FRACTEL – Design, Implementation And Evaluation of Multi-hop Wireless TDMA System

Nirav Uchat Faculty Mentors

Prof. Kameswari Chebrolu and Prof. Bhaskaran Raman

SYNERG MTP-2 Workshop

January 17, 2009

Department of Computer Science and Engineering IIT Bombay

Project Vision

- Digital inclusion of remote villages
- Providing data, voice and video connectivity with QoS guarantees
- Cost effective solution by using off the shelf hardware, open source driver and license free band

Challenges in Wireless

- Issues in using 802.11 Wi-Fi protocol
 - Long distance carrier sensing
 - Difficult to assure QoS guarantees
 - Poor performance on long distance link
- How about using TDMA?
 - Communication with precise slot boundaries; no CSMA
 - Minimum collision due to synchronous operation
 - Guaranteed fulfillment of QoS requirements due to centralized scheduling
- TDMA more suitable than CSMA for our requirements

Problem Statement

Design, Implementation and Evaluation of multi-hop wireless TDMA system

- Dynamically adapting the schedule in response to change in network load and topology
- Should support both best effort (HTTP, FTP) and real-time (voice, video) traffic

Related Work

- Existing protocols provide hooks into madwifi drivers for
 - stripping off CSMA mechanism (SoftMAC NOV, 2005)
 - using different MAC protocols based on network conditions (MultiMAC NOV, 2005)
 - precise time synchronization (MadMAC SEP, 2006)
 - control over radio configuration and time critical functions (FreeMAC AUG, 2008)
- Different Approach
 - Overlay MAC approach works above MAC layer (JUN,2005)
 - 2P Protocol on bipartite graph with marker packet HostAP driver on prism chipset – (AUG, 2005)
 - SRAWAN IIT Kanpur (May, 2006)
- To our knowledge, there is no implementation of multihop TDMA system yet

Our Approach

- Centralized TDMA scheduler
 - Root node creates a global schedule and disseminates it across the network
 - Adapting schedule based on bandwidth requests
- Synchronization mechanism
- Multi-hop TDMA implementation at MAC layer

Modifications to Madwifi 1 of 2

- Disabled MAC level acknowledgments Tested
- No RTS/CTS Tested
- Raw packet transmission; no 802.11 frame Tested
- Disabled random/post back-off mechanism Tested
- Tweaked CCA mechanism to always sense channel clear - Not Tested
- Generating hardware time stamped packets Tested

Modifications to Madwifi 2 of 2

- Packet send/receive in monitor mode Tested
- Generation of control packets at MAC layer (in monitor mode) - Tested
- Enabled channel switching from driver code Tested
- Packet Filtering based on destination MAC address and discarding packet with CRC and PHY error - Tested
- Plugged in TDMA schedule header, data header and scheduling elements Implemented and Tested

Modifications to Monitor mode

TDMA State Diagram

TDMA Frame Format

Experiment Setup

- Setup
 - Root sends schedule with three scheduling elements
 - One transmission slot for each node
 - Root node sends only schedule packet
 - Client communicate as per TDMA slot structure
 - Once schedule is over, clients will wait for next schedule
 - Root node will send schedule upon completion of current schedule

Results

Rate	Slot Size	SE	UDP (Mbps)	
(Mbps)			One-Dir	Bi-Dir
11	20 msec	3	7.52	7.53
11	10 msec	3	7.35	7.59
11	5 msec	3	7.20	7.36

Observation

- Theoretical throughput calculation

192 µsec	14 Bytes	20 Bytes	8 Bytes	1470 Bytes	4 Bytes
PHY preamble	Data Header	IP Header	UDP Header	Data	CRC

- Sending 1470 Bytes required (1516*8/11) + 192 μsec + 20 μsec = 1314 μsec
- Average Throughput = 1470*8/1314.55 μsec = 8.95 Mbps
- Given alternate slot for transmission + one slot for root node, expected throughput should be
 1/3 of 8.95 Mbps = 2.98 Mbps

Conclusion

• Either nodes are not obeying slot timing or problem with TDMA queuing mechanism

TDMA Queuing Mechanism

Work Done

- Stage 1
 - Understanding madwifi driver
 - Understanding Transmit and Receive path in monitor and Ad-hoc mode
 - Prototype TDMA implementation in Ad-hoc mode
- Stage 2
 - Monitor mode communication
 - Disabling CSMA mechanism<
 - Generating packets at MAC layer
 - Enabling channel switching
 - Implementing TDMA frame structure
 - Raw packet transmission; no 802.11 frames

- Disabling MAC-ACK
- Disabling RTS/CTS
- Raw packet transmission
- Disabling random back off
- Disabling virtual carrier sensing
- Disabling CCA

Timeline For Stage 3

- Fixing TDMA queuing mechanism
- Design and Implementation of
 - Multi-hop packet forwarding
 - Schedule dissemination across network
 - Node join, flow request and bandwidth allocation
- Testing
 - Indoor and outdoor benchmarking

References

- Kameswari Chebrolu and Bhaskaran Raman. FRACTEL: A Fresh Perspective on (Rural) Mesh Networks, ACM SIGCOMM Workshop on Networked Systems for Developing Regions (NSDR'07), A Workshop in SIGCOMM 2007, Aug 2007, Kyoto, Japan.
- Bhaskaran Raman and Kameswari Chebrolu. Design and Evaluation of a new MAC Protocol for Long-Distance 802.11 Mesh Networks, MOBICOM, Aug/Sep 2005, Cologne, Germany
- S. Pavan Kumar. Design, Implementation, and Evaluation of new MAC Protocols for Long Distance 802.11 Networks. IIT Kanpur, May 2006, Master Thesis.
- Michale Neufeld, Je Field, Christian Doerr, Anmol Sheth and Drik Grunwald. softMAC-Flexible Wireless Research Platform, HotNets-IV, Nov 2005.
- Ashish Sharma, Mohit Tiwari, Haitao Zheng. MadMAC: Building a Recongurable Radio Testbed Using Commodity 802.11 Hardware, WSDR 2006.
- Christian Doerr, Michael Neufeld, Je Field, Troy Weingart, DC Sicker, Dirk Grunwald. MultiMAC An Adaptive MAC Framework for Dynamic Radio Net working, DySPAN 2005.
- Ashish Sharma, Elizabeth M. Belding FreeMAC:Framework for Multi-Channel MAC Development on 802.11 Hardware, PRESTO 2008
- Ananth Rao, Ion Stoica. An Overlay MAC Layer for 802.11 Networks, MobiSys 2005.
- Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshminarayanan Subramanian, Eric Brewer. WiLDNet: Design and Implementation of High PerformanceWiFi Based Long Distance Networks, NSDI 2007
- E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular Router. TOCS 2000.
- http://www.madwi.org
- http://www.soekris.com/

Thank You!

Changes in more detail

- Disabling MAC-ACK
- Disabling RTS/CTS

- By putting in Monitor mode
- Raw packet transmission –
- Disabling random back off Partly By Ashutosh
 - By Setting CWmin and CWmax to 1 and setting HAL_TXQ_BACKOFF_DISABLE flag of hardware queue
- Disabling virtual carrier sensing
 - Setting NAV field to zero
- Disabling CCA By Ashutosh
 - Setting noise floor to high value such that channel is always sensed free

Changes in more detail

- Packet send/receive in monitor mode
- Generation of control packets at MAC layer (in monitor mode)
- Enabled channel switching from driver code
- Packet Filtering based on destination MAC address and discarding packet with CRC and PHY error
- Plugged in TDMA schedule header, data header and scheduling elements

Protocol Stack

Generating control packet at MAC layer

 Packet generation at MAC layer to remove additional delays in generation from upper layer

Hardware and Software

- 233 MHz soekris board with 256MB HDD and 64MB RAM running voyage Linux
- Atheros Wi-Fi chipset AR5213A
- Open source Madwifi 0.9.4 wireless driver
- Directional Antennas