
Masters Project Report: First Stage
To Design, Implement And Evaluate a Multi-Hop Wireless TDMA

System

By Nirav Uchat

Guide. Prof. Kameswari Chebrolu and Prof. Bhaskaran Raman

Computer Science And Engineering Department
IIT Bombay, Mumbai

Abstract

Providing WiFi connectivity to remote isolated villages
is a challenging task. The 802.11 standard has its own
limitations when used in long distance links. To over-
come these, we propose TDMA style MAC implemen-
tation using standard low-cost wifi cards. This report
describes initial work done to implement proposed sys-
tem. Initially we will look at related work done by
researcher in this field. Then we will discuss advan-
tage of TDMA-MAC over Overlay layer and reasons
for choosing such implementation. Later, we will look
at prototype TDMA system between two devices with
loose time synchronization. Finally to conclude, we
will list action items for second stage of project, which
includes designing TDMA frame structure and imple-
menting multi-hop TDMA.

1 Motivation

Imagine special wifi platform that can send data from
city to rural region 10 to 15 KMs away and con-
nect widely distributed geographical region to internet.
This is what our goal is, to give access to World Wide
Web to the people living in remote villages using off the
shelf cheap hardware while maintaining high data rate.
These motivates us to use unlicensed frequency band
and standard 802.11 protocol. But the fact is, 802.11
protocol was designed to work in small area, generally
50-100 meter and extending it for long range has ill ef-
fect on its performance. More precisely, doing carrier
sensing in presence external interference and long range
results in unpredictable protocol behavior. In such sce-
nario, TDMA MAC can be thought as one of the al-
ternatives. As of now, existing TDMA implementation
are limited to single hop and in most cases between

two devices. Our aim is design multi-hop TDMA with
precise time synchronization to carter large user base.

2 Problem Statement

The aim of this project is to design, implement and
evaluate a multi-hop wireless TDMA system in place
of standard 802.11 CSMA/CA protocol. The proposed
system should work for both long distance and local
networks and it should support voice, video and www
traffic. The intended end users are devices having eth-
ernet port or wireless devices capable of running mod-
ified TDMA protocol.

The rest of the report is organizes as follows. In
section 3 we look at related work done in this field. In
section 4 we list shortcoming of 802.11 in long distance
link and outlines our approach for multi-hop TDMA
MAC. Section 5 gives initial work done towards TDMA
implementation and section 6 presents the work to be
done in next stage of project.

3 Previous Work

In past, several research effort has been made to extend
functionality of 802.11 protocol. Moreover, wide avail-
ability of commodity hardware and ease of programma-
bility provided by open source driver has helped a lot.
In this section we will look at some of the TDMA type
extension to 802.11 protocol. Then we look at overlay
implementation, which is a protocol on top of MAC
layer. We will also look at collision free TDMA proto-
col, which claims to give near optimal TDMA schedule
for given network.

softMAC[1] proposed by Neufeld et al. gives us
generic platform to experiment with MAC protocol.

1



It disables CSMA/CA by switching device in mon-
itor mode. Author lists six basic steps to disbale
CSMA/CA including MAC ACK. As an example au-
thor has given sample TDMA system between two de-
vice. Though we are not going to use softMAC frame-
work, we do require to disable CSMA/CA and soft-
MAC gives steps to archive it.

MadMAC[2] proposed by Sharma et al. extends
softMAC and implements TDMA system between
two node with tight time synchronization. It claims
to give 20% throughput improvement then standard
CSMA/CA system. It uses custom frame format,
which includes guard time between transmission slot
for synchronization. Our proposed TDMA system will
require tight time synchronization and MadMAC pro-
vides some initial pointers to do so. But our frame
structure might be completely different from MadMAC
to implement multi-hop system.

On other hand, MultiMAC[3] , which also extends
softMAC but uses multiple MAC protocol. A special
marker in each packet identifies the protocol to use to
decode the packet and passes to the network stack. But
this might incur some packet processing delay. Multi-
MAC can be useful in situation where one wants to
switch to CSMA for short distance and TDMA for
long distance Link. Initially we are more focused on
implementing TDMA system. We might consider to
include CSMA/CA for short distance provided delay
and throughput are within permissible bound.

FreeMAC[4] goes one step ahead and provide multi-
channel communication. It also uses hardware beacon
interrupt timer in place of software kernel timer for fine
control over packet transmission timing. It also uses
monitor mode with custom frame format. In first stage
we are not looking for multi-channel TDMA system but
we do require more precise timer than software kernel
timer. In our implementation we might use something
similar to beacon timer proposed by FreeMAC.

WiLDNet[6], which uses TDMA with bulk ACK and
FEC type loss recovery method. Unlike softMAC, the
WiLDNet uses 802.11 frame format. It uses a) click[8]
module on top of MAC layer to implement bulk ACK
and FEC mechanism and b) does some MAC layer
modification. Our system will be fundametally dif-
ferent from WiLDNet but this paper does give some
insight in to 802.11 poor performance in long distance
link. Section 4 explain it in more detail.

Overlay Layer[5] proposed by Rao at el. builds on
top of MAC layer to achieve fairness issue related to
802.11. It is some what different approach than chang-
ing MAC itself. It runs on top of MAC layer and can
use functionality provided by MAC layer. In general
it can control packet queue buffer but has no control

over packet transmission timing. Our proposed system
requires precise control over packet transmission and
overlay layer is not capable to do so. In section 4 we
give explanation of choosing MAC-level modification
over overlay layer.

Now moving on to TDMA schedule, Spatial TDMA
proposed by Nelson et al.[7] gives algorithm to design
collision free near optimum TDMA schedule. Idea is
to form a max clique from given adjacency matrix of
link. In our case, we are considering 2 hop network and
moreover network is tree like structure which might
help in reducing the complexity of this problem.

4 Our Approach

In this section we study the limitation of 802.11 stan-
dard as explain in[6]. Below are the three main reason
for unpredictable behavior of 802.11 for long distance
links,

• Inefficient link level recovery

• Collision on long distance link

• Multiple link interference

Patra et al.[6] also suggest that modifying driver-level
parameter will not suffice to improve the performance.
WiLDNet[6] uses click[8] module on top of MAC layer
which might increase complexity and may incur extra
packet delay.

Given the failure of CSMA/CA and stop-and-wait
type MAC level ACK mechanism for long distance links
and resisting ourself from using click software, we de-
cided to use TDMA type system. Now we explain rea-
son of choosing TDMA-MAC type implementation over
overlay layer.

In section 3, we looked at different TDMA-MAC
systems and one overlay type implementation. The
distinction between between them is in the level of
functionality they offers. In TDMA-MAC user get di-
rect access to MAC layer and can control individual
packet transmission, while in case of overlay, user can
only work with packet buffers and have no control over
packet timing. Also overlay works on top of MAC, so it
can work only with interface provided by MAC layer.
In case of TDMA-MAC, it get direct access to hard-
ware through HAL giving better control over actual
packet.

Our objective was to implement TDMA system on
easily available commodity hardware with open source
madwifi 0.9.4[9] wireless driver. Madwifi works on top
proprietary HAL provided by Atheros. We consider
every node in TDMA system is a Soekris[10] board

2



with Linux running on it. Madwifi is written in C lan-
guage, so one can easily modify Madwifi code to suite
its requirement. Since HAL is in binary, it prevents
us from accidently modifying any proprietary firmware
code. Purpose of HAL is to provide interface to mad-
wifi driver to access actual hardware with some restric-
tion.

After considering pros and cons of both method,
we decided to use TDMA-MAC type implementation.
This means we are now going to work with madwifi
code in rest of the project. Now we will look at en-
visioned architecture of proposed project. In Fig. 1,
central node is the master node and also the internet
gateway. The node inside the sector antennas range
are local wifi devices. They communicate with local
gateway marked with red color to send their traffic to
Master node. All node will run modified TDMA code.

Figure 1: Multi-Hop TDMA Architecture

The node in sector antenna is soekris machine run-
ning linux. Soekris machine has eth0 and wifi0 inter-
face. In our proposed system, device must run modified
TDMA code to talk to other devices. It might be the
case that end user might not have wifi interface. To fa-
cilitate non wifi device, we can configure routing entry
in soekris board and make it as gateway for non wifi
devices. Now all non-wifi device can be connected to
ethernet port of soekris. Data from such devices will
get buffered in soekris and will get transmitted during
its transmission slot using wifi interface.

All TDMA-MAC approach discussed in section 3
are designed for single hop network and all uses static

TDMA schedule. In contrast, in our implementation
we are planning to address following issues,

• Implementing Muli-Hop TDMA functionality

• Making custom frame format

• Intelligent TDMA schedule dissemination

Before going in to our implementation of TDMA
system lets look at the performance of a live system
which uses single hop TDMA type mechanism. This
system was setup in mountain region of Venezuela[11]
and it uses WiLDNet[6] framework. They have estab-
lish single-hop link with distance greater than 300 kilo-
meters. They have use directional antennas for point
to point link. According to them they were able to
achieve sustained throughput of 3 mbps, which is suf-
ficient for handling audio/video and web traffic.

Another example is Arvind Eye Hospital[12] in In-
dia, which uses WiLDNet framework to enable video
conferencing between doctor and patient.

Our goal is to get such performance for multi-hope
TDMA system with multiple device competing for re-
source. To start with, we have implement prototype
TDMA system between two node which is explained in
detail, in section 5.

5 Work Done

This section describe initial tasks carried out in order
to implement prototype TDMA system between two
devices. Here we assume to have loose time synchro-
nization and we use software kernel timer to trigger
various action.

This prototype TDMA system has helped us in un-
derstanding madwifi driver in better way. Madwifi uses
various structure to store device(dev), packet(skb) and
software(sc) related configuration for physical device.
It uses tasklet mechanism to process various interrupt
it receives. ath intr() handles all interrupt and re-
turns handle to a function for each interrupt. More
precisely, it calls rx tasklet() routine when it receive
data through interrupt. One has to initialize tasklet
in ath attach() using ATH INIT TQUEUE and sched-
ule it in ath intr() using ATH SCHEDULE TQUEUE.
The tasklet has all necessary information such as which
function to call and what data to pass to it in event of
interrupt. In case of madwifi driver data passed is dev
structure.

5.1 General Setup

To start with, we use small-form factor soekris board
having mini-pci wifi card. It has AR5212 Atheros

3



chipset which works well with madwifi 0.9.4. Our first
step was to setup soekris board with Linux and to in-
stall madwifi driver on it. We use Voyage Linux with
2.6.25.4 kernel and madwifi 0.9.4. Installing voyage
Linux was bit tricky, but one can find detail docu-
mentation on web. Voyage linux takes around 80 MB
and gives full functionality as of any Linux distribu-
tion. Next step was to integrate readlog functionality
in madwifi 0.9.4. Readlog was implemented by under-
graduate student at IIT Kanpur and it gives us way to
sniff packet with detail per packet information. Since
voyage linux has shell interface, this tool comes handy
for monitoring wifi traffic. The original readlog was
implemented in madwifi 0.9.3 and making it work in
0.9.4 was straight forward. At this stage we had

1. Seokris board with Voyage Linux and 2.6.25.4 ker-
nel

2. Madwifi 0.9.4 with readlog functionality

Madwifi provides five mode of operations and one of
them is monitor mode. When card is set in monitor
mode, one can sniff the channel using sniffer software
like wireshark. Since voyage linux runs at run level
3, readlog is used to dump the traffic. When we use
readlog, we found there were large number of entry
with packet type = 0, packet sub type = 0 and len =0.
This specific packet type / packet sub type pair was
not fitting in any 802.11 packet specification. So we
decided to modify readlog to discard such entry from
appearing in sniffed log.

We then tested with various operation mode and
found Ahdemo mode was crashing intermittently. At
this stage we know

1. How to create VAP for adhoc,monitor,ahdemo,
station and AP mode

2. How to setup card in adhoc and station-AP mode

3. How to use wlanconfig, iwlist, iwconfig

4. Verified communication with ping and scp for
above modes

Next we tried to disable immediate MAC level ACK.
We got some pointers from madwifi mailing list and
made some changes in code including writing specific
value in register. To verify it, we monitored traf-
fic between two soekris running modified code and
found there were no packet with packet type = 1 and
packet subtype = 13. Which means ACK packets were
not generated. Once MAC layer ACK are disabled, it
is up to the upper layers to take care of error. At this
stage we decided to keep MAC layer ACK disabled for
all future experiments.

Now our next step was to disable beacon. In ad-
hoc mode, we suspect that beacon are generated from
hardware and we were enable to find place to disable
it. Though it calls ath beacon start adhoc() but then is
never comes to it again. At this stage we don’t know
the path from where beacons are generated in adhoc
mode. While in station and AP mode, we modified
ath beacon start adhoc() to return immediately and we
where able to disable beacons. We verified it with
monitor mode and readlog. We then tried to disable
backoff by forcing cw min and cw max to zero and set-
ting HAL TXQ BACKOFF DISABLE flag. After de-
tail experimentation we were not sure of whether back-
off was indeed disabled.

After lot of experimentation and unsuccessful at-
tempt to disable beacon transmission and backoff in
adhoc mode, we shift our focus on implementing pro-
totype TDMA. We were looking at TDMA type com-
munication between two device. We had two mode
to choose from for TDMA implementation. We de-
cided to use Adhoc mode over monitor mode. Advan-
tage of monitor mode was it disables RTS/CTS mech-
anism and MAC level ACK’s (which we already dis-
abled) but on other hand it generate RAW packets.
We tried to generate our own packet format, but once
packet reaches ath hal txstart, it stamps hardware se-
quence number at byte number 23 and 24. This be-
havior was corrupting our data payload. We did tried
to copy those two byte in next location. Also in Ad-
hoc mode byte number 31 and 32 are padded and are
removed on receiver side, same thing happens for Mon-
itor mode. In Adhoc mode, driver take care of it but
in monitor mode byte 31 and 32 are data payload and
it get deleted. To avoid it, we again copied this byte
in next location. After doing that, we where able to go
past ARP request, but somehow every time destina-
tion MAC address got corrupted. Due to that, during
ping test, ARP was going through but ping reply had
wrong MAC address. Destination node was sending
ping reply to corrupted MAC. This was again a frus-
trating result for us. Though we were close to solve
this problem we were keen on doing TDMA MAC. So
finally we decided to implement TDMA in Adhoc mode
keeping standard 802.11 frame format with beacon and
RTS/CTS mechanism enabled.

5.2 Prototype TDMA

The aim was to build TDMA system between two
device with loose time synchronization. The setup
is as follows. Initially both device will use CSMA
for communication. At some time (by running UDP
program in user space on node having ID = 0) the

4



master node will send magic packet with six A’s
and will start it’s TDMA timer which expires at
every SLOT INTERVAL + node id * 100. Were
SLOT INTERVAL is 1000 msec for example. On timer
expiration it will call TDMA send triggered() routine
which again activate timer for next slot and send data
on air from queue one packet at a timer for speci-
fied slot length i.e 100 msec or empty queue condition,
whichever occur first. Here queue is a link list where all
incoming data from network layer is buffered till next
transmission slot.

Once the allocated time slot for node is over, it will
wait for next timer expiration. In this way every node
will send data in specific time slot. Below figure explain
the working of prototype TDMA. The TDMA slot will
overlap with each other on long run due loose synchro-
nization and clock drift. We have plan to address this
issue in second stage of project.

Now we will look at the call sequence in Adhoc
mode for transmitting and receiving data. From fig.
2, on transmit side we modified ath tx txqaddbuf()
to buffer data coming from upper layer. We de-
lay call to ath hal txstart(), which is the place
from where packets are actually transmitted on
air, till TDMA send triggered() is schedule by timer.
It is the job of TDMA send triggered() to check
for slot boundary and send packet from queue
by calling ath hal txstart(). On receiving side,
we modified rx tasklet() to start TDMA timer up
on receiving magic packet and on timer expira-
tion it calls TDMA send triggered() to send packet.
TDMA send triggered() adds timer every time it is
called to mark next TDMA cycle. Purpose of this setup
was to find places to hookup TDMA code in madwifi.
Synchronization and multi-hop TDMA are immediate
goal in second stage.

Figure 2: TDMA Cycle

Also, nodes will receive data when they are not in
transmitting state. We have disable HAL INT RX

flag just before transmission and re-enabled it after
transmission. This prevents nodes from going in to
rx tasklet() routine in event of receiving HAL INT RX
interrupt while they are transmitting. As said earlier,
it has loose time synchronization, right now we are not
in position to comment on overall behavior of proto-
type TDMA system. But we had successfully tested
ping command and it was giving around 5% packet
loss.

Figure 3: Transmit and Receive Path in Adhoc mode

We also created new athdebug mode named TDMA,
which can be used to print TDMA related output. This
might come handy for second stage.

6 Stage Two Timeline

In stage one we were able to accomplish following
things

1. Understanding Madwifi driver basics

2. Disabling MAC layer ACK

3. Disabling beacons in Station-AP mode

4. Understanding transmit and receive path for Mon-
itor and Adhoc mode

5. Using RAW packet of monitor mode and changing
it’s content

6. Implementing kernel timer for TDMA operation

5



and we were able to implement simple TDMA system
for two devices. This was a first step in building fully
functional multi-hop TDMA system.

In second stage we are going to explore monitor
mode. More precisely we want current Adhoc mode
TDMA to work in Monitor mode. Advantage of using
monitor mode is it allows RAW packet to be send to
/ from MAC layer. Using this, one can send custom
frame format to destination. This is crucial for TDMA
working. Since, it is most likely that we are going to
use our own MAC frame format for TDMA working,
which might include synchronization information with
guard time to name few. As of now we haven’t come
up custom frame format.

We will address following action items in stage two,

• TDMA in monitor mode

• Finalizing TDMA frame structure

• TDMA schedule dissemination

Then we are planning to extend it to multi-hop net-
work. This is the major goal of second stage. Bellow is
the task list given in softMAC[1] to disable CSMA/CA
in madwifi.

1. Disabling MAC level ACK

2. Disabling RTS/CTS exchange

3. Override 802.11 frame format with custom TDMA
frame

4. Disable virtual carrier sensing

5. Disable Transmission backoff

6. Disable CCA (clear channel assessment)

When we put card in monitor mode it achieves first
three by default. We did try to disable Beacon and
Backoff but were not sure of it’s working. We will work
on it in second stage. We also need to come up with
collision free near optimum TDMA schedule algorithm
for static network. Later we might extend it for dy-
namic workload.

References

[1] Michale Neufeld, Jeff Fifield, Christian Doerr, Anmol
Sheth and Drik Grunwald. softMAC-Flexible Wireless
Research Platform, HotNets-IV, Nov 2005.

[2] Ashish Sharma, Mohit Tiwari, Haitao Zheng. Mad-
MAC: Building a Reconfigurable Radio Testbed Using
Commodity 802.11 Hardware, WSDR 2006.

[3] Christian Doerr, Michael Neufeld, Jeff Fifield, Troy
Weingart, DC Sicker, Dirk Grunwald. MultiMAC - An
Adaptive MAC Framework for Dynamic Radio Net-
working, DySPAN 2005.

[4] Ashish Sharma, Elizabeth M. Belding FreeMAC:
Framework for Multi-Channel MAC Development on
802.11 Hardware, PRESTO 2008

[5] Ananth Rao, Ion Stoica. An Overlay MAC Layer for
802.11 Networks, MobiSys 2005.

[6] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol
Sheth, Lakshminarayanan Subramanian, Eric Brewer.
WiLDNet: Design and Implementation of High Perfor-
manceWiFi Based Long Distance Networks, NSDI 2007

[7] Nelson, R., Kleinrock, L. Spatial TDMA - A collision-
free multihop channel access protocol, IEEE Transac-
tions on Communications, vol. COM-33, Sept. 1985, p.
934-944

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. TOCS 2000.

[9] http://www.madwifi.org

[10] http://www.soekris.com/

[11] www.eslared.org.ve/articulos/Long Distance WiFi
Trial.pdf

[12] http://tier.cs.berkeley.edu/wiki/Aravind

6


