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Graphical Models for Data Mining
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Outline of the Talk

• Graphical Models - Overview

• Motivation

• Bayesian Networks

• Markov Random Fields

• Inferencing and Learning

• Expressive Power

• Example Applications

– Gene Expression Analysis

– Web Page Classification

• Summary
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Graphical Models - An Introduction

• GraphG =< V,E > representing a family of
probability distributions

• NodesV - Random Variables

• EdgesE - Indicate Stochastic Dependence

• G encodesConditional Independenceassertions in
domain

• Mainly two kinds of Models

– Directed (a.k.aBayesian Networks)

– Undirected (a.k.aMarkov Random Fields (MRFs))
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Graphical Models (Contd. . . )

Cloudy

RainSprinkler

Wet Grass a

• Direction of edges based on causal knowledge

– A→ B : A ”causes” B

– A−B : Not sure of causality

• Mixed versions also possible -Chain Graphs
aFigure adapted from [RN95]
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Why Graphical Models?

• Framework for modeling and effeciently reasoning
about multiple correlated random variables

• Provides insights into the assumptions of existing
models

• Allows qualitative specification of independence as-
sumptions
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Why Graphical Models?
Recent Trends in Data Mining

• Traditional learning algorithms assume

– Data available in record format

– Instances arei.i.d samples

• Recent domains like Web, Biology, Marketing have
morerichly structured data

• Examples : DNA Sequences, Social Networks, Hy-
perlink structure of Web, Phylogeny Trees

• Relational Data Mining - Data spread across multi-
ple tables

• Relational Structure helps significantly in enhancing
accuracy [CDI98,LG03]

• Graphical Models offer a natural formalism to
model such data
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Directed Models : Bayesian Networks

a

aFigure adapted
from [RN95]

• Bayes Net- DAG encoding the con-
ditional independence assumptions
among the variables

• Cycles not allowed - Edges usually
have causal interpretations

• Specifies a compact representation
of joint distribution over the vari-
ables given by

P (X1, . . . , Xn) =
n∏

i=1

Pi(Xi | Pa(Xi))

wherePa(Xi) = Parents of NodeXi

in the network

• Pi → Conditional Probability Dis-
tribution (CPD)of Xi
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Undirected Graphical Models
Markov Random Fields

X4 X5

X3X2

X1

• Have been well studied and applied
in Vision

• No underlying causal structure

• Joint distribution can be factorized
into

P (X1, . . . , Xn) =
1

Z

∏
c∈C

ψc(Xc)

where C - Set of cliques in graph

• ψc - Potential function (a positive
function) on the cliqueXc

• Z - Partition Function given by

Z =
∑
~x

∏
c∈C

ψc(Xc)
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Expressive Power
Directed vs Undirected Models

• Dependencies which can be modeled - Not exactly
similar

• Example :

a

• Decomposable Models - Class of dependencies
which both can model

aFigure adapted from [JP98]
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What Class of Distributions Can be Modeled?
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Inference
• Given a subset of variablesXK ,

compute distribution ofP (XU |XK)

where ~X = {XU} ∪ {XK}

• Marginals - involve summation over
exponential terms

• Complexity handled by exploiting
the graphical structure

• Algorithms : Exact and Approxi-
mate

• Some Examples :Variable Elimina-
tion, Sum-Product Algorithm, Sam-
pling Algorithm
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Learning

• Estimating graphical structureG and parameters
from data

• Standard ML estimates used when variables in the
model are fullyObservable

• MRFs use Iterative Algorithms for parameter esti-
mation

• Structure Learning relatively hard
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Applications
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Bio-informatics
Gene Expression Analysis

• Gene Expression Analysis - Introduction

• Standard Techniques - Clustering and Bayesian Net-
works

• Probabilistic Relational Models (PRMs)

• Integrating Additional Information into PRM

• Learning PRMs from Data
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DNA - The Blueprint of Life!

• DNA - Deoxyribo Nucleic Acid

• Double Helix Structure

• Each Strand - Sequence ofNucleotides{Adenine
(A),Guanine (G),Cytosine (C), Thymine (T)}

• Complementary Strands - A↔ G, C↔ T

• Gene- Portions of DNA that code for Proteins or
large biomolecules
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The Central Dogma - Transcription and
Translation

a

aFigure Source : www.swbic.org/education/comp-bio/images/
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Gene Expression

• Each cell has same copy of DNA still different cells
synthesize different Proteins!

– Example : Cells making the proteins needed for muscles,
eye lens etc.

• Gene said to beexpressedif it produces it’s corre-
sponding protein

• Genes expressed vary - Based on time, location, en-
vironmental and biological conditions

• Expression regulated by a complex collection of
proteins
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DNA Micro-array Technology

• Micro-array or Gene chipsused for experiments

• Allows measurement ofexpression levelsof tens of
thousands of genes simultaneously

• Many experiments measureexpressionof same set
of genes under various environmental/biological
conditions

– Example : Cell is heated up, cooled down, drug added

• Expression Level

– Estimated based on amount of mRNA for that gene cur-
rently present in that cell

– Ratio of expression level under experiment condition to ex-
pression under normal condition taken instead
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Gene Expression Data

a

• Enormous amount of expression data for various
species publicly available

• Some Examples

– EBI Micro-array data repository
(http://www.ebi.ac.uk/arrayexpress/)

– Stanford Micro-array Database (http://genome-
www5.stanford.edu/) etc.

aFigure Source : [?]
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The Problem - Drowning in Data!
Where is Information?

• Enormous amount of data

– EBI data repository has grown 100-fold just in a year!

• Difficult for humans to comprehend, detect patterns

• Biological experiments - Costly and Time consum-
ing

• Machine Learning/Data Mining techniques to the
rescue

– Allow learning of models which provide useful insight into
the biological processes

– Reduce the number of biological experiments needed
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Gene Expression Analysis - Approaches

• Aim

– To identify co-regulated genes

– To gain biological insight into gene regulatory
mechanisms

• Approaches

– Clustering

– Bayesian Networks

– Probabilistic Relational Models (PRMs)

• Focus of the Presentation

– Probabilistic Models for Gene Expression using
PRMs
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Clustering

• Two-Side Clustering

– Genes and Experiments partitioned into clustersG1, . . . , Gk

andE1, . . . , El simultaneously

– Summarizes data into groups ofk × l

– Assumption - Expression governed by a distribution specific
to each combination of Gene/Experiment clusters

• Clustering Techniques - Problems

– Similarity based on all the measurements. What if similarity
exists only over a subset of measurements?

– Difficult to integrate additional information - Gene Annota-
tion, Cell-Type/Strain used, Gene Promoters
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Bayesian Networks
• Bayes Net- DAG encoding the con-

ditional independence assumptions
among the variables

• Specifies a compact representation
of joint distribution over the vari-
ables given by

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi))

wherePa(Xi) = Parents of NodeXi

in the network

• Provides insight into the influence
patterns across variables

• Friedman et al have applied it to
learn gene regulatory mechanisms
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Bayesian Networks (Contd. . . )
Modeling Relational Data

• Relational Data- Data spread across multiple tables

• Provides valuable additional information for learn-
ing models

– Example : DNA Sequence Information, Gene Annotations

• Bayes Nets not suitable for modeling

– Bayes Net Learning Algorithms - Attribute Based

– Assume all the data to be present in a single table

– Make sample independence assumption

• Solution : Why not “flatten” the data?

– Will make the samples dependent

– Can’t be used to reach conclusions based on relational de-
pendencies
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Probabilistic Relational Models (PRMs)

• Learns a probabilistic model over arelational
schemainvolving multiple entities

• Entities in the current problemGene, Array and
Expression

• Each entity X can have attributes of the form

– X.B - Simple Attribute

– X.R.C - Attribute of another relation where R is aReference
Slot

• Reference Slots- Similar to foreign keys in the
database world
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PRMs (Contd. . . )

• Attributes of objects - Random Variables

• Given the above, a PRMΠ is defined by

– A class-level dependency structureS

– The parameter setθS for the resultantCondi-
tional Probability Distribution (CPD)

• The PRMΠ is only a class-level “template” - Gets
instantiated for each object
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A Sample PRM

a

aFigure Source : [FGKP99]
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PRM for Gene Expression

Gene Array

GCluster

Expression

AAM

Phase

ACluster

Level

a

aFigure Source : [STG+01]



Title Page

Contents

JJ II

J I

Page 29 of 39

Go Back

Full Screen

Close

Quit

Inferencing in PRMs

• A Relational Skeletonσ is an instantiation of this
schema

• For Example : 1000 gene objects, 100 array objects
and 100,000 objects expression objects

• Relational skeletonσ completely specifies the val-
ues for the reference slots

• Objective
Given σ, with observed evidence regarding some
variables, update the probabilistic distribution over
the rest of the variables
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Inferencing in PRMs (Contd. . . )

• Given a relational skeletonσ, a PRM induces a
Bayesian Networkover all the random variables

• Parents andCPDs of Bayes Net - Obtained from
class-level PRM

• Bayesian Network Inferencing Algorithms are then
used forinferencein the resultant network
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Integrating Additional Sources of Data
DNA Sequence Information

• Transcription Factors (TFs)- Proteins that bind
to specific DNA sequence in the promoter region
known asbinding sites

• TFs encourage or repress the start of transcription

• Why is sequence information important?

– Help in identifying TFbinding sites

– Two genes with similar expression profiles -
mostly likely to be controlled by same TFs

• New features added

– Base pairs of Promoter Sequence

– Regulatesvariableg.R(t) for each TFt
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PRM with Promoter Sequence Information

Array

g.R(t2)

Expression

Phase

ACluster

Level

Gene

g.R(t1)

S1 S2 S3

a

aFigure Source : [SBS+02]
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Learning the Models

• CPD Parameter Estimation

– Expression.Level modeled using a Gaussian

– CPD divides the expression values intok × l groups

– Parameter set constitutes the mean and variance of each
group

• CPD Structure Learning

– Scoring Function - measure of “goodness” of a structure rel-
ative to data

– Search Algorithm - finding the structure with highest score

– Bayesian Score as scoring function- Posterior of structure
given dataP (S | D)

– Greedy local structure search used for search algorithm
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PRMs for Gene Expression : Conclusion

• Templates for directed graphical models over rela-
tional data

• PRMs can be applied to relational data spread across
multiple tables

• Capable of learningunified modelsintegrating se-
quence information, expression data and annotation
data

• Can easily accommodate additional information re-
lated to domain
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Web Mining
Collective Web Page Classification [CDI98]

• Class of neighbouring pages (in Web Graph) usually
correlated.

• Construct a directed graphical model based on the
web graph.

– Nodes - Random Variables for the category of each page

• Given an assignment of categories for some nodes :

– Run inferencingon the above graphical model

– Find theMost Probable Explanationfor the rest
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Summary

• Graphical Models - A natural formalism for model-
ing multiple correlated random variables

• Allows integration of domain knowledge in the form
of dependency structures

• Techniques especially useful when data spread
across multiple tables

• Allows easy integration of new additional informa-
tion



Title Page

Contents

JJ II

J I

Page 37 of 39

Go Back

Full Screen

Close

Quit

Thanks!
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