R&D Project Report On

11T Bombay Web Traffic Characterization

By

Nirav S. Uchat (06305906)

Under the guidance of

Prof. Purushottam Kulkarni
Computer Science and Engineering Department,
Indian Institute of Technology, Bombay
Mumbai

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai

Table of Contents

(00 P=10 1) ol T 00100 o0 0 L1 Cut o o) 6
1.1. INEEINETL QNG WED PIOXYeeveeeeeeeeee et ettt e e e e e et a e e e e et a e e e e e st aaaaesssssssasasaeasassssenaaens 6
1.2. HT BOMBAY WD PIOXYevveeeeeeeeeeeeeee e ettt e ette e ettt e e e tta e e staaa e ettt e asassaaeeasssaasastasasaassssesssaaesssseaaans 7

Chapter 2: Data Collection and ProcesSingcccuicveiiiiiiiiiiiiiiiinnetcinesssnees e s sssessssanes 9
2.1. L0 D o 1 o P 9
2.2. 10 oo [o Tol =X X [Vo FO PSPPSR PPPRSPRPIR 10
2.3. SUMIMIGIY <ottt ettt et e e st e ettt e ettt e st e s st st e s anseeensnees eeesnneenas 10

Chapter 3: Experiments and ReSUILSceiiiiiiiiiiiiiiiiiiiiiiirnsnnnncs s ssssss s snes 11
3.1 HTML VS. IMAGE CONEENT ...ttt ettt sttt e sne e 11
3.2. HIT ROTIO.c..eeeeee ettt ettt sttt et ettt be ettt e e et et et e e esaeenbeeeenaeesneeanes 11
3.3. File Siz@ DiStIIDULIONc..eeueeiieeiieseee ettt ettt ettt se e st e naeenne 12
3.4. S@GMENT WISE USOGC....ccoeeeseeeeiieseeeeeeeteeee e e eeesttteeeeeessetateeasessseesstttaessssasssteaasssssanstenaassssssssssenaasssnnns 13
3.5. DePAIrtMENt WIS TIASFIC......ccccueeeeeeieeeeee e et ee et et e e st e e et e e st e e sttt aessteaesarseaeeasseaessssesesssseaaaas 14
From previous stats we conclude that EE department is responsible for 20% of total academic traffic......... 14
3.6. Traffic by type (GET, POST AN CONNECT)c.eeiueeieeeieetiesieeieeeet ettt sae e saaesaee e enae s 14
3.7. [0 e 1)V L= o [o T=e) oY =Tol Ay 743U UUURt 15
3.8. LOGA ON @ACH PrOXY SEIVEIS..c....ueeeeeeeeeeeeeeeeeeeeetteeettea e ettt e e e ttte e sttssaeastsesaeasssseesssssaasssssansssssassasenaans 16
3.9. [0 Lot YT =] ol T L PPN 16
3.10. Number of requests per USer 0N SiNGIE QYooecveeeeeieeeeeeieeesceeeeet e e cteeeseee e et e e e saeaessseeaas 17
3.11. Usage in every 2 hour interval 0n @ SiNGle dQy...............coeeueeeeeeieeesiiieeeeieeeecee e sceeeesea e saea e e saeean 17
3.12. Number of user having Specific USAGE PEI AQY.........ccueevueeereeriiieiieieeeeeee et 18
3.13. Requests With/Without Proxy AUtRENTICALIONccceeveeeeeieieieiesiesiesiesiestesssesessesessessessessessenses 18
3.14. TOP dOMAIN ON A GIVEN AQYvevveeeeeeeeee ettt e ettt e e e e ettt a e e e et s ssasaaaaeessssssanaaaaeeaas 19
3.15. Requests in 1 Min iNEEIVAI fOr 24 NOULS............oeeeeueeeeeeeeeeeeeeeeeeeeeteee e et eeeeaeeestaaaeeesaseesaaeaessssnaans 20
3.16. Number of proxy hit by user sorted by frEQUENCYccccueeeeecceieeiieeeeeieeeecieeeesieeeeseeeesiaraaesraeans 20
3.17. USAGE Of USEI SOItEA DY USAGEeveeeeeeeeeeeieeeeteeeetee e ettt e e e taa e s tataeessteaesanseaesasseaaesssesesasseassssenaans 21
O A 00 Yo Tor=d a1 g L (o) ¢ I G| o] £ SN 22
3.19. Distribution by HTTP r€SPONSE COUE.cccuueerueersieieieieieeeieeeie sttt siee et et ste e e s e saseesaeenanes 22
3.20. Distinct Request type 0N G GIVEN AQYccocueeerueeeiiiieieeeiee ettt ettt sttt e ae e 23
3.21. DiStriDULION DY CONEENT TYPE ...ttt e e ettt e e e e e e ettt a e e e e e essstaaaaaeesassssesaaaeeessassens 24
3.22. SUMIMQIY oottt ettt ettt ettt ettt ettt s et ettt e st s e s e st e e s e s et e e ssssssatstssstatts 2aaaaaaaaaans 24

Chapter 4: Cache BERavVior ...ttt as e s sane e s 25
4.1. INELOUCTION. ...ttt ettt ettt e ettt et e st e s e eaeen eneeaees 25

4.2. Lo g Lo |V Y =4 V< SN 25

4.3. EXDEIIMENTE QNGO RESUILS ...ttt sttt s et nat et e e eaeas 26
431, SINGIE SEIVEN LRU .. .eouiiiiieieiie sttt ettt ettt ettt et ettt et et e e ate s st e sbeebesatesaeesaeenseeneesaeenseenes 26
4.3.2. MEIEE SEIVEI LRU ..ottt ettt ettt e e et e e e etbe e e et e e e e ataeeeeataeaeensaeeeesteeeeneeaas 27

4.4. SUMIMQIY oottt ettt ettt ettt et ettt e e ettt et e s et e s e e e s e s et e ettt tasstatts 2aaaaaaaaaans 27

5.1. WAL iS5 BOMBAITAMENT? ..ottt sttt s st s e s e ettt s bae st e sssesatessasaensteesasaesnas 28

5.2. Detecting BOMBAIAMENT............ccecueeeeeeeeeeeeeeeeiee e tte e e s ete e e et e e staeaeastsaaeeattaaesstssaeasssesesssssssesssenaaas 29
LT T I {0 1 o ' PSPPI 29
T I 1 Vo] 1=Y 4 =T oY = o VTSRS 29

5.3. SUMIMIGTY <ottt ettt e ittt e sttt e sttt e et e s e e e st st e s et e e e sasnees eeesnneeeas 31

Chapter 6 - Conclusion and FUuture WorK........ccccccovvuieiiiiiiiinnnnniniinsisssnmsssesssnses 32
L 3310) 008 4) 1 2N 33
APPENDIX A ...oeetteiiiiccnrnnneeeessssssssnnsessssssssssssnssesssssssssssnssessssssssssnnnsssssssssssssnnsesssssssssssnnsessssssssssssnnannes 34

Al (@00 [oY alle [o] (o e g o Tol=XXY [1o IR SR UN 34

A2 (@0To (=35 oY gllole Tol 1= 11417 [o [(o] SN 35

A.3. Code for bombardment AEtECTHIONcccveeeeeeieeesiee et e et e st e e et a e e eaea e et aeesteaeesseaaesneeaaas 40

Acknowledgements

I would like to thank Prof. Purushottam Kulkarni for his constant support and guidance
during the course of this project. | would also like to thank Computer Center, 1T Bombay for
providing high end blade servers to carry out intensive log processing.

Abstract

The growth of internet is phenomenal and is expanding at rapid rate. Starting from
early static web pages to current popular site such as Youtube[3], Liveleak, it is evident that
more and more data is flowing through already congested internet pipe. In order to fulfill
user’s requests in timely manner, ISP uses large web proxy server to cache user data. The
performance of web proxy highly depends on usage pattern and cache behavior which
includes cache replacement protocol. This project is aimed at characterizing 11T Bobmay’s
web traffic and coming up with various invariant such as traffic distribution which holds
irrespective of time.

We will also study the effect of shared cache on hit ratio with varying cache size.
Finally we characterize proxy bombardment in IIT Bombay network and give working
prototype to prevent it.

Chapter 1: Introduction

1.1. Internet and Web Proxy

In early days of 80’s, Internet was catering academia and defense installation with
limited number of user count. As personal computer became common, more and more user
started joining the network and large amount of traffic started flowing across globe. As
technology advanced, came the web browser which allowed user to request pages which are
geographically away. To fulfill user request in timely manner, ISP’s1 started using web proxy
to cache user data.

Web Browser uses client server model where client® request a object from server® and
server sends back answer in reply which is a generally index page of requested site. However
response of the server might be slow especially for servers that are far away from the client or
connected through a slow network link or busy network. One way to tackle it is using proxy
server which act as intermediate server for client and client for actual server. Following is the
sequence of message passing,

1. Original client send request to proxy server

2. Proxy server processes the request

3. If requested object reside in proxy cache and it is not modified since it was in

cache then proxy server send object to client, if not then proxy server send request
to actual server

4. When proxy gets the new requested object it first stores it in cache* and then send

it to client.

2 — Process Request
)

" 3- Send to server " 1- send to server
4- To Proxy server___/ 6 —send to client
Server 5 — modify cache Client
Proxy Server

Figure 1 — Web Proxy

If client request follows a specific pattern then tuning proxy server might increase the overall
response time.

L ISP is acronym for Internet Service provider

2 client in this case is user requesting a specific object such at www.news.com

% Server is hosting www.news.com on web server like Apache, 11S etc.

* If cache is full then cache replacement algorithm such as LRU is used to make place for new object in cache

6

1.2.

IIT Bombay Web Proxy

At present five thousand users uses IIT Bombay internet service. In order to fulfill

large number of request it uses ultra monkey for load balancing. The architecture of web
proxy is as follows,

1)
2)
3)

4)

5)
6)
7)

There are two load balancer one is active while other is in standby mode; if active

server fails, load balancer service is migrated to standby server.

There are four proxy server each having its own cache.

a) IP range for proxy server is 10.XXX.XX.1 to 10.XXX.XX.4

One virtual interface on load balancer to give one entry point to proxy servers.

a) The virtual IP is 10.XXX.XX.20

Load balancer manages the virtual interface and scheduling policy for each request

a) Client send request to 10.XXX.XX.20

b) It is then distributed to any one of the four proxy server based on scheduling
policy

From log it is evident that it uses round robin scheduling

Open source proxy - squid® is used on each server

Squid guard’ is used for blocking access to specific URL

)

Virtual server + load
balancer
IP: 10.XXX.XX.20

AAA

Client Request

~—— ~—— —

Proxy Proxy Proxy Proxy
server 1 server 2 server 3 server 4

Squid proxy + Squidguard
IP Range: 10.XXX.XX.1 -- 10.XXX.XX.4

Figure 2 — Proxy Server Architecture

® Ultra Monkey is used to create highly scalable and highly available services - www.ultramonkey.org
® Squid is a caching proxy for the Web supporting HTTP, HTTPS, FTP etc. http://www.squid-cache.org
" SquidGuard is a URL redirector used to use blacklists with the proxy software Squid.

This gives seamless single log file order by access time. Later in chapter 3, we will
use this raw file to plot various statistics.

Apart from proxy server, IIT Bombay has 32Mbps lease line from two different ISP.
It also has its own DNS and SMTP server. It uses IPTBALE as firewall. There are two
different machines handling inbound and outbound traffic.

Chapter 2: Data Collection and Processing

2.1. Raw Data

As discussed in chapter 1, all four proxy servers access log is merged in to single log
file and it is ordered by access time. There is one line for each client request. Following is the
format of log file,

Year Month Date Time Proxy Server squid_process_id epoc_timestamp time_ms
source_ip tcp_status/tcp_code object size request type URL wuser_id object_type
object_sub_type

Following is single line from raw log file,

2008 Jan 1 00:00:00 nml squid[25879]: 1199125800.015 5 10.163.50.44
TCP_MEM_HIT/200 1864 GET http://www.ndtv.com/playing_caption.jpg XXXX NONE/-
image/jpeg

Where XXXX is user_id. For user privacy, in all log processing user_id has been hashed.

Below is the statistics of raw files used in generating various invariant presented in chapter 3.

Log Duration 7 days

Start Date / End Date 1Jan’08 — 7 Jan’08
Total Raw Log Size 27.3 GB

Number Of Request / Day 16 Million (Approx)
Total Request for 7 Days 110 Million (Approx)

From above raw data some field are not required and are removed before log processing. A
small Perl script take original log file as input and gives new truncated file as output. It also
hashes the user name and format date which can be handle by MySql database. MySql
database is used to store whole log file. Below is the structure of mysqgl table.

Field Name Type
access_date Date
access_time Time
netmon_server varchar(4)
process_time_ms int(10) unsigned
source_ip varchar(15)

tcp_status Varchar(20)
tcp_status_code smallint(6)
object_size int(10) unsigned
request_type varchar(15)
Domain varchar(60)
user_id varchar(35)
server_fetch_type varchar(25)
server_ip varchar(15)
object_type varchar(20)
object_sub_type varchar(20)

This table is used in chapter 3 to generate required statistics.

Second log file is 407.log, which log the invalid proxy request. To understand it in
better way, IIT Bombay has LDAP authentication for user before accessing the proxy. In
usual case user enter the username and password as and when asked by the system, but some
software like automatic update, antivirus virus signature update tries to fetch data from server
without proxy credential. In such proxy server has to deny it i.e. return code
407(TCP_DENIED). Chapter 5 discuss about handling such request. The structure of 407.log
is same as access log file discussed above.

2.2. Data Processing

Perl Scripts is used to convert raw data file to file which can be loaded in to MySq|l
table. Furthermore, java code is used to plot concentration graph discussed in chapter 3. Also
a cache simulator in JAVA is used to study effect of shared cache on hit ratio with varying
cache size®. Mixture of Perl and Python script is used for bombardment monitoring and alert
mechanism discussed in chapter 5.

2.3. Summary

In this chapter we have looked at raw data statistic and how it is converted to required
format for further processing. In chapter 3 we will use converted data to get detailed
statistics.

& More on this is discussed in chapter 4. Code is in Appendix A.3
10

Chapter 3: Experiments and Results

3.1. HTML vs. Image Content

As we know there are various file formats which are requested by user from web. In
this experiment we find large numbers of requests are for Image and HTML pages. More
precisely we found that @40% and @30% of total request is for Image and HTML
respectively. This behavior is more or less same for 7 day period.

HTML-Image content

o S0

[7,]

g 40

g 30

s 20 |
5]

= 10 —
k3

o O

&

2 1-Jan 2-Jan 3-Jan 4-)Jan 5-Jan 6-Jan 7-Jan

S

& 1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan

B Image 40.93 41.13 40.46 40.53 39.8 40.88 41.21

B HTML 30.41 29.06 27.99 28.88 29.03 27.93 30.13
other 28.26 29.81 31.55 30.59 31.17 31.19 28.66

In above graph x-axis represent day and y-axis represent percent of total requests. Green bar
in above graph represent other file format such as pdf, audio, video and so on.

3.2. HIT Ratio

HIT ratio is defined as number client request fulfilled by proxy cache to the total
number of requests received by proxy. It implies that higher HIT ratio is favorable as it
reduces bandwidth usage and improves client response time. Below graph shows the hit ratio
observed on seven day period.

TCP_HIT Objects found in proxy cache (on secondary storage)
TCP_MEM HIT Obiject found in proxy cache RAM

TCP_MISS Object not found in cache

TCP_REFRESH MISS | IF MODIFY_ SINCE returns false

other Other proxy response

HIT Sum of TCP_HIT and TCP_ MEM HIT

MISS Sum of TCP_MISS and TCP_ REFRESH_MISS

11

HIT Ratio

70

60 » E: ll =!

50
] 40
[J]
=
& 30

20 . —_ #

10 — g

N
0 L g—=e ® ——0 O—0
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan

=—=—HIT 21.96 21.54 20.96 21.02 21.11 20.98 22.06
== MISS 65.1 62.44 64.3 62.1 62.87 62.51 64.2
=e=TCP_MEM_HIT 14.15 13.46 14.05 14.49 13.4 14.56 13.09
=>=TCP_HIT 7.81 8.08 6.64 6.53 7.71 6.42 8.97
==i=TCP_MISS 64.26 61.24 63.12 60.76 61.44 61.06 63.3
=@—TCP_REFRESH_MISS 0.84 1.2 1.18 1.34 1.44 1.44 0.9
=== Qther 12.94 16.02 14.74 16.88 16.02 16.51 13.74

We find that HIT rate is @ 22% and MISS rate is @ 65% on a given day. One reason could

be due to number of distinct domain. We found that there are @ 7.5 million distinct domain
on given day which might reduce hit rate.

3.3. File Size Distribution

In this experiment we try to find file size distribution. In below plot, x-axis is
percentage of file less then given value. For example we find that 40% of total object has size

between 1000 bytes to 10000 bytes, which is evident from section 3.7. Another example,
90% of total object has size less than 10000 bytes.

12

File Size Distribution (Bytes)- 6-January

100
90 —

/
o /
60 /
50 /
40 pd
30 /
20 /

10 —

100 | 200 | 300 | 400 | 500 | 1000

Percentage

1000 | 2000 | 3000 | 5000 | 1000 | 1000 | >100
0 0 0 0 00 | 000 |0000

Percent| 0.05 | 0.90 | 1.99 | 17.5 | 35.3 | 51.7 | 90.4 | 94.7 | 96.4 | 97.8 | 98.9 | 99.6 | 100

3.4. Segment wise usage

IIT Bombay has three main network segments namely hostel network, academic
network and residential network.

Hostel 10. 1L XXX. XXX = 10.13. XXX. XXX
Academic 10.101. XXX. XXX —10.150. X XX. XXX
Residential 10.161. XXX. XXX —=10.165. XXX. XXX

In this experiment we try to find out which segment is responsible for high net usage. Below
graph shows maximum traffic on a given day is from Hostel followed by Academic and
residential network. In below graph x-axis is a day and y-axis is total usage in GB.

Segment Wise Usage
140
c .
> 80
& 60 —
’d
> w0 | e—* ~ _—
w
20
0
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
=@ Academic| 47.313 52.255 52.065 67.625 30.952 32.634 50.487
—f— Hostel 102.671 109.374 98.488 105.092 93.759 127.952 111.01
Resnet 11.296 9.333 8.205 9.678 8.793 11.895 9.561

13

The total usage on a given day is @ 170 GB. We find that hostel network is responsible for
65% of total net traffic followed by academic network which is 30%.

3.5. Department wise Traffic

In this experiment we try to find department which is responsible for high net usage.
Below plot shows median of 7 day usage of individual department. X-axis represent
department and Y-axis represent size in MB. We find Electrical and Information technology
department are top users of proxy server.

Traffic in MB - 7 Day Median
8000
7000
6000
5000
4000
3000
2000
1000 I
0 -
EUJE:lu.lmquIl.ul—>-l.uu.|wacmmo:§mmmuu§5|:u.ll.ugmgn.
gTEZ8R Y EE>832925882°>"9523< 8525348
(@] O b O O
| Traffic in MB

From previous stats we conclude that EE department is responsible for 20% of total
academic traffic.

3.6. Traffic by type (GET, POST and CONNECT)

In this experiment we try to classify traffic based on HTTP response code. Below is
the definition response code

GET Get from server (Incoming)
POST Send to server (Outgoing)
CONNECT Bidirectional channel

From below graph, GET request is account for maximum traffic. GET request is the request
made from II'T Bombay network to outside world. X-axis is day and y-axis is traffic in GB.

14

Traffic Type
200
150
[=4]
(G}
£ 100
=
=
50
0
1-Jan 2-Jan 3-Jan 4-)Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-)Jan 5-Jan 6-Jan 7-Jan
B GET 136.3872 147.665 137.7596 | 159.7725 | 115.6138 | 146.6946 147.618
B POST 5.4476 5.3768 4.8648 5.4317 3.6966 4.7352 5.7189
W CONNECT| 19.7384 19.2752 17.2598 18.041 13.1204 19.1187 18.6776

3.7. Daily average object size

Below graph shows the average object size in KB. We find that, average object size is

around 9 KB. X-axis is day and Y-axis is size in KB.

Average Object Size in KBytes

10
2 \ /A T —
@ 8 —
x 7
£
@ 6
& 5
‘g 4
'.g 3
2
1
0
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
Object Size| 9.2856 8.4089 7.9367 8.87 9.4052 9.0189 8.7595

15

3.8. Load on each Proxy Servers

As we saw in previous section, IIT Bombay has 4 proxy servers. We find that load on
each proxy server is equally divided with each server serving around 25 % of total request.
Which implies that proxy server is using round robin scheduling for load balancing. On 5"
JAN we find that proxy server 4 has served 18% of request, which might be because of
persistent connection configuration in proxy server. Persistent connection says that the TCP
connection from some user should select last used proxy server if it occurs within specified

time.
Load On Individual Proxy Server
100
©
©
S l
? EI I I I I E
&
g =
§ 1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
m NM4 24.78 20.58 20.78 17.72 18.24 24.42 26.47
= NM3 25.03 26.87 30.78 28.95 28.75 28.75 26.47
ENM2 26.98 27.02 17.26 20.66 23.44 25.36 23.19
ENM1 23.21 25.52 31.17 32.67 29.58 21.47 23.87

X-axis is day and y-axis is percent of total request served by each proxy server.

3.9. Distinct user count

On a given day around 5100 distinct users sends requests to proxy server. In chapter 4
we will see the effect of usage pattern of large number users on cache hit rate. In below graph
X- axis represent day and y-axis is distinct user count.

User Count
@ 8000
g 6000
.g 4000
(7]
A 2000
© 0
3 1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan
W User Count 4846 5263 5450 5513 4507 4718 5728

16

3.10. Number of requests per user on single day

On a given day, a user sends around 3400 requests to proxy server. We will also look
at how 407 requests are handled to reduce network bombardment in chapter 5. In below
graph x-axis represent day and y-axis represent average number of request per user.

Avg Request Per User
" 4000
[5
S 3000
o
&
5 2000
2 1000
€
=]
z 0
1-Jan 2-Jan 3-Jan 4-)Jan 5-Jan 6-Jan 7-Jan
1-Jan 2-Jan 3-Jan 4-)Jan 5-Jan 6-Jan 7-Jan
B Avg Request 3305 3626 3457 3540 2951 3731 3204

3.11. Usage in every 2 hour interval on a single day

In this experiment we try plot net usage in 2 hr interval for whole day. We find that,
from 10:00 to 02:00 usage is @ 15 GB/2 hr. While from 02:00 to 10:00 usage is around 5 GB
and it is lowest at @ 2 GB from 04:00 to 06:00. This reflect LAN ban period in hostel in
night hours. Again we find that usage is high in hostel during day time. In below plot x-axis
is time and y-axis is usage in MB.

Usage in MB - Two Hour Interval

25000
1,
20000 H 1-Jan
o

Z 15000 = 2-Jan
;;_' W 3-Jan

£ 10000
= H 4-Jan
5000 H ®5-Jan
0 ‘h m 6-Jan

00--0202--0404--0606--0808--1010--1212--1414--1616--18 18--2020--2222--24 = 7-Jan

Time - 2 Hr Interval

17

3.12. Number of user having specific usage per day

In this experiment we try to find the usage of user by their transfer size. We will
plot number of user having transfer size given below. For example, plot says that @ 2500
user on 4™ Jan has usage less than 10 MB. In general out of 5100 distinct user @ 2300 users
are having usage < 10 MB on a given day. While @ 6 users have usage > 1 GB and @ 3 user
has usage > 2 GB. We find that usage pattern follows 80-20 rule.

Distinct User Usage

3000
2500
§ 2000 m1-Jan
2 1500 W 2-Jan
*
S 1000 m3-Jan
500 W 4-Jan
0 W 5-Jan
W 6-Jan
7-Jan

Usage in MB

From above observation we find that there are very few users who account for high usage. On
average per user usage is low. In above graph x-axis is usage in MB and y-axis is user count.

3.13. Requests With/Without Proxy Authentication

IIT Bombay uses LDAP as authentication for net access. If user send request
without proper authentication, it will mark as 407. l.e. HTTP response for “require proxy
authentication”. From proxy log we find that there are some users who send 407 requests in
burst for specific time. This is mostly due to automatic antivirus update, open office update
which are not configured properly in this experiment we try to find number of valid and
invalid requests. In below plot, x-axis is day and y-axis is number or request with proxy and
without proxy authentication.

18

With-Without Proxy Authentication

25000000

20000000
g
=]
& 15000000 -
o
"é B Without Proxy Authentication
[}
-g 10000000 B With Proxy Authentication
2

5000000 -

0 _
1-Jan 2-Jan 3-Jan 4-Jan 5-Jan 6-Jan 7-Jan

We find that on average there are 8 - 9% of total requests which are without proxy
authentication. This number in small but they occur in burst, which is overhead for proxy
server. In section 5 we will look at prototype system to prevent this bombardment.

3.14. Top domain on a given day

This experiment shows top domain accessed from IIT Bombay. On a given day
google.com domain consumes 50% of total traffic followed by orkut.com and yimg.com. (It
depends on specific day, but by observation usually “google.com” and “orkut.com” domain
consumes bulk of the request)

Percent Hit: 7-JAN Top 10 Domain

B mail.google.com B www.orkut.com B imgl.orkut.com
M img4.orkut.com M img3.orkut.com M img2.orkut.com
= www.google-analytics.com m www.google.com www.google.co.in

W us.il.yimg.com

3% 3% 3% 2%
6%

6%

6%

6%

19

We also found some unusual domain like iitbfreedom.com, which was in top list on 6" Jan.

3.15. Requests in 1 min interval for 24 hours

Below plot shows number of request in 1 min interval. From 12.00 AM to 7 AM
Hostel network is turned off in IIT Bombay which is evident from fig. on average, all proxy
receives @ 20000 request/min. In plot, X-axis is time in min and Y-axis is number of
requests received by proxy server.

Netmon Request 3-Jan

ONT d 0NN ©OmMm ON < 1 0N NO O M ON< 4 0N AN O M o

HHHHHHHHHHHHHHHHHH

m Netmon request 3-Jan

3.16. Number of proxy hit by user sorted by frequency

In this experiment we plot the request received by proxy server from user sorted by
frequency. l.e. plot shows there are few users who are responsible for higher request rate. The
plot is tail heavy and obeys 80-20 rule. X- axis is hashed user ID and y-axis is frequency of
request on log scale.

20

100000 - .
User Hit count - 1-Jan
)]
©10000 -
a
oo
o
=
© 1000 -
E
o]
>
K]
£ 100 -
I
c
[}
£
2 10 -
1
SN DN DDA NN O INDNOD A NN OSSN MOWLNO A mM
N O WNO WVWHOUHWOVUANNANNNOOMOOMNMOSTST AT OSSO WNO WO O -
TN T O NOODO AN MIN OO A ANTINNOO TN OO0 A N NN
o A AT AT AN AN AN AN ANANOOONONDNN T
User_ID
3.17. Usage of user sorted by usage

Below graph plots the usage of user sorted by transfer size in descending order. This

show, very few users are having large usage. Graph is tail heavy which adhere to 80-20 rule.
This is evident from result from 3.16. Here x-axis is user ID and y-axis is usage in MB.

10000

1000

100

Transfer Size in MB

10

Usage of Distinct User - 1-Jan

154
306
458
610
762
914

1066
1218
1370
1522
1674
1826
1978
2130

2282

82434

O2586

2738
2890
3042
3194
3346
3498
3650
3802
3954
4106
4258
4410
4562
4714

3.18. Concentration Graph

Below graph plots the concentration graph depending on number of request made
by top accessed domain. For example, it says that 1% of top domain is responsible for 43%
of total request. We saw that google.com and orkut.com domain is top accessed domain.
From this result we say that google.com and orkut.com and some other domain are
responsible for 43 % of total request. Rest of the domain is on average responsible for 10% of
total request as show in below plot.

Concentration Graph

50.00

2
3 40.00 \
g \
= 30.00
e \
5 20.00
t \
g 10.00 —
[J]
o 0.00
1% 5% 10% 25% 40% 60% 80% 100%
‘ Netmon Hit| 43.83 9.55 4.97 7.59 6.81 9.08 9.08 9.09

Percent of Top Domain Request

3.19. Distribution by HTTP response code

From below plot we find that around 78% of total request are valid request. Also
from access log we find that in most cases 304 and 302 are generated from orkut.com
domain. below is the definition of response code

HTTP Response Code | What it means!
200 OK - Successful HTTP request
302 Found - Gives location of redirection
304 Not-Modified since last request (Used during caching)
403 Forbidden - Not allowed to access (Authentication required)
404 Not-Found - Document does not exists
407 Proxy Authentication required

22

Percent Of Total Request

HTTP response code (Median Of 7 Day)

90

80

70
60

50
40

30

20

10

0

200

302

304

403

404

| H % Total Request

78.726

3.9534

12.2977

0.8597

1.7594

3.20. Distinct Request type on a given day

From below plot, we find that on average 44% of total request on a given day are

unique. Hit rate and distinct domain has direct correspondence. Due to large number of
distinct domain, hit rate might be low as user are requesting different object. In plot x-axis is
day and y-axis is number of distinct domain.

Number of Distinct Domain

8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

Distinct Request

1-Jan

2-Jan

3-Jan

4-Jan

5-Jan

6-Jan

7-Jan

1-Jan

2-Jan

3-Jan

4-Jan

5-Jan

6-Jan

7-Jan

- Distinct Request

7273290

7369156

7187261

7291765

7176207

7309714

7401562

23

3.21. Distribution by content Type

From below graph we say that Application tops the usage chart followed by text and
image content. Application consists of X-javascript, X-msn-messenger, octet-stream, x-
shockwave-flash, xml, x-fcs, pdf, zip etc.

Content type (Median of 7 Day)
60000
50000
o 40000
=
.S 30000
()
N
20000
10000
0 H =
Application text image None video audio
| H Types 55640 42508 38085 19625 9844 5128

3.22. Summary
In this chapter we have looked at various invariants found in proxy access log.
Below is the snippet of statistics
e 40% and 30% of total request is for Image and HTML respectively
e Cache hitis @ 21% and cache miss is @ 63%
e 40% of total object requested has size between 1000 bytes to 10000 bytes
e Average object size is around 9 KB.
e Proxy server is using round robin scheduling for load balancing.
e We find that usage pattern follows 80-20 rule (Power Law).
e Very few user accounts for > 2000 hit on a given day
e 1% of top domain is responsible for 43% of total request.
e 78% of total request are valid request resulting in http response code 200
e On average 44% of total request on a given day are unique.

Now in next chapter we will look at cache replacement protocol behavior with varying cache
size and also considering unified cache for all proxy servers.

24

Chapter 4: Cache Behavior

4.1. Introduction

Cache is used to reduce response time to the client and the core component which
ensures it is its replacement protocol and its size. The cache replacement protocol is used to
make room for new unseen object in cache when it is full. In this chapter we will look at how
the performance of cache replacement protocol directly affects the cache hit rate’ and a way
to enhance the cache performance. We will also look at effect of varying cache size on hit
rate.

4.2. IIT Bombay Setup

IIT Bombay uses open source squid software as proxy server. From the
documentation we found that it uses variant of LRU as cache replacement protocol. The setup
of proxy server in IIT Bombay is such that all four proxy servers have its own isolated cache.
In such case if user request object and if it is not on requesting servers cache it will results in
cache miss and will try to fetch if from original source even if it is residing on some other
proxy server. This behavior might reduce the cache hit rate which could be possible to
achieve if we use unified cache for all server.

This observation leads us to study the effect of unified cache on hit rate with varying
cache size. In order to study the cache behavior I have written small JAVA simulator which
has tunable parameter such as cache size and number of proxy servers to simulate cache
replacement protocol.

In next section we will look detailed result obtained from simulator. Before we move
forward, below is the basic setup that has been done for simulator.

1. Access log file is used for processing

2. User ID has been hashed for user privacy

3. Access log file has been truncated and contain simulator relevant information. Size
reduction is 4:1. i.e. each truncated file is about 1 GB compared to 4 GB of original
access log file

4. Each proxy server has identifier in each line of access log i.e. ‘nm1’ for first proxy
server and so on

5. Specific file format has been flagged as cacheable object and we can change it as and
when need arise.

6. Maximum allowable object size for caching can be set prior to simulation.

Appendix A.2 contains the cache simulator code with some explanation. Now we will look at
simulator statistics.

® Hit rate is defined as the ratio of cache hit i.e. object found in cache by total number of request.
25

4.3. Experiment and Results

In this section we will simulate single server and merge server scenario. In single
server we will consider single proxy server trace’® and try to simulate cache hit rate with
varying cache size. While in merger server we will construct unified cache for complete
trace.

In simulation, initially 0.1 million lines are used for training cache. Once there is
sufficient data in cache we start counting cache hit.

4.3.1. Single Server LRU

40

35

30

25

20

15

Hit Rate in Percent

10

NN O N AN 0N A NN O N NN
I H NN TN O O NN OO

103
109
115
121
127
133
139
145
151
157

Total request

e 500 MB =1 GB

10GB =25 GB

Simulator parameters

Learning cut off

1 Lac Line

Proxy Server

nml

Cache Size

500MB,1GB,10GB and 25GB

Maximum size of cacheable object

200 MB

With LRU as cache replacement protocol and with above simulation parameter we get cache
hit rate as shown in above figure. Due to distinct request type and user access pattern hit rate

1%We have four proxy server nm1 to nm4- we will consider nm1 trace from access log file

26

is around 38 percent. This example is for isolated single server scenario. Next we will look at
unified scenario.

4.3.2. Merge Server LRU

In merge scenario, the maximum hit rate is around 45 percent with cache size of 50
GB. This is due to fact that usage pattern across individual server does have share resources
and due to which cache miss in isolated scenario can be a cache hit merger scenario. Graph
also shows cache hit with varying size. As cache size increases hit ratio also increases but
after some time it levels off. One reason could be due to usage pattern. As we saw in section
3.20 which says 45 % of request are distinct, it might be case that there are no more
cacheable objects after certain limit.

50

45

—1GB
30

e 5GB

25 ——10GB

20 25GB
15 50GB

10 e 100GB

22
29
36
43
50
57
64
71
78
85
92
99
106
113
120
127
134
141
148
155

Simulator parameters

Learning cut off 1 Lac Line

Proxy Server All

Cache Size 1GB,5GB,10GB,25GB,50GB and 100GB

Maximum size of cacheable object 200 MB

4.4. Summary

In this chapter we looked at isolated and unified cache scenario and saw effect of
unified cache on hit rate. This guides us to use unified cache to improve cache performance
thereby reducing bandwidth usage.

27

Chapter 5: Proxy Bombardment

5.1. What is Bombardment?
On an average day proxy server receive various types of request which can be

classified depending on HTTP response code. Following are the common response code
found in 11T Bombay access log,

HTTP Response Code | What it means!
200 OK - Successful HTTP request
302 Found - Gives location of redirection
304 Not-Modified since last request (Used during caching)
403 Forbidden - Not allowed to access (Authentication required)
404 Not-Found - Document does not exists
407 Proxy Authentication required

From above response code, 407 code constituent proxy bombardment which is explained
next.

IIT Bombay use LDAP™ authentication for various intranet services such as user
forum, course management software — moodle and for internet access. User uses proxy server
with LDAP ID as authentication parameter for access internet. All will work well if user
provides proper credential. For example, when user open web browser, it asks for user name
and password. This behavior is due to proper HTTP response handling in web browser. As
soon as browser send first request for web page without authentication, proxy server will
send 407. Now on other side browser will handle this by asking user credential. Once user
enter valid id and password connection go thorough and he can use internet.

There are some softwares which do not handle 407 as web browser do. In fact such
software bombard proxy server with high request rate. On studying access log we found
Adobe Auto updates, ESET Antivirus, Windows update were among the bombarding
application. There is sharp variation in bombardment rate and normal usage pattern. More
precisely, bombarding user has around 140 reg/sec and this behavior continues till such
application is active where as this not the case with normal user.

Clearly, proxy server is doing nothing except denying such request and wasting CPU
in processing such request.

Below is the statistics of 407 log file.

Log duration 1-Jan’08 — 7 Jan’08
Log Size 2.1GB
of line per day 1.4 million

1 DAP is a light weight directory access protocol for user management http://www.openldap.org/

28

Following figure explains the normal usage and the one which is bombarding proxy server.

Bombading User Behavior
900
800

700

a00
500

= Mormal Usage
300

e Bombardmant

Mumbar of Hits to netmon

Lo
BRERERERERSEERE8ERCHERERSRERSRERESEREEEREREREERER
O 0O — —~ ™ rom 0w ors e e a0 =T =T w0

R R I I e e R R R e e e R TR R R]

In next section we will look at prototype system to prevent such request from reaching 1T
Bombay’s proxy server.

5.2. Detecting Bombardment

We start with method to detect bombardment in IIT Bombay’s network scenario.
Once bombardment is detected alerts are generated and email is send to the administrator
giving IP of the bombarding machine.

5.3.1. Algorithm
Input for the system is raw file containing one line for each 407 request. The structure
of file is same as that of access.log file discussed in chapter 2. Below outline the algorithm
for bombardment detection.
1. Periodically check 407 log file
2. Find unique IP which are bombarding proxy server in last x minute (let say 10 min)
3. [Ifany IP is found send then alert to Administrator
4. Block such unigue IP-MAC pair with guarantee that no further request from such pair
ever reach proxy server.

5.3.2.Implementation

First step is to get 407 log file for processing. In IIT Bombay network, there is single
407 log file for all 4 proxy server as discussed in chapter 2. We want heavy processing to be
done on different server than logging server so Cron job is written on log server to send 407
log file to processing server every 10 min. It also sends alerts if necessary.

Below is the representation of prototype system, which consists of 3 machine each
responsible for specific purpose and they work together for bombardment detection. Each
machine has specific task to do. One is sending log file for processing, other is for processing
that file upon receiving trigger from third machine.

29

Server X

In every 10 min send
407.log file to processing
server

Server running
Nagios

every 10 min send
request to check for
bormbardm ent
Processing
Server Step 2
Step 3 - send Alerts and update nagios server
Alerts
Steps:

1. Logging server log 407 request (Server X)

2. It sends 407 log file to processing server every 10 min. (Using Cron job)

3. A server running Nagios® sends request to processing server for
bombardment checking.

a. Here the processing server runs a program which listen for the request
from Nagios Server. Upon receiving the request it process the log file
and find bombarding IP.

b. Threshold for bombardment is chosen to be 1000 request in last 10
min. This can vary depending on the request pattern.

4. Once the bombardment is detected, processing server send mail to
administrator with IP of the bombarding machine.
5. Following is the message content

NETMON Bombardment in Last 10 minutes of span
IP ADDRESS - Netmon Hits

10.9.1.40 - 1834

10.107.170.41 - 1580

Code is written is Perl and Python and it uses socket programming. For more information
refer Appendix A.3. Once the IP has been found, ACL is updates in specific router to block
future request from bombarding IP.

12 Nagios is a network monitoring software which can be configured to monitor custom service

Www.nhagios.org/
30

5.3. Summary

In this chapter we looked at prototype method to prevent proxy bombardment in IIT
Bombay network. It does depend on actual network topology and hence might not work on
other network. The threshold is set to 1000 request per minute and it come from the
observation. One need to fine tune it depending on nature of bombardment.

31

Chapter 6 - Conclusion and Future Work

We have seen various invariants observed in IIT Bombay web traffic. Most
interesting of all are usage difference between Hostel and Academic segment and 407
bombardments. We looked at method to prevent 407 requests in chapter 5, which identifies
the bombarding IP. In current prototype, blocking of such IP is done manually. We can
extend it to block such IP automatically.

We find that there is sticking difference between hostel and academic segment and
IIT Bombay internet lines are experiencing chocking due to excessive net usage from hostel
segment. To counter this problem we propose to use different proxy server for hostel and
academic segment. We can cap the bandwidth of hostel proxy to give sufficient speed to
academic segment.

IIT Bombay has blocked the access to majority of video sharing and file sharing site,
which they found were clogging the network. We propose to allocate separate proxy for such
access with download limit on each user. This will give sufficient bandwidth to genuine user
in academic section.

In all solution to improved net experience is to increase the bandwidth. 11T Bombay
has 32 Mbps of ISP line which very low compared to world class institute. In course of
experiment we found some site were not globally known but had very high access rate from
1T Bombay. One should look in to such domain.

IIT Bombay has MRTG for all ISP line and in case of one ISP, which is supposed to
provide 16 Mbps plot never gone above 12 Mbps. In contrast 1IT Bombay has usage more
than 32 Mbps at any given moment. One needs to look at it and be vigilant about it.

From cache experiment we found, unified cache gives high hit rate compared to
isolated cache, which is current configuration at 11'T Bombay. We can use cluster file system
such as GFS and implement unified cache. But this needs some careful configuration such as
simultaneous access to file system and proxy server should handle this.

Implementing above finding will definitely improve overall net experience in currently
clogged network in 11T Bombay.

32

Bibliography

[1] Web server workload characterization: the search for invariants. Martin F. Arlitt, Carey
L. Williamson.1996

[2] The measured access characteristics of world-wide-web client proxy caches. Bradley M.
Duska, David Marwood, Michael J. Feeley. 1997

[3] YouTube Traffic Characterization: A View From the Edge. Phillipa Gill, Martin Arlittz,
Zongpeng Li, Anirban Mahanti. 2007

33

APPENDIX A

A.1. Code for data processing

#!/usr/bin/perl -w

use strict;

use 10::Socket;

use File::ReadBackwards;

use Digest::MD5 gqw(md5_hex);
my ($hash) = md5_hex("TEST");

open(STDERR, ">$ARGV|[2]") or die "Could not open $SARGV[2]: $!\n";

my $nlines = 0;
my $bw;
if (! ($bw = File::ReadBackwards->new($ARGV[0]))) {
print STDERR "Couldn't open $ARGV[0]: $\n";
return -1;
}
open(OUTFILE,">$ARGV[1]");
my $log_line;
my $winex = 0;
my $ltime = 0;
my $key;my $value;my $key t;
while($log_line = $bw->readline) {
my

($varl,$var2,$var3,$vard, $vars,$var6,$var7,$var8,$var9,$var10,$varll,$varl2 $varl3,$varl

4,$var15,$var16)=split(" ",$log_line);
#Handling Month
if ($var2=="Jan") {$var2="01";}
if ($var2=="Feb") {$var2="02";}
if (fvar2=="Mar") {$var2="03";}
if ($var2=="Apr") {$var2="04";}
if ($var2=="May") {$var2="05";}
if ($var2=="Jun") {$var2="06";}
if ($var2=="Jul") {$var2="07";}
if ($var2=="Aug") {$var2="08";}
if ($var2=="Sep") {$var2="09";}
if ($var2=="0ct") {$var2="10";}
if (Jvar2=="Nov") {$var2="11";}
if ($var2=="Dec") {$var2="12";}
if ($var3=="1") {$var3="01";}
if ($var3=="2") {$var3="02";}
if (Bvar3=="3") {$var3="03";}
if ($var3=="4") {$var3="04";}

34

if (Bvar3=="5") {$var3="05";}

if (Bvar3=="6") {$var3="06";}

if ($var3=="7") {$var3="07";}

if ($var3=="8") {$var3="08";}

if ($var3=="9"){$var3="09";}

my ($access_date)=$varl.-".$var2.-'$var3;

my ($hour,$min)=split(":",$var4);

my ($access_time)=$hour.":".$min;

my ($netmon_server)=$var5;

my ($process_time_ms)=$var8;

my ($source_ip)=$var9;

my ($tcp_status,$tcp_status_code)=split("/",$var10);

my ($object_size)=%varll;

my ($request_type)=$varl2;

my ($domain) = md5_hex($varl3);

my ($user_id)= md5_hex($varl4);

my ($server_fetch_type,$server_ip)=split("/",$varl5s);

my ($object_type,$object_sub_type)=split("/",$varl6);

print OUTFILE
"$access_date\t$access_time\tsnetmon_server\t$process_time_ms\t$source_ip\t$tcp_status\t$
tcp_status_code\t$object_size\t$request_type\tsdomain\tSuser_id\t$server_fetch_type\t$serve
r_ip\tSobject_type\t$object_sub_type\n";
}
close(OUTFILE);

A.2. Code for cache simulator

Simulator.java
import java.io.*;
import java.util.*;

public class simulator{
public double cacheSize=0;
public long currentCacheSize=0;
public double totalObjectSize=0;
public double hit=0;
public Hashtable cacheObjectsize = new Hashtable();
public Hashtable cacheHash = new Hashtable();
public int cutoff=100000;
public int count=0;
public int total Count=0;

35

public void sortAndremove(reader obj)

{
ArrayList myArrayList=new ArrayL.ist(this.cacheHash.entrySet());

I Sort the values based on values first and then keys.
Collections.sort(myArrayList, new MyComparator());

Iterator itr=myArrayList.iterator();
String key="";
//String value;

while(this.currentCacheSize+obj.object_size >this.cacheSize)
{
Map.Entry e=(Map.Entry)itr.next();
key = (String)e.getKey();
this.cacheHash.remove(key);
this.currentCacheSize-=Long.parseLong(this.cacheObjectsize.get(key).toString());

¥

itr.remove();

}
public void manageHash(reader obj)
{
[[sort on time stemp
this.sortAndremove(obj);
}

public void process(reader obj){
if ((this.cacheHash.get(obj.domain)==null) &&
(this.currentCacheSize+obj.object_size<=this.cacheSize))

{
this.cacheHash.put(obj.domain, obj.access_time);
this.currentCacheSize+=obj.object_size;

}

else

if ((this.cacheHash.get(obj.domain)==null) &&
(this.currentCacheSize+obj.object_size>this.cacheSize))

{

this.manageHash(obj); // make space for new object and remove object based on LRU

this.cacheHash.put(obj.domain, obj.access_time);
this.currentCacheSize+=0obj.object_size;
36

¥

else
if (this.cacheHash.get(obj.domain)!=null)
{
if (this.count>=this.cutoff)
this.hit+=1,
/lupdate time-stamp in Hash
this.cacheHash.remove(obj.domain);
this.cacheHash.put(obj.domain,obj.access_time);
}

¥

public static void main(String[] argv){
int linecount=0;
simulator nm4=new simulator();
nm4.cacheSize=100000000000L; //1 MBytes
try
{

FileReader kl = new FileReader("/home/data.txt");
BufferedReader mk = new BufferedReader(kl);
String sword;

inti=1;

while ((sword = mk.readLine()) != null)

{

linecount++;
if(linecount==100000)
{

System.out.printin(i+"\t"+(nm4.hit*100)/nm4.total Count);i++;linecount=1,;

}

reader test = new reader(sword);

/[if (test.server.equals("nm4™)) /I ** for single
nm4.totalCount++;

if (test.cachable()==true)
{// send test object for processing

nm4.count++;
nm4.cacheObjectsize.put(test.domain,Long.toString(test.object_size));
nm4.process(test);

¥

37

test=null;
Itest.display();
}
mk.close();
System.out.printIn("Hit in cache :" + nm4.hit);//+" "+nm2.hit+" "+nm3.hit+" "+nm4.hit);
System.out.printin("*Total nm4 line : "+ nm4.totalCount);//+" "+nm2.count+"
"+nm3.count+" "+nm4.count);
System.out.printIn("Total cacheable object : " + nm4.count);

}
catch (IOException ex){}

}

static class MyComparator implements Comparator{
public int compare(Object obj1, Object obj2){

int result=0;

Map.Entry el = (Map.Entry)obj1 ;
Map.Entry e2 = (Map.Entry)obj2 ;
//Sort based on values.

String valuel = el.getValue().toString();
String value2 = e2.getValue().toString();
result=valuel.compareTo(value2);
return result;

reader.java - returns true if object is cacheable

public class reader{
public String access_time;
public String domain;
public String netmon_server;
public String request_type;
public long object_size;
public String object_type;
public String object_sub_type;
public boolean consider=false;
static int count=0;
public String server;
public reader(String str){

38

String[] data = str.split("\\s+");

server=data[0];

/ISystem.out.printin(data[1]+" : "+data.length);
if (data.length>6)

{
if

(('data[3].equals("CONNECT"))&&(data.length>6)&&('data[1].equals("message")))

{

consider=true;
count++;
netmon_server=data[0];
access_time=data[1];
object_size=Long.parseLong(data[2]);
request_type=data[3];
domain=data[4];
object_type=data[5];
object_sub_type=data[6];

3}

public void display()
{
System.out.printin(domain+" "+object_sub_type+" "+object_type);
}
/**
* Cheks whether given line is chachable or not
* @return true if line is chachable else return false
*/
public boolean cachable(){
if ((this.consider==true) && ((this.object_type.equals("application™)) ||
(this.object_type.equals("audio™)) ||
(this.object_type.equals("video™)) ||
(this.object_type.equals("flv*)) ||
(this.object_type.equals(“text™)) ||
(this.object_type.equals(“image™))||
(this.object_type.equals(binary™))) && (!(this.object_size >=
200000000)))
return true;
else
return false;

39

A.3. Code for bombardment detection
Server.pl : for processing log file and sending alerts

#!/usr/bin/perl -w

use strict;

use 10::Socket;

use File::ReadBackwards;

my $conf = '/home/logproc/server.cf’;

my ($port, $logfile, Swindow, $ok, $warning, $errorlog);
my ($sok, $swarning, $scritical);

my %ip_Hash=();

open(FILE, $conf) or die "ERROR: Couldn't read $conf: $!";

while(<FILE>) {
chomp;
next if (/N\s*#/);
next if (/MN\s*$/);
s/Ms+//g;
sN\s+$//g;
($port) =$_ =~ /"PORT:\s+(\d+)$/ if (/*PORT:/);
($logfile) =$_ =~ /"FILE:\s+(.+)$/ if (/*FILE:/);
($window) =$ =~ /AWINDOW:\s+(\d+)$/ if ((*"WINDOW:/);
($ok) =$ =~ /"OK:\s+(\d+)$/ if (/"OK:/);

($warning) = $_ =~ A"WARNING:\s+(\d+)$/ if (*"WARNING:/);
($errorlog) =$_ =~ /"ERRORLOG:\s+(.+)$/ if (*"ERRORLOG:/);

($s0K) = $_ =~ I"SOK:\s+(\d)$/ i (/ASOK:/);

($swarning) = $_ =~ /"SWARNING:\s+(\d)$/ if (*"SWARNING:/);
($scritical) =$_ =~ /"SCRITICAL:\s+(.+)$/ if (/*"SCRITICAL.:/);

}

close(FILE);

open(STDERR, ">$errorlog™) or die "Could not open $errorlog: $!\n";

$window *= 60; # convert window in minutes to seconds
#$window = $epoch - $window; # calculate orignal time window
#print "$errorlog $logfile"”;

#

40

getlines function returns number of lines between specified time
window. Function takes no arguments. Function will return -1 in
case of any error and log error message to ERRORLOG file.

#

sub hashValueDescendingNum {
$ip_Hash{$b} <=> $ip_Hash{$a};
}

sub getlines {

my $nlines = 0;

my $bw;

if (! ($bw = File::ReadBackwards->new($logfile))) {
print STDERR "Couldn't open $logfile: $1\n";
return -1,

}

my $log_line;

my $winex = 0;

my $ltime = 0;

my $key;my $value;my $key t;

my $epoch = time();

my $window1l = $epoch - $window; # calculate orignal time window

while($log_line = $bw->readline) {

my ($ltime) = $log_line =~ /squid\[\d+\]:\s+(\d+)/;

my ($ip) = $log_line =~ /squid\[\d+\]:\s+\d-+\.\d+\s+\d-+\s+((\d+)(\.\d+){3})/;
$ip_Hash{$ip}=$ip_Hash{Sip}+1;

#print %ip_Hash;

$nlines++ if ($ltime >= $window1);

$winex++ if ($ltime < $windowl);

Read 50 extra lines alter window is exceeded.
This is just a precautionary measure because
Logs may come out of time.

last if ($winex >= 50);

$|++;
my $send_mail=0;

open(OUTFILE,">/home/logproc/mail.lIst");
print OUTFILE "NETMON Bombardment in Last 10 minutes of span\n”;

print OUTFILE "IP ADDRESS - Netmon Hits\n";
foreach $key_t(sort hashVValueDescendingNum (keys(%ip_Hash))) {
if ($ip_Hash{$key_t}>1000){
$send_mail=1;
#print "$key _t : Sip_Hash{$key t}\n";
print OUTFILE "$key_t - $ip_Hash{$key_t} \n";}
}
if ($send_mail==1){
system(*'/home/logproc/mail.py nirav\@cse.iith.ac.in NETMON \""cat
/home/logproc/mail.Ist'\"");
$send_mail=0;
}
close(OUTFILE);
return $nlines;

startserver subroutine creates a TCP socket and listens on port specified in conf file.
It can send three values to client depending

upon the value returned by getlines function and values given in conf

file.

sub startserver {
my $server = 10::Socket::INET->new(LocalPort => $port,
Type =>SOCK_STREAM,
Reuse =>1,
Listen =>1
) or die "Couldn't be atcp ™.
" server on port $port : $@\n";
my $client;
while ($client = $server->accept()) { #Blocking Call .. will block here till it get
connect request from logproc.pl
my $nlines = getlines();
set default status to critical so that if anything is wrong
my $status = $scritical;
if ($nlines >=0) {
if ($nlines <= $ok) {
$status = $sok;
} elsif ($nlines <= $warning) {
$status = $swarning;

}else {

$status = $scritical;
42

¥
¥

$client->send($status);
close($client);
%ip_Hash=();
}
}

startserver();

Should never reach here.
exit(0);

server running on nagios machine
#!/usr/bin/perl -w
use strict;

use 10::Socket;
my ($remote_host, Sremote_port) = @ARGV;
my $socket = 10::Socket::INET->new(PeerAddr => $remote_host,
PeerPort => $remote_port,
Proto =>"tcp",
Type =>SOCK_STREAM)
or die "Couldn't connect to $remote_host:$remote_port : $@\n";

my $answer = <$socket>;

print $answer;

43

