were not generated by the system.

Table I
RESULTS FOR COMPUTER NETWORKS

Expert Positive(%) Self Positive(%) Expert Negative(%) Self Negative(%)
keywords Epw Epr Spw Spr Enw Enr Snw Snr

69 18.02 14.09 44.92 40.82 81.97 18.03 55.06 59.18
92 22.09 18.02 41.3 37.1 77.9 22.1 58.69 62.9
101 26.74 21.14 45.54 41.39 73.25 26.75 54.44 58.61
114 30.23 23.21 45.61 41.09 69.76 30.24 54.38 58.91
127 30.23 25.09 40.94 37.18 69.76 30.24 59.05 62.82
140 36.04 28.03 44.28 40.97 63.95 36.05 55.70 59.03
143 34.3 28.03 41.25 36.95 65.69 34.31 58.70 63.05
148 34.3 29.4 39.86 36.02 65.69 34.31 60.08 63.98
153 38.37 31.57 43.13 39.18 61.62 38.38 56.86 60.82
167 38.95 32.19 40.11 36.51 61.04 38.96 59.87 63.49
174 38.95 32.19 38.5 34.51 61.04 38.96 61.49 65.49
183 38.95 32.19 36.61 33.41 61.04 38.96 63.35 66.59
195 39.53 32.93 34.87 31.27 60.46 39.54 65.12 68.73

Figure 6. Computer Networks

Table II
RESULTS FOR OPERATING SYSTEMS

Expert Positive(%) Self Positive(%) Expert Negative(%) Self Negative(%)
keywords Epw Epr Spw Spr Enw Enr Snw Snr

58 15.88 11.58 29.31 25.21 84.11 74.79 70.68 74.79
78 18.69 13.49 25.64 21.13 81.3 78.87 74.35 78.87
87 21.49 21.39 26.43 22.41 78.5 77.59 73.56 77.59
101 28.03 23.23 29.7 22.17 71.96 77.83 70.29 77.83
103 28.97 23.07 30.09 26.39 71.02 73.61 69.89 73.61
124 36.44 32.14 31.45 27.15 63.55 72.85 68.54 72.85
129 40.18 37.28 33.33 29.03 59.81 70.97 66.66 70.97
133 40.18 37.28 32.33 28.31 59.81 71.69 67.67 71.69
144 42.99 38.19 31.94 27.51 57 72.49 68.05 72.49
156 44.86 42.76 30.76 27.16 55.14 72.84 69.23 72.84
168 45.79 43.39 29.16 26.16 54.2 73.84 70.83 73.84
179 44.85 41.85 26.81 22.11 55.14 77.89 73.18 77.89
195 44.85 41.45 24.61 21.1 55.14 78.9 75.38 78.9

Figure 7. Operating Systems

C. Configuring the system

After conducting different experiments, we observed
that Self Positive was maximum when the number of
keywords was nearly equivalent to 140. The optimum
value of Self Positive was obtained when the number of
unigrams was 100, number of bigrams was 70, number of
trigrams was 50, and number of fourgrams was 20. This is

because most of the keywords in any subject are unigrams,
there are very few fourgrams, and there may be hardly
any fivegrams. However, more experiments with lecture
notes in various subjects are required before these results
can be generalized. Moreover, the goodness metric can be
improved by considering a higher number of keywords, at
the cost of increase in execution time.

VI. CONCLUSION

We have developed an automatic ontology generator to
get a dependency graph of topics in an area from a set
of lecture notes. We evaluated our system by defining a
goodness metric and found that its performance is compa-
rable to the keywords and relations generated manually by
an expert in the area. In our experiments we found 40% of
our answers are correct, which happens to be finding 30%
of all correct answers. We have used free and open source
components for building our system and believe that such
a system will be of use to courseware repositories.

REFERENCES

[1] J. D. Novak and A. J. C. nas, “The theory underlying
concept maps and how to construct and use them,” in
Technical Report IHMC CmapTools 2006-01 Rev 01-2008.
Florida Institute for Human and Machine Cognition, 2008.

[2] MIT, “Mit open courseware - monthly reports,” accessed
16-February-2011. [Online]. Available: http://ocw.mit.edu/
about/site-statistics/monthly-reports/

[3] NPTEL, “Nptel — project document,” Department of
Secondary and Higher Education, Ministry of Human
Resource Development, Government of India, New Delhi.,
July 2007. [Online]. Available: http://nptel.iitm.ac.in/pdf/
NPTEL%20Document.pdf

[4] W. M.-j. YUN Hong-yan, XU Jian-liang and X. Jing,
“Development of domain ontology for e-learning course,”
in ITIME-09IEEE international symposium, 2009.

[5] T.R.Guber, “Towards principles for the design of ontologies
used for knowledge sharing,” in Int..J.Human-Computer
Studies. Florida Institute for Human and Machine
Cognition,43(5-6), p.p 9.7-928, 1993.

[6] D. Fensel, I. Horrocks, F. van Harmelen, D. L. McGuinness,
and P. Patel-Schneider, “Oil: An ontology infrastructure for
the semantic web,” IEEE Intelligent Systems, vol. 16, no. 2,
2001.

[7] Wikipedia, “Dependency graph — wikipedia, the free
encyclopedia,” 2011, [Online; accessed 16-February-2011].
[Online]. Available: http://en.wikipedia.org/w/index.php?
title=Dependency graph&oldid=408804604

[8] Apache, “The apache software foundation — pdfbox,”
accessed 16-February-2011. [Online]. Available: http:
//pdfbox.apache.org/download.html

[9] Wikipedia, “Lucene — wikipedia, the free ency-
clopedia,” 2011, [Online; accessed 16-February-2011].
[Online]. Available: http://en.wikipedia.org/w/index.php?
title=Lucene&oldid=414072215

[10] J. Ramos, “Using tf-idf to determine word relevance in doc-
ument queries,” Department of Computer Science, Rutgers
University, 23515 BPO Way, Piscataway, NJ, 08855., 2002.

[11] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in Proceedings of
the 20th International Conference on Very Large Data
Bases, ser. VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.
[Online]. Available: http://portal.acm.org/citation.cfm?id=
645920.672836

[12] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs
with dot,” Jan 2006. [Online]. Available: www.graphviz.
org/Documentation/dotguide.pdf

[13] Wikipedia, “Terminology extraction — wikipedia, the
free encyclopedia,” 2011, [Online; accessed 16-February-
2011]. [Online]. Available: http://en.wikipedia.org/w/index.
php?title=Terminology extraction&oldid=406585677

[14] Python, “package index — topia.termextract 1.1.0,”
accessed 16-February-2011. [Online]. Available: http:
//pypi.python.org/pypi/topia.termextract/

