Hidden Markov Model and Speech Recognition

Nirav S. Uchat

1 Dec,2006

Nirav S. Uchat Hidden Markov Model and Speech Recognition

- 2 Motivation Why HMM ?
- Onderstanding HMM
- 4 HMM and Speech Recognition
- 5 Isolated Word Recognizer

Introduction

What is Speech Recognition ?

- Understanding what is being said
- Mapping speech data to textual information

Speech Recognition is indeed challenging

- Due to presence of noise in input data
- Variation in voice data due to speaker's physical condition, mood etc..
- Difficult to identify boundary condition

Different types of Speech Recognition

- Type of Speaker
 - Speaker Dependent(SD)
 - relatively easy to construct
 - requires less training data (only from particular speaker)
 - also known as speaker recognition
 - Speaker Independent(SID)
 - requires huge training data (from various speaker)
 - difficult to construct
- Type of Data
 - Isolates Word Recognizer
 - recognize single word
 - easy to construct (pointer for more difficult speech recognition)
 - may be speaker dependent or speaker independent
 - Continuous Speech Recognition
 - most difficult of all
 - problem of finding word boundary

- 2 Motivation Why HMM ?
- Onderstanding HMM
- 4 HMM and Speech Recognition
- 5 Isolated Word Recognizer

Use of Signal Model

- it helps us to characterize the property of the given signal
- provide theoretical basis for signal processing system
- way to understand how system works
- we can simulate the source and it help us to understand as much as possible about signal source

Why Hidden Markov Model (HMM) ?

- very rich in mathematical structure
- when applied properly, work very well in practical application

- 2 Motivation Why HMM ?
- Olderstanding HMM
 - 4 HMM and Speech Recognition
- 5 Isolated Word Recognizer

Components of HMM [2]

- Number of state = N
- Number of distinct observation symbol per state = M, $V = V_1, V_2, \cdots, V_M$
- State transition probability $=a_{ij}$
- Observation symbol probability distribution in state j, B_j(K) = P[V_k at t|q_t = S_j]
- The initial state distribution $\pi_i = P[q_1 = S_i]$ $1 \le i \le N$

Problem For HMM : Problem 1 [2]

• **Problem 1 : Evaluation Problem** Given the observation sequence $O = O_1 O_2 \cdots O_T$, and model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda)$, the probability of observation sequence given the mode.

Figure: Evaluation Problem

Problem 2 and 3 [2]

• Problem 2 : Hidden State Determination (Decoding) Given the observation sequence $O = O_1 O_2 \cdots O_T$, and model $\lambda = (A, B, \pi)$, How do we choose "BEST" state sequence $Q = q_1 q_2 \cdots q_T$ which is optimal in some meaningful sense.

(In Speech Recognition it can be considered as state emitting correct phoneme)

• **Problem 3 : Learning** How do we adjust the model parameter $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$. Problem 3 is one in which we try to optimize model parameter so as to best describe as to how given observation sequence comes out

Solution For Problem 1 : Forward Algorithm

•
$$P(O|\lambda) = \sum_{q_1, \dots, q_T} \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) \cdots a_{q_{T-1} q_T} b_{q_T}(O_T)$$

- Which is O(N^T) algorithm i.e. at every state we have N choices to make and total length is T.
- Forward algorithm which uses dynamic programming method to reduce time complexity.
- It uses forward variable $\alpha_t(i)$ defined as

$$\alpha_t(i) = P(O_1, O_2, \cdots, O_i, q_t = S_i | \lambda)$$

i.e., the probability of partial observation sequence, O_1, O_2 till O_t and state S_i at time t given the model λ ,

Figure: Forward Variable

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right] b_j(O_{t+1}), \qquad 1 \le t \le T-1, \ 1 \le j \le N$$

Solution For Problem 2 : Decoding using Viterbi Algorithm [1]

- Viterbi Algorithm : To find single best state sequence
- we define a quantity

$$\delta_t(i) = \max_{q_1, q_2, \cdots, q_{t-1}} P[q_1 q_2 \cdots q_t = i, O_1 O_2 \cdots O_t | \lambda]$$

i.e., $\delta_t(i)$ is the best score along a single path, at time t, which account for the first t observations and ends in state S_i , by induction

$$\delta_{t+1}(j) = \left[\max_{i} \delta_t(i) a_{ij}\right] b_j(O_{t+1})$$

• Key point is, **Viterbi algorithm** is similar (except for the backtracking part) in implementation to the **Forward** algorithm. The major difference is maximization of the previous state in place of summing procedure in forward calculation

Solution For Problem 3 : Learning (Adjusting model parameter)

- Uses Baum-Welch Learning Algorithm
- Core operation is
 - ξ_t(i,j) = P(q_t = S_i, q_{t+1} = S_j|O, λ) i.e.,the probability of being in state S_i at time t, and state S_j at time t+1 given the model and observation sequence
 - $\gamma_t(i)$ = the probability of being in state S_i at time t, given the observation sequence and model
 - we can relate :

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$

re-estimated parameters are :

 $ar{\pi}=\mathsf{Expected}$ number of times in state $S_i=\gamma_1(i)$

 $\bar{a}_{ij} = \frac{\text{expected number of transition from state } S_i \text{ to } S_j}{\text{expected number of transition form state } S_i}$

$$=\frac{\sum_{t=1}^{T-1}\xi_t(i,j)}{\sum_{t=1}^{T-1}\gamma_t(i)}$$

 $\bar{b}_j(k) =$ <u>number of times in state j and observing symbol</u> v_k expected number of times in state j

$$\frac{=\sum_{s:t \; O_t=V_k}^T \gamma_t(j)}{\sum_{s:t \; \gamma_t(j)}^T \gamma_t(j)}$$

- 2 Motivation Why HMM ?
- Onderstanding HMM
- 4 HMM and Speech Recognition
- 5 Isolated Word Recognizer

Block Diagram of ASR using HMM

Basic Structure

Phoneme

- smallest unit of information in speech signal (over 10 msec) is Phoneme
- "ONE" : W AH N
- English language has approximately 56 phoneme

HMM structure for a Phoneme

- This model is First Order Markov Model
- Transition is from previous state to next state (no jumping)

Question to be ask ?

What represent state in HMM ?

- HMM for each phoneme
- 3 state for each HMM
- states are : start mid and end
- "ONE": has 3 HMM for phoneme W AH and N each HMM has 3 state

What is output symbol ?

- Symbol form Vector Quantization is used as output symbol from state
- concatenation of symbol gives phoneme

Front-End

purpose is to parameterize an input signal (e.g., audio) into a sequence of Features vector Method for Feature Vector extraction are

- MFCC Mel Frequency Cepsteral Coefficient
- LPC Analysis Linear Predictive Coding

Acoustic Modeling[1]

Uses Vector Quantization to map Feature vector to Symbol.

- create training set of feature vector
- cluster them in to small number of classes
- represent each class by symbol
- for each class V_k , compute the probability that it is generated by given HMM state.

Creation Of Search Graph [3]

- Search Graph represent Vocabulary under consideration
- Acoustic Model, Language model and Lexicon (Decoder during recognition) works together to produce Search Graph
- Language model represent how word are related to each other (which word follows other)
- it uses Bi-Gram model
- Lexicon is a file containing WORD PHONEME pair
- So we have whole vocabulary represented as graph

Complete Example

Nirav S. Uchat Hidden Markov Model and Speech Recognition

Training

Training is used to adjust model parameter to maximize the probability of recognition

- Audio data from various different source are taken
- it is given to the prototype HMM
- HMM will adjust the parameter using Baum-Welch algorithm
- Once the model is train, unknown data is given for recognition

Decoding

It uses Viterbi algorithm for finding "BEST" state sequence

Decoding Continued

- This is just for Single Word
- During Decoding whole graph is searched.
- Each HMM has two non emitting state for connecting it to other HMM

- 2 Motivation Why HMM ?
- Onderstanding HMM
- 4 HMM and Speech Recognition
- 5 Isolated Word Recognizer

Isolated Word Recognizer [4]

Choose MAX of all

How we map available data !

Problem With Continuous Speech Recognition

- Boundary condition
- Large vocabulary
- Training time
- Efficient Search Graph creation

Dan Jurafsky.

CS 224S / LINGUIST 181 Speech Recognition and Synthesis. World Wide Web, http://www.stanford.edu/class/cs224s/.

🔋 Lawrence R. Rabiner.

A Tutorial on Hidden Markov Model and Selected Application in Speech Recognition. IEEE, 1989.

 Willie Walker, Paul Lamere, and Philip Kwok.
Sphinx-4: A Flexible Open Source Framework for Speech Recognition.
SUN Microsystem, 2004.

Steve Young and Gunnar Evermannl. *The HTK Book.* Microsoft Corporation, 2005.