FRACTEL - Design, Implementation And
Evaluation of a Multi-hop Wireless TDMA System

Nirav Uchat
Faculty Mentors

Prof. Bhaskaran Raman and Prof. Kameswari Chebrolu

SYNERG MTP Defense Workshop
June 24-25, 2009

Department of Computer Science and Engineering
IIT Bombay

Project Vision

* Digital inclusion of remote villages

* Providing data, voice and video connectivity with
QoS guarantees

* Cost effective solution by using off-the-shelf
hardware, open source driver and license free band

L.
—._.I?E_EEI" A fE'

; ma
G ,* [""-,
lﬂ TS -:H'
e .ﬁ 'l,:f -;L' 7 RS,
o st [S 1
.,,;;-;I-"'F' 4 * 'i b el
Y s sl
g - Root Node J} ;
_ﬂt‘ﬂq i ok iy g T e
(L e =4
+ - i - .-'.)
e e) A
i ¥ .L. A Directiotal 4™
‘f:__ o Antening e
L R .
| 3 e .!..r'- = L [T
w BT - —
3 W L
- v E o Sy
& " Y, g
o v -] T
® \wi-Finode and antenna soekris Baard L 1"" ‘ IR SR
B e b oo (5. = -, 7 (MR e i - - - K T .
. Local Access network q-_--*_?L- A
Pl e
Ormni directional local access point: i cL- . =
AT . o

End User

Challenges in Wireless

* |ssues in using 802.11 Wi-Fi protocol
— Long distance carrier sensing
— Difficult to assure QoS guarantees
— Poor performance on long distance link

* How about using TDMA?

— Communication with precise slot boundaries; no CSMA
— Minimum collision due to synchronous operation

— Guaranteed fulfillment of QoS requirements due to
centralized scheduling

e TDMA more suitable than CSMA for our
requirements

Problem Statement

To Design, Implementation and Evaluate Multi-hop
WiFi-based TDMA System

— Using off-the-shelf hardware, open-source driver and
unlicensed band

— Should support both best effort (HTTP, FTP) and
real-time(voice, video) traffic

— Dynamically adapting the schedule in response to change
in network load and topology

Related Work

Existing protocols provide hooks into Madwifi drivers
for

— stripping off CSMA mechanism (SoftMAC - nov, 2005)

— using different MAC protocols based on network conditions
(MultiMAC - Nov, 2005)

— precise time synchronization (MadMAC - sep, 2006)
— control over radio configuration and time critical functions
(FreeMAC - aug, 2008)

Different Approach

— Overlay MAC approach - works above MAC layer (jun, 2005)

— 2P Protocol on bipartite graph with marker packet - HostAP driver on
prism chipset — (aug, 2005)

— SRAWAN - lIT Kanpur (May, 2006)

To our knowledge, there is no implementation of
multi-hop TDMA system yet

Our Approach

Centralized TDMA scheduler

— Root node creates a global schedule and disseminates it
across the network

— Adapting schedule based on bandwidth requests

Multi-hop time synchronization and schedule
dissemination mechanism

Multi-hop packet routing

Multi-hop TDMA implementation at MAC layer

Protocol Design 1 of 2

* Slot types
— Control slot: Sending control information down the tree
— Contention slot: Sending information towards root node

— Data slot: Sending data across network
* Packet Headers
— Schedule Header: Attached to every schedule packet

— Data Header: Attached to every data packet

* Frame Structure

— Few control and contention slots and many more data slots
— Repeating pattern of these slots(but fixed for single frame)

First Frame »4— Second Frame -
> R1234R34R1234R
P>l

Control Contentlon Data Slots :Control
Slots Slots s Slots

Protocol Design 2 of 2

* Multi-hop Schedule Dissemination
— Only root node has authority to create new schedule

— All non-root nodes stores schedule that they receives from
their assigned parent for multi-hop transmission

* Data Routing

— Data header attached to data packet is used for routing
packet in the network

— Only data header gets modified while packet is being
routed

* Routing Tree Elements

— Routing tree elements sent in schedule packet is used by
non-root nodes to recreate complete topology

Slotting Structure

R1R21-223243 - 4 -

P CPCUPGCUPCZPTCZPTCZPC
Routing Tree Elements

P : Parent

C : Child
Data flow in the topology \

[T T T
T OO O
I - A
D AR Y
T T O T

4 r4 —» =
Control Contention Data Slots i Second Frame
Slots Slots '

EEFCE :>:>®

Y

Packet Headers

Fractel Packet Reserved Flow ID RX TX =gl =gle Reserved

Frame e Source Destination 1
<1 Byte . =~ 1Byte &= 2Byte 2Byte =4By’[e : 4By’[e= 4Byte ~ 4Byte 10 Byte)|

Data Header

Fractel Packet Reserved Node ID Offset Reserved Hardware Slot This RT =1

Frame Type P Timestamp start slot# Present Length

I‘1By'[e - 1Byte 2Byte 4Byte 8Byte 8Byte
| I

8 Byte 8Byte 2Byte 1Bit 2 Byte
i i i i >

Schedule Header

Parent Child Parent Child
Schedule Header Node 1 Node n Node n
4 Byte 4 Byte 4 Byte 4 Byte
| | > | I

Routing Tree Elements

Framework for TDMA System

Disabled MAC level acknowledgments - Tested

No RTS/CTS — tested

Raw packet transmission; no 802.11 frame - Tested
Disabled random/post back-off mechanism - Tested
Tweaked CCA mechanism to always sense channel clear -

Tested by Interns (Anupama and Bharat Jain) — Not implemented

Suppress effect of NAV field and disabled sequence
number printing on outgoing packets - Tested

Generating hardware time stamped packets - Tested
Send/Receive packets in monitor mode - Tested

Generation of control packets at MAC layer (in monitor
mode) - Tested

Enabled channel switching from driver code - rested

Multi-hop TDMA System

TDMA queuing mechanism - implemented and Tested
TDMA slotting structure - implemented and Tested
MU'ti-hOp packet routing - Implemented and Tested

Plugged in TDMA schedule header and data header
along with routing tree elements - implemented and Tested

Multi-hop schedule dissemination - implemented and Tested
Multi-hop time synchronization - implemented and Tested
Node join mechanism — not implemented

Multiple queue implementation — not implemented

Packet Filtering based on destination MAC address
and discarding packet with CRC and PHY error - tested

TDMA Queuing Mechanism

Add packet to TDMA queue

H TDMA Queue
|

] Incoming packet
—! to driver

TDMA Queuing Mechanism

Add packet to TDMA queue

TDMA Queue
| do | have to

3 forward this
packet ?

wait for next
packet

is packet

destined Discard It
tome ?

Incoming packet send it to network layer
to driver

TDMA Queuing Mechanism

Add packet to TDMA queue

H TDMA Queue
|

on my transmission
slot, remove packets
from TDMA queue

Incoming packet
to driver

TDMA_send_triggered()
ath_hardstart()

ath_tx_startraw()

ath_hal_txstart()

send packet on air

do | have to
forward this
packet ?

wait for next
packet

is packet

destined Discard It
tome ?

send it to network layer

TDMA Slotting Structure
fractel_event_handler() > . <(

Set timer for next slot

Slot_Counter ++

Is it the schedule packet
Yes from my parent?

Synchronize to global time
- calculate offset with root

- calculate time of next slot
fractel_create_schedule()

Copy stored schedule

Store schedule

T fractel_create_routing_tree() Busy wait till next_slot_time

IfsJot count< s

NO OF SLOT max control slot
then 2 o S , attach schedule header Call fractel_event_handler()
- set next timer to/trlgge”rat

INTERVAL max contre] slot , -

else / , o / o // / Change offset, node_id Process at each node

gy ,settlmer tgfmggép afteHN/TERVAL slot_start, this_slot_no except root
i field in schedule header

TDMA_send_triggered()

fractel_ath mgtstart()

After timer expiration,
fractel_event_handler will

ath_tx_startraw() be called
send schedule on air

(CTD

N send data packet on air

(¢)

fractel_event_handler()
" Contention Slot received packet from air NEXT RX

Data Slot
TDMA _send_triggered()

rx_interrupt triggered --> call rx_poll()

packet from
network layer

""‘-.,_‘Control Slot

(¢)

Contention Slot received packet from air NEXT_RX

fractel_event_handler()

Data Slot
TDMA_send_triggered()

rx_interrupt triggered --> call rx_poll()

packet from

network layer rx_poll()

""-.‘_‘Control Slot
Add packet to TDMA queue K

v T

Al

If (IS_FRACTEL_SCHEDULE_FRAME) && (is_schedule_from_my_parent)
A && (lam non-root node)) then
- synchronize to global clock
- store received schedule for multihop transmission
- calculate time_of_next_slot and busy wait till next slot
then call fractel_event_handler()
- busy wait function is named fractel_busy_wait()

If (IS_FRACTEL_DATA_FRAME)
CASE 1: | am an intermediate node — Add packet to TDMA queue
- if (I am the next_hop && | am not the end_destination)

then

If (root node) then

- prepare_schedule()
- create_routing_tree()
- fill synchronization info
else if (non-root node)
- take copied schedule
- change offset value
- fill slot start info

ath_hardstart(single packet)

- Attach data header
- set retry flag at bit position 11
- fill routing information
- next_hop_ip, node_ip and
end-to-end souce and dest. IPs

- remove data header
- set skb->cb->flags |= M_RAW //will be used in ath_hardstart()
/Iwhile retransmitting
- remove 4 byte CRC from end of packet
- enqueu packet to TDMA queue for multihop transmission
GOTO: NEXT_RX

fractel_event_handler()

Data Slot
TDMA_send_triggered()

packet from
network layer

""-.‘_‘Control Slot
Add packet to TDMA queue K

Contention Slot

v T

Al

If (root node) then

- prepare_schedule()

- Creae_ivuung_tree()

- fill synchronization info
else if (non-root node)

- take copied schedule

- change offset value

- fill slot start info

ath_hardstart(single packet)

- Attach data header
- set retry flag at bit position 11
- fill routing information
- next_hop_ip, node_ip and
end-to-end souce and dest. IPs

ath_startraw()

- If schedule packet i.e.
(skb->data[0] == OxFF && skb->data[1] == FRCATEL_SCHEDULE)
then
set atype = HAL_PKT_TYPE_BEACON ¢ or hardware timetemp)
Setunott — 11 (R Mhne)
else (data packet)
set txrate = 12 (54 Mbps)

ath_tx_txqadbuf()

ath_hal_txstart()

---------- » Schedule packet path
—> Data packet path

send packet on air

(¢)

received packet from air NEXT_RX

rx_interrupt triggered --> call rx_poll()

rx_poll()

If (IS_FRACTEL_SCHEDULE_FRAME) && (is_schedule_from_my_parent)
&& (lam non-root node)) then
- synchronize to global clock
- store received schedule for multihop transmission
- calculate time_of_next_slot and busy wait till next slot
then call fractel_event_handler()
- busy wait function is named fractel_busy_wait()

If (IS_FRACTEL_DATA_FRAME)
CASE 1: | am an intermediate node — Add packet to TDMA queue
- if (I am the next_hop && | am not the end_destination)

then

- remnun Aata haadaw

- set skb->cb->flags |= M_RAW /» yill be used in ath_hardstart()
/Iwhile retransmitting
- remove 4 byte CRC from end of packet
- enqueu packet to TDMA queue for multihop transmission
GOTO: NEXT_RX
else
CASE 2: Not valid packet — Kill it and reclaim resources
if (not valid fractel_packet)
- remove it and free skb
- dev_kfree_skb(skb), skb = NULL
GOTO: NEXT_RX
else
CASE 3: | am the end destination || it is boradcast packet
if (packet is destined to me || is broadcast)
then
- remove data header
- copy 30™ ,31%" byte to 32" ,33"“ byte position (in skb->data[])
- pass it to network layer

Refer it's figure for

changes done in
ieee80211_input_monitor

ieee80211_input_monitor()

to network layer

Problems Faced

e Monitor mode communication
— Disabling NAV field effect

— Disabling sequence number stamping by
hardware

— Enabled receive side path for normal
communication

 Hardware time stamping

— Tweaking the hardware to consider schedule
packet as 802.11 beacon

* Raw packet generation at MAC layer

((‘D

Experiment Setup

Description Bytes | Time (usec)
UDP Payload 1470 217.77
UDP Header 8 1.185

IP Header 20 2.962
Ethernet Header 14 2.074
CRC Trailer 4 0.592
Fractel Data Header 32 4.740
PLCP Header 20
Total 249.767

Transmission Rate: 54Mbps

3 control, 8 contention and 92 data slots

Q@ © @ @
S

Wireless Nodes

PC

Theoretical UDP throughput for 4-Hop-2msec-slot
Slot size = 1900us (2000 - 100us guard band)

Packets/slot = 1900/249.767 = floor(7.607) = 7
Packets/sec = (frames/sec) * (# of slots/frame) * (pkts/slot)
* (87/5) * 7
=609

Throughput = 609 * 1470 * 8/(106) = 7.16Mbps

Theoretical Throughput =7.16 Mbps
Experimental Throughput = 6.93 Mbps

Results — Throughput Vs Hops

20 F Theoretical t=——=
UDP /=™

1T TCP
| TCP-2
—

— o w—

15 | FIEF 181 TCP-4

X A]
]

Mbps
5

0 Rl 1§ IH I
1 Hop 2 Hops 3 Hops 4 Hops
 UDP throughput decreases with increasing Hops

 TCP throughput decreases more drastically with increasing Hops
— large RTT
— No per link retransmission

 Multiple TCP connection though gives better performance

Results — Throughput Vs Slot Size

2 0 L _._ , ; — -|+_-| : ____________________ -

gL 15+ »----- Theo-4-Hops o
= | e S UDP-4-Hops
- w2 TGP-1-HOP
3 TCP-4-Hops
'g) 10 L 4_TCPS_4_HOpS]
> | :
e __.--x.-.-.-.::.—.-.'.:.-.'.".':7 % '-'-'-'-'"'-'-'“'-'-'-'-'::”:'—‘-"'_'7'-'-'-'“'-'-'-'“*-'7'-'-'-'-'7'-"'_'-':‘-'-'-"'*
I_E “».-.-.r--'-'-'-""'"‘ """ :

5 oot dediiods) LT SO SUOT STy AU RSO RSS RNy TSRO .

0 .

1 ms 2 ms 3 ms 4 ms 5 ms 10 ms

Slot Size

 UDP throughput increases with increase in slot size
— Reduced overhead

 TCP throughput decreases with increase in slot size
— large RTT
— less effect of reduced overhead

 TCP gives good performance for small slot size

Results — Jitter for 4-Hop-5ms slot size

7
6 |
5 L
>
(&)
5
S 4t
O
o
LL
3 L Ll _
| RN
"I 1 | 1 | 1 | 1
2340 2360 2386..2400 2420 2440 246072480 2500 2520 2540

Jitter (Microseconds)

* Observed jitter for 60 sec UDP connection on 4-Hop-5ms slot
size was less then 2.5 msec

Results - Justification for RTT

R{1[2]3]4 a4l 8 ala] H 2 [t]2
3> > i i -
<€ Total 17 Slots >

] Active Slots

B Unused Slots

Best Case RTT = X + {(X-1) » (x-2)}

Where X= Number of nodes in the network

 Theoretical best case RTT for 4-Hop topology with 2msec slot
size is @ 34 msec (17slots * 2msec/slots)

 We observed very close RTT value during our experimentation

Implications of Results

The observed UDP throughput is very close to the
theoretically calculated value.

The throughput for single-TCP connection is quite
low for multiple hops but multiple-TCP connections
together can provide good performance.

The observed jitter value is very small even for multi-
hop topology.
Avenues exist for e-learning through video

conferencing, low cost telephony and internet access
desirable for rural areas

Work Done 1 of 2

e Stagel
— Understanding madwifi driver

— Understanding Transmit and Receive path in monitor and
Ad-hoc mode

— Prototype TDMA implementation in Ad-hoc mode
* Stage?2

— Monitor mode communication

— Disabling CSMA mechanism

— Generating packets at MAC layer

— Enabling channel switching

— Implementing TDMA frame structure

— Raw packet transmission; no 802.11 frames

Work Done 2 of 2

 Stage 3
— Corrected faulty TDMA queuing mechanism (from stage?2)
— TDMA slotting structure
— Multi-hop packet routing
— Multi-hop schedule dissemination
— Multi-hop time synchronization

* Future Work
— Node Join Mechanism
— Multiple TDMA queues
— Design and Implementation of Scheduler

Conclusion

Modified madwifi device driver

Implemented Multi-hop TDMA system with
— Schedule dissemination
— Time synchronization

Carried out extensive experimentation with
varying slot size and hops

Gives very good results while playing videos
and making voice calls

Still lot of work need to be done before live
deployment

Thank You!

