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ABSTRACT

The purpose of this report is to introduce the user todin Detect Systems and give a
deep understanding of some sophisticated techniques for amrdesiection. Intrusion Detection
is an important component of infrastructure protectioecimanisms. Given the increasing
complexities of today’s network environments, more and rhosts are becoming vulnerable to
attacks and hence it is important to look at systemefiient and automated approaches for
Intrusion Detection. Here we discuss some data miresgd approaches for intrusion detection
and compare their merits and demerits. We also lookoate signature based detection
techniques for detecting polymorphic worms. We also lookasbus port scanning techniques
and discuss some techniques for detecting port scanning attevidptshen discuss the
architecture of an advance Intrusion Detection Sys&moyt and suggest some enhancements to
the same.

Keywords: Intrusion Detection, Data Mining, Polymorphic worms, &Sigme based detection,
Anomaly based detection, Snort, Port Scanning.



Chapter 1: What is an IDS?

1.1. Introduction

An Intrusion Detection System is used to detect pkk$yof malicious network traffic and
computer usage that can't be detected by a conventionahlfir@his includes network attacks
against vulnerable services, data driven attacks on appfisathost based attacks such as
privilege escalation, unauthorized logins and access totigensiies, and malware (viruses,
trojan horses, and worms).

An IDS is composed of the following three components:
Sensors: -which sense the network traffic or system activity gederate events.
Console: -to monitor events and alerts and control the sensors,

Detection Engine: -that records events logged by the sensors in a datalthesesa system of
rules to generate alerts from the received securitgteve

There are several ways to categorize an IDS dependitigectype and location of the sensors
and the methodology used by the engine to generats.dterhany simple IDS implementations
all three components are combined in a single device onapel

1.2. Types of Intrusion-Detection systems

Network Intrusion Detection System: -identifies intrusions by examining network traffic and
monitors multiple hosts. Network Intrusion Detectioyst®ms gain access to network traffic by
connecting to a hub, network switch configured for port mimgy or network tap. An example
of a NIDS is Snort.

Host-based Intrusion Detection System: consists of an agent on a host which identifies
intrusions by analyzing system calls, application loge-slystem modifications (binaries,
password files, capability/acl databases) and other htygtias and state.

Hybrid Intrusion Detection System: - combines one or more approaches. Host agent data is
combined with network information to form a comprehensiesv of the network. An example
of a Hybrid IDS is Prelude.



1.3. Passive system V/s reactive system

In apassive systemthe IDS sensor detects a potential security breagh,tlee information
and signals an alert on the console. In a reactygtes), which is known as an Intrusion
Prevention System (IPS) the IDS responds to the duosgi activity by resetting the connection
it believes to be suspicious or by reprogramming the fileablock network traffic from the
suspected malicious source, either autonomously or abthmand of an operator.

Though they both relate to network security, an ID$edif from a firewall in that a firewall
looks outwardly for intrusions in order to stop them frbappening. The firewall limits the
access between networks in order to prevent intrusidrdaas not signal an attack from inside
the network. An IDS evaluates a suspected intrusioa @rfi@s taken place and signals an alarm.
An IDS also watches for attacks that originate fronhinia system.

1.4. Signature Based Detection v/s Anomaly Based Detemti

Signature based detection:-

This detection technique uses specifically known patterdetect malicious code. These
specific patterns are called signatures. Identifying tbems in the network is an example of
signature based detection.

Anomaly Detection:-

These techniques are designed to detect abnbemaVvior in the system. The normal
usage pattern is baselined and alerts are generated whge dsviates from the normal
behavior.

Example if a user logs on and off 20 times a day whilentiienal behavior is 1-2 times.



Chapter 2: Signature Based Detection

of Worms and Polymorphic Worms

2.1. Worms v/s Viruses

A worm is any malicious code that has the capabilitseficate and spread on its own. It works
on the scan, compromise and replicate principle. Eistans the network to find hosts having
vulnerabilities and then exploits these vulnerabilitiescompromise the target and finally
replicates itself on the target. Viruses, on the okiaand, can’t spread on their own. They attach
to some other programs and depend on these programs to spifeadetwork.

Every worm has a unique bit string which can be used tdifigehe worm (i.e. all instances of
the worm in the network have the same bit string reptasen).

2.2. Detecting worms — A simple technique

1. ldentify the worms using honey pots.

2. Manually extract the signature.

3. Make the signature public, so that IDS or any other anis\wsoftware can update their
signature database.

4. Now the IDS can check each incoming or outgoing packetanmgbare it with the stored
signature and raise an alert if a match is found.

This technique is not very effective because of the fatigweasons.

+ Speed with which worm spreadss Worms can spread at enormous speed
E.Q.

The Sapphire/slammer worm infected more than 75,000 vuleehaisits in less than 10
minutes.

Hence any technique which involves manual extraction ofnsawill fail to match the
speed at which worms spread. By the time signature afdinmn is identified, millions of
hosts would have been infected.

« Zero day worms. The above technique will fail against zero day wormso £ty worms
are those worms that exploit the vulnerabilities thate not been declared yet or the
worms that start spreading as soon as (on the samesdaye vulnerability is made
public.



This encouraged us to study some techniques for automatict@xiraf signatures. We discuss
some of these techniques here.

2.3. Content Sifting Approach [1]

This approach works on the following assumptions:-

« Some part of the worm representation is invarianthere will always be some portion
of the worm's body that remains same across every aestedrihe worm.

« Spreading of worms in the network is very different fribvea normal network traffic. For
example when a worm spreads we see the same bytg stridlifferent packets
exchanged between many sources and destinations. This patteeny unlikely in
normal network traffic and applications.

2.3.1. Steps to extract the signature

1. Look for the packets in the network that have commonssubgs of sufficiently large
length (say x) and are exchanged between many systéhesnetwork.

2. Maintain a table to store an entry for each substrfigngth x appearing in any network
packets.

3. Keep track of the number of times we see each sucktang in the network, and also
the distinct source IP and destination IP address comdsypto that substring.

4. If all the three values (i.e. number of times thengtiappeared, the number of sources
from which it originated and the number of destinations lichvit was sent) cross some
predefined threshold value we declare it as a worm andubatring will be stored as the
signature of the worm

2.3.2. A critic of the Content Sifting approach

The above technique will fail if the worms somehow dwariheir representation before
spreading so that no two instances of the worm haveahe representation and hence no two
instances of the worm will have any substring (of sighfit length) in common.

2.4. Polymorphic Worms (PW)

Every worm has a unique bit string which can be used toifige¢in¢ worm (i.e. all instances
of the worm in the network have the same bit string mepr&tion). Hence worms can be
detected easily using simple signature based technigae®yicomparing the network packets
against a database of known signatures). Polymorphic warmshe other hand, change their
representation before spreading i.e. each instance ofymgqihic worm will have a different
bit stream representation.



2.4.1. How does a worm achieve polymorphism?

Encryption

Here, the worm encrypts its body with a random keheame before spreading. A small
executable code is then attached to the body of thenwbinis executable code is responsible for
decrypting the encrypted body of the worm on the victim&hine and then gives control to the
worm.
Code substitution

Here, the instructions in the worm body are substitutétd semantically equivalent
instructions. Some examples are mentioned below.

1. Multiplication can be achieved by successive addition.

2. Addition can be achieved using xor operator.

3. Register renaming: if you want to transfer a value fregister B to A, first move the
value to any unused register and then move it to A.

By doing this, although the behavior of the program rem&asame the representation
of the byte string changes.

2.4.2. Parts of a polymorphic worm

Body/Code of the worm
This is the part of the worm which is malicious and dbesactual damage.
Polymorphic Engine (PE)

The polymorphic engine is responsible for changing the septation of the worm either
by encryption, code substitution or both.

Polymorphic Decryptor (PD)

The polymorphic decryptor is responsible for decrypting thenwdif encryption
technique is used for polymorphism) on the victim's machmadetlaen give control to the worm.

Please note that irrespective of the technique usedhievacpolymorphism the worm
will always have some part which is executable. We shonyl to exploit this property of
polymorphic worms and try to extract their signature tasethis executable part.

2.4.3. Detecting Polymorphic worms

As discussed earlier, the content sifting approa@d dsr normal worms will fail for
polymorphic worms. This motivated us to look at some ottemhniques for detecting



polymorphic worms. These techniques focus on the idea thaigiha&ture of a worm should not

be a function of the plain byte string representabibtihe worm body but it should be a function
of some unique property of the worm that does not chatit@peeach new instance of the worm.

A key observation is that the internal structure of tlxecatable in the worm is more

characteristic than its representation as a strehmytes. So if we can map the structural
behavior of the executable appearing in the worm body daigue number, we can use that
unique number as the signature of the newly discoverethwast us now discuss one technique
which actually does this.

2.5. Control Flow Graph based approach for detecting
Polymorphic Worms [2]

The following steps are involved in this approach:-

2.5.1. Construction of the Control Flow Graph (CFG)

First of all we make a control flow graph for eachweak packet. For this, we perform a
linear disassembly of the byte stream by using any geperpose disassembler. Based on the
instruction sequence, create the control flow graph. & €énsists of nodes (Basic Blocks) and
edges. A basic block is a sequence of instructions widnoujumps or jump target in the middle
of the block. We draw an edge from one node to anothe¢heife is a jump from the
corresponding basic block to another.

Here, the question arises that how do we find the exeeupslst in the network packets? The
answer is that there is no need to find the executableTiast is because of the fact that when
we build a CFG of a binary code, it will contain a lagester of closely connected nodes
whereas the CFG of a random sequence of bytes willioostt@all clusters or isolated nodes. So
we can ignore all isolated nodes and small clusters.

2.5.2. Graph Fingerprinting

Once we have constructed the control flow graph we teedtract a unique signature from
this control flow graph. For this we construct all k-nedé graphs of the CFG. The value of k is
decided heuristically by observing known worms (E.g. $@mworm was the smallest worm to
be detected till date and its CFG had 14 nodes). Wedcliestte a spanning tree to reduce
redundant sub graphs and then find these k-node sub graphs.
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Extracting 4-node sub graphs. (Image fri@jp)

We now want to map each of these k-node sub graphs towumes number. For this, we
convert each sub graph into its canonical form. Caradform of a graph is a form in which all
the isomorphs of the graph have the same representBtaom create an adjacency matrix of

each sub graph and then concatenate each row of #ieeady matrix to get the fingerprint of
the sub graph.
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Creating Fingerprint of a sub graph. (Image fij@i
2.5.3. Graph coloring
Till now we haven't given any importance to the instrucitrat are appearing in the basic

blocks. So there may be a rare chance of getting the santrol flow graph for two different
binaries. To prevent this, the concept of graph colorimgtrieduced.



|| Class | Description || Class | Description |

Data Transfer | mov instructions String | x86 string operations
Arithmetic incl. shift and rotate Flags | access of x86 flag register
Logic incl. bit /byte operations || LEA load effective address
Test test and compare Float | floating point operations
Stack push and pop Syscall | interrupt and system call
Branch conditional control flow || Jump | unconditional control low
Call function invocation Halt stop instruction execution

A possible distribution of instructions into clas§2ks

Here, we divide the instructions into 14 sets or classdsl Wit color value is associated with
each node, 1 bit corresponding to 1 class/set. Wheneeeoromore instructions of certain class
appear in the basic block, the corresponding bit of te& ldock color value is set to 1. Append
this 14 bit color value to each node in the adjacencyixnatrthe sub graph. Concatenate the
rows as before and get the new fingerprint. If the instrus are divided into classes carefully
such that semantically equivalent instructions fall indame class then it makes the instruction
substitution techniques much less effective.

2.5.4.

Identifying and detecting worms

Maintain a set of network streanfar each given fingerprint.fEvery setscontains distinct
source destination pairs of the stream that contaitfgtie following conditions are met then we
can say that a worm has been identified:

The distinct source destination IP address pairs forendighould be greater than some
threshold value (say M).

The number of distinct internal hosts appearing sheuld be at least 2.

The number of distinct external hosts should be at [Ba

. A critic of the CFG based approach

As the procedure is complex and time consuming it iBcdlf to handle high speed
network stream.

If an intelligent hacker comes up with a code substituteminique which completely
alters the CFG then this technique will fail.

This technique will fail the worm body doesn’t contain argautable part (and there are
some research scientists who are looking at methodkefeloping polymorphic worms
which do not contain any executable part!!).






Chapter 3: Anomaly Based Detection

3.1. Motivation

An Anomaly-Based Intrusion Detection System is a eystfor detecting computer
intrusions and misuse by monitoring system activity andsdlgng it as either normal or
anomalous. The classification is based on heuristigsiles, rather than patterns or signatures,
and will detect any type of misuse that differs signifita from normal system operation.
Earlier, IDSs relied on some hand coded rules designed dyityeexperts and network
administrators. However, given the requirements and ctihaplexities of today’s network
environments, we need a systematic and automated IDSodmesit process rather than the
pure knowledge based and engineering approaches which relyromiution and experience.
This encouraged us to study some Data Mining based frameweorkgriision Detection. These
frameworks use data mining algorithms to compute activity pattieom system audit data and
extract predictive features from the patterns. Macl@aening algorithms are then applied to the
audit records that are processed according to the featdiretioles to generate intrusion
detection rules.

The Data Mining based approaches that we have studied adimided into two main
categories:-

1. Supervised Learning
a. Associative Rule Mining

2. Unsupervised Learning
a. Clustering

We will discuss the above approaches and compare teetsrand demerits.

3.2. Supervised Learning Based Approach> Associative
Rule Mining (MADAM ID Framework) [3]

Here we will be discussing the MADAM ID (Mining Audiata for Automated Models
for Intrusion Detection) framework proposed ([8).The MADAM ID framework can be
summarized as shown in the figure below:-



connection/
session
records

evaluation
feedback

Data Mining process of building Intrusion Detection System
Image from (3)

Raw (binary) audit data is first processed into ASCtivaek packet information (or host
event data), which is in turn summarized into connecteconds (or host session records)
containing a number of basic features, such as serviceioayrsturce IP address, destination IP
addressetc. Data mining programs are then applied to the connecticords to compute the
frequent patterns (i.e., association rules and fregepisbdes), which are in turn analyzed to
construct additional features for the connection recdedsssification programs, for example,
RIPPER [Cohen 1995], are then used to inductively leardetection models.

Let us now look at the two main components of thim&waork viz.: -

1. Mining Audit Data.
2. ldentifying Intrusion Patterns

3.2.1. Mining Audit Data

We mine the audit data to generate association rud¢gigiine the correlations between
attributes. Given a set of records, where each ras@dadet of items, support(X) is defined as the
percentage of records that contain item set X. Anciestson rule is an expression of the form

X=2Y,[c 9.
Where,
X,Yareitemsetsand XY =g
s = support (X U Y) = % of records containing X U Y
¢ = confidence = support (X U Y)/ support (X)

Consider the following set of shell commands executedd®ceetary.



Time Hosthame Command argl

am pascal Vi tex

am pascal tex Vi

am pascal mail fredd

am pascal subject progress
am pascal Vi tex

am pascal Vi tex

am pascal mail williamf
am pascal subject progress
am pascal Vi tex

am pascal latex tex

Example taken fron3)

A data mining algorithm is applied to the above audit datind the frequent patterns
(i.e. to study the normal behavior of the secretaryle ®riginal association rules algorithm
searches for all possible frequent associations amengethof given features. However, not all
associations are necessarily useful for analyzing progr user behavior. Certain features are
essential in describing the data, while others provide ookiliary information. Domain
knowledge is used to determine the appropriate essentiardsafor an application. In shell
command data, since the combination of the exact “tiare “command” uniquely identifies
each record, “time” and “command” are the essentiatures; likewise, in network connection
data, timestamp, source and destination hosts, sourceapdrservice (i.e., destination port) are
the essential features because their combination unidgiestyifies a connection record. These
essential features(s) are called axis features. Theiaten rules algorithm is restricted to only
output rules that include axis feature values.

Example,(3)

Association Rules from the Shell Command datg Meaning

command = vi> When using vi to edit a file, the user|is
time = am,hostname = pascal, argl = tex, always i.e., 100% of the time) editing| a

[1.0, 0.28] tex file, in the morning, and at host pasqal;
and 28% of the command data matches
this pattern.

command = subjec® The subject of the user’'s emall is always
time = am,hostname = pascal, argl = progress, | (.e.100% of the time) about “progress”,
[1.0, 0.11] such emails are in the morning, and at host
pascal;, and 11% of the command data
matches this pattern. ’a

3.2.2. Frequent Episodes

In the case of network connections we are often asted in studying the frequent
sequential patterns rather than finding associations gshattributes within a single record.



Frequent episodes are used to represent the sequentialezoddt patterns. Given a set of time
stamped event records, where each record is a sehtd,ian interval [t1, t2] is the sequence of
event records that starts from timestamp t1 and en@s a@hé width of the interval is defined as

t2 - t1. Let X be a set of items; an interval is i@aimal occurrence of X if it contains X and none

of its proper subintervals contains X. A frequent episoidkeis an expression of the form:-

X, Y 2>Z][c, s, w]
where,
s = support = support (¥ Y U 2)
¢ = confidence = support (8 Y U Z)/support (XU Y)
w = window = the time frame within which the eventsurc

Example(3), (Frequent Episode Pattern for SYN flood attack)

Frequent Episode Meaning

flag = 0, service = http, dst_host = victim | 93% of the time, after two http connections
flag = 0, service = http, dst_host = victim | with SO flag are made to host victim, within 2
flag = 0, service = http, dst_host = victim seconds from the first of these two, the third
similar connection is made, and this pattern
occurs in 3% of the data

3.2.3. ldentifying the Intrusion Patterns

The frequent episodes program is applied to both the exialysgathered normal
connection dataset and the dataset that contains andntriie resulting patterns are compared
to find the intrusion-only patterns, that is, those #ehibit only in the intrusion dataset. The
details of the pattern comparison algorithm are describel@]i Briefly, the idea is to first
convert patterns into numbers in such a way that lsitmpatterns are mapped to “closer”
numbers. Then pattern comparison and intrusion patlentification are accomplished through
comparing the numbers and rank ordering the results.

3.3. Unsupervised Learning Based Approach> Clustering
[7]:

The approach that we discussed earlier requires & pataly normal data from which a
model is trained. However, more often than not we alohave either labeled or purely normal
data readily available. Here, we present a new type tfision detection algorithm,
unsupervised anomaly detection or clustering, to addresprtiiem of lack of labeled data.
This algorithm takes as input a set of unlabeled data andpastéonfind intrusions within the
data. This approach makes the following two assumptions s data as mentioned below: -

1. The number of normal instances vastly outnumbers thdauof intrusions.
2. Intrusions are very different from normal data.



Based on the above assumptions, the clustering appctestbrs the data instances together into
clusters using a simple distance-based metric. Thsterling is performed on unlabeled data.

Once the data is clustered, we label all those instatiheg appear in small clusters as anomalies
(since intrusions are rare and small in number).

3.3.1. Algorithm
The algorithm proceeds as follows:-

1. Initialize the set of clusters, S, to the empty set.

2. Obtain a data distance d from the training set. If S jgtgnthen create a cluster with d as
the defining instance, and add it to S. Otherwise, finclinger in S that is closest to this
instance. In other words, find a cluster C in S, suchfthiall G in S, dist(C, d) <= dist
(Gi, d).

3. Ifdist (C,d) <= W, then associate d with the clu€eOtherwise, d is more than W away
from any cluster in S, and so a new cluster must éated for it: S> S U (G,)) where
Cn is the cluster d as its defining distance.

4. Repeat steps 2 and 3, until no instances are left imgiming set.

3.3.2. Labeling clusters

Once the clusters have been created by running the algwethm we need to label
these clusters as “normal’ and “anomaly”. We do thisedaon the above mentioned
assumptions.

1. Large clusters i.e. clusters having a large number of iostare classified as “normal’
2. Small clusters which are at a large distance formbiger clusters are classified as

“anomaly” (intrusions are rare and normal)

3.3.3. Detection

Given a new instance d, the classification proceedslaw/s:-

1. Find a cluster which is closest to d under the distanceandtri
2. Classify d according to the label of C (either nororahdnomaly)

3.4. Comparisons and critic

Approach Average Detection Rate Average False Postave

MADAM ID 65-70 % 5%

Clustering 45-55% 1.3-2.3%




1. Supervised learning gives a better detection rate as comjmaretsupervised learning
with acceptable false positive rates.

2. Supervised learning requires huge amount of labeled data velgjaltes a lot man power
and is hence expensive.

3. Unsupervised learning performs better than supervised learningiefe types of
intrusions as on as these intrusions conform to thec lssumptions made by the
clustering algorithm.



Chapter 4 Future Work

4.1. Polymorphic Worms

During our project work we read some literature which desdrisome novel ways of
constructing polymorphic worms which makes it difficdtdetect these worms. We intend to
study these methods and see if the CFG based approach agaikst such worms. We also
intend to come up with some methods to generate polymorgmmsvwhich completely alter
the control flow graph of the executable code and theigme®me technique to detect such
worms.

4.2. Data Mining Based Approaches for Anomaly
Detection

We have implemented the Apriori algorithdj for associative rule mining. We intend to
make some enhancements to this algorithm to improvéitgeacy and reduce the training time
by using some bitmap based optimization techniques. We aksodino develop a detection
engine that does a real time detection of intrusionedas the rules generated by our mining
algorithm. This detection will use a cost sensitive madetiescribed i8] so that the speed of
detection increases. Instead of looking at all tempsiedistics and features of the data this cost
sensitive model will divide the features into four groupsséd on their computational cost). The
detection will first use the less expensive features tect@nomalies and proceed to the high
cost features only if these low cost features faineke an accurate prediction (based on some
threshold). We also intend to develop a small moduleotovert the rules generated by our
mining algorithm into Snort-compatible rules as describgd1].
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Appendix

We use this section to discuss some topics which we stasliaghart of our project
works.

A.1l. Port Scanning

Port scanning involves scanning the ports of a target syatendér to find open doors to
the target. Port scanning is used to get vital informatidhehost computer which can be used
to launch and attack on the host. Thus, port scanning sladprto an attack and hence was an
important part of our study of IDSs.

There are two main strategies for port scanning:
1. Scanning several ports of a single host
2. Scanning a specific port on a number of hosts (port sweep)
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A.2. Port Scanning Techniques

A.2.1. TCP Scanning

TCP scanning uses behavior of SYN and FIN flag to idewofign and closed ports. If an
open port receives SYN flag, it will reply with SYN | KGQvhile the closed port will reply with
RST. When FIN is received by an open port, there wilhbdeeply but if the port is closed, the
reply will be RST. Different type of TCP scanning techngjaee:-

1. Full connection



SYN scanning

FIN scanning

XMAS Scanning
NULL Scanning
Indirect Scanning
Coordinated Scanning
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A.2.2. UDP Scanning

When a UDP port is closed, it replies with an ICMBshnot reachable” message. UDP
scanning uses this feature to scan hosts.

A.2.3. Ident Scanning

It exploits the identity protocol. In ident scan, al ftdnnection is established with the
host and a packet with ident request is sent to identGsh gort 113. This will allow scanner to
know which user is running the daemon on connected port.

A.2.3. Ping Scanning

Ping scanning is done either with normal ICMP echo packetitar TCP ping. In both
case, the reply will give information about the portvidrich it was sent. If port is closed, ICMP
host unreachable message is received.

A.3. Probabilistic Technique to prevent Network Sca

The technique needs three parameters to detect scanningurkge 3B B) Destination IP
C) Destination Port. There will be two lists: 1) $oiIP <> Destination IP 2) Source IP <>
Destination Port. This technique forms a square with 4 jpitilyavalues. Any attempt to scan a
particular host or a particular port will cause thebaitality values to go outside the square.
Figure shows how the boundaries are formed from the salo&ined from two lists.
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Normal access pattern of a destination IP can be found
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Here, dlis destination port and D is set of all destination |P

Same is the case for destination port. For a soumkich accessed 3 destinationg {di», ds}
we will count

P(D;) = P(D; = {d;1,dj2,djs} | |Di| = 3)P(|Dy| = 3)

i.e. probability of the selection of fd do, ds} when 3 destinations are accessed with the
probability of accessing 3 host by a single source.

Same is the case for the destination port. If thesbapility values cross normal limits, it may
be a potential scanning attempt.

B.1. Snort

Snort is a Network Intrusion Detection system, whichsed to detect malicious activity
in the network traffic. It is a widely used NIDS and this mated us to study its architecture and
analyze the different components of an IDS. Snort lwarconfigured to run in four different
modes i.e. as packet sniffer, packet logger, Network-basedion Detection System and Inline
Mode (IPS).



Sniffer mode: - In this mode Snort uses a packet capturingdawiiff packets from the network
traffic and display it on console. No logging is don&mffer mode.

Logger mode: - In this mode packets are logged on to secostdaage for future reference.

NIDS mode: - In this mode Snort will analyze the ewos$ of a packet, compare them with set of
pre-defined rules and generate alerts if a match is foundf(@a packet is found to be malicious).

Inline mode: - This mode is known as Intrusion Preventimae. In this mode Snort will take
raw data from IPTABLES and check it against its rule Hetny alerts are generated then
IPTABLE rules are updated accordingly to prevent thatamais activity from occurring.

Detection Logger & Alerter

Sniffer B te(e =l S

( L
/ @\6 emr

Snort Uses peap librany
for Sniffing and call

';F;Lchcesspacket" =Tz It then calls Decoder which uses"libpacp"

L for decoding link layer |, which sets the
SRR wvarious pointer, where next layer starts in
given packet

Detection A Preprocessor . |
Engine

Fig: Snort Architecture

B.1.1. Sniffer

Sniffer module is used to sniff the packets from netwtirkses pcap library (Packet Capture)

for doing so. Once the packet is captured it is passecktdettoder for placing various pointers
for future processing.

B.1.2. Decoder

Decoder will place various pointers in the packet strectarmake it easy for other modules to
get data of specific layer. Once the pointers are séepacpassed to the preprocessor.

B.1.3. Preprocessor

As snort is rule based intrusion detection systeroaitt detect anomaly spread over multiple
packets. Preprocessor is the remedy for this. Preggoce a separate plug-in module which can
be loaded by making entry in Snort configuration file. ©saoort is started with preprocessor
support it will detect anomalies based on the type of pogsor.



There are few preprocessors which we would like to discuss he

Frag2
This is used to detect packets having overlapping IP fragmEmis.vulnerability causes some
machines to hang or even reset depending on the underlyirgfingesystem.

Port-scan

Port scanning can’'t be detected by looking at a single patkattime. We need some past
information about the network traffic to efficientdigtect port scanning. This preprocessor keeps
information of source IP, source port, destinatiomati destination port in order to do so. It also
looks at different flags in the packet to detect specaliyted packets.

Stream4

Stream4 preprocessor will combine different packets inlarge single packet to analyze the
whole session and find anomalies. For example, Tebsxion sends each key stroke as a packet.
Stream4 preprocessor combines all these packets intoirayle packet and passes this new
packet to other modules packet for further processing andidetec

Back Orifice Preprocessor

Back Orifice is used by an attacker to remotely controb@mpromised system. Every message
sent by attacker in this method starts with “**QWTY &fbre encryption. Attacker chooses a
password, hashes it to 16 bit number and computes XOR of meémsage with this hash value.

This operation can't be detected by Single rule based mgtcBack Orifice Preprocessor can
handle it very efficiently. It will compute every Hagalue (i.e. 65535 values) and calculate XOR
of first 8 bytes of every UDP packet with this hashedueallf this hash matches to
“*I*QWTY?” then alert is generated.

B.1.4. Flow Analyzer (11

HTTP flow analyzer is used to distinguish HTTP cliend aserver traffic. When we see the
behavior of the HTTP Protocol we find that on an avessgeer response accounts for 75% of
the traffic and client request accounts for only 25%hefretwork traffic. It will be a waste of
processing time to apply all rules to both HTTP sergsponse and HTTP client request. Flow
analyzer is used to divide packets into two sets hamehgrseesponse packets and client request
packets. The rules are also divided into these two seth. iBeoming packet is checked against
rules from a specific set only. This reduces great amofuyptocessing time.

B.1.5. Set Based Rule Detection [12

Currently Snort has 3000 rules in its database. If wepeoeneach packet with each and every
rule then the detection engine will get overloaded &edetis a possibility of missing out some
anomalies (False Negative). In order to keep pace Wwehhtgh performance gigabit network,
Snort uses Set based rule detection methodology. Wizehis started Rule Analyzer will make
different rule sets (HTTP, TCP, UDP, IP) based dfedint protocols. Every rule belonging to
particular protocol is placed in the corresponding rutelsesach rule set there are different sub
groups based on there unique attributes.



Unique Parameters

TCP and UDP> source and destination port are unique in sense thatutigyely identify
a packet.

ICMP > ICMP type field is unique attribute.

In a given rule set all rule having same unique attribtggkced in same subgroup.

The core idea is when a single packet is checked fanalyat should not belong to more then
one rule set. i.e. every packet must trigger one ruléosetieck. Once rule set is chosen (based
on protocol) subgroup is selected based on unique attribugesdtipased methodology provides
efficient rule matching then sequential rule matching.

B.1.6. Snort Inline Mode

Till now what we saw was Intrusion prevention modeonty alerts the administrator when
anomaly was detected. It dose not take action againSnort inline mode can be used to as
Intrusion prevention system. In inline mode snort take packet form IPTABLE ( not from
pcap library) and match it against it's rule set , nbmaly is detected then snort will tell
IPTABLE to take action against it. Snort can update IPTBBUle in order to DROP the packet.

B.1.7. Snort Rule [13

Snort rule has two parts: Rule Header and Rule Bodye Rehder has six attribute, Source and
destination address and ports, Protocol and action to be ifakde is matched. Rule body has

various other options to check such as TCP flags, Isdarccontent in payload, message to
display when alerts are generated.



