Graphical Models

Vikas Kedia

August 18, 2005

(ロ)、(型)、(E)、(E)、 E、 の(の)

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- What are Graphical Models?
- Inferencing Algorithms
- Conditional Random Fields
- Application Example

Graphical Models

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Introduction

- Traditional Classification: each instance is labeled individually
- In many tasks this model is inadequate
 - POS tagging: tags of neighboring words important clues
 - Web Page Classification: classes of linked pages useful
- Collective Classification: classes/labels of all the instances inferred collectively
- Graphical Models a formalism for collective classification

Graphical Models

Relations represented as a graph

Vertices Labels/Observations eg: features of web page (observed), class of page (hidden) Edges Dependencies eg: edge between linked web pages

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Markov Property

- Probability distribution defined over values of all nodes in graph
- Local Markov Property : Given the values of its neighbours, value of the node is conditionally independent of values of other nodes

$$p(Y_v|Y_w, w \neq v) = p(Y_v|Y_w, w \sim v)$$

Global Markov Property

$$p(Y_V) = \frac{\prod_C \phi_C(Y_{V_C})}{\sum_{Y_V} \prod_C \phi_C(Y_{V_C})}$$

 ϕ_C Potential functions over labels of nodes in clique C

Example Graph

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Inferencing Algorithm

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Two Inferencing Tasks

Finding the most likely value of the variables

 $\max_{x_1, x_2, x_3, x_4, x_5, x_6} p(X_V)$

Finding the marginal probabilities

$$p(x_1) = \sum p(X_V)$$

 x_2, x_3, x_4, x_5, x_6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Naive Approach

- Enumerate all possible combinations of values to all the variables
- Exponential number of possibilities, r⁶ where r is the cardinality of each variable
- Clearly intractable for large graphs
- Insight: multiplication distributes over both max and sum operator

Example

$$p(x_{1}) = \frac{\sum_{x_{2},x_{3},x_{4},x_{5},x_{6}} \phi(x_{1},x_{2})\phi(x_{1},x_{3})\phi(x_{2},x_{4})\phi(x_{3},x_{5})\phi(x_{2},x_{5},x_{6})}{Z}$$

$$= \frac{\sum_{x_{2}} \phi(x_{1},x_{2})\sum_{x_{3}} \phi(x_{1},x_{3})\sum_{x_{4}} \phi(x_{2},x_{4})\sum_{x_{5}} \phi(x_{3},x_{5})\sum_{x_{6}} \phi(x_{2},x_{5},x_{6})}{Z}$$

$$= \frac{\sum_{x_{2}} \phi(x_{1},x_{2})\sum_{x_{3}} \phi(x_{1},x_{3})\sum_{x_{4}} \phi(x_{2},x_{4})\sum_{x_{5}} \phi(x_{3},x_{5})m_{6}(x_{2},x_{5})}{Z}$$

$$= \frac{\sum_{x_{2}} \phi(x_{1},x_{2})\sum_{x_{3}} \phi(x_{1},x_{3})m_{5}(x_{2},x_{3})\sum_{x_{4}} \phi(x_{2},x_{4})}{Z}$$

$$= \frac{\sum_{x_{2}} \phi(x_{1},x_{2})m_{4}(x_{2})\sum_{x_{3}} \phi(x_{1},x_{3})m_{5}(x_{2},x_{3})}{Z}$$

$$= \frac{\sum_{x_{2}} \phi(x_{1},x_{2})m_{4}(x_{2})m_{3}(x_{1},x_{2})}{Z}$$

Some Observations

- ▶ No more than 3 variables occur together in any summand
- Complexity is therefore r^3
- The order in which variables were chosen is elimination order

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complexity would depend on the elimination order

Graph Theory Problem

- Variable that is summed over can be removed from the graph
- Intermediate function created is function of all the variables connected to the variable being summed over

- Therefore create a clique of all those variables
- Repeat till all the nodes are removed
- Largest clique created corresponds to the complexity

X2

Х3

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲ ● ● ● ●

Treewidth

- Different elimination order give rise to different max clique size
- Treewidth is the minimum over all such max clique size
- To minimise complexity chose elimination order which gives rise to treewidth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unfortunately this problem is NP-Hard

Elimination Order in Specific Cases

- For specific types of graphs optimal elimination order is easy to see
- Example: for chains just keep on removing vertices from one end
- Gives rise to the Viterbi Algorithm
- Columns of the table correspond to the intermediate functions

Elimination Order for Trees

Eliminate all children of a node before a node is eliminated

Conditional Random Fields

Limitation of HMM

- In Hidden Markov Models we assume that generation of a token depends only on the current state
- This restriction might be too limiting, we might want to include arbitrary features of data
- For example: we might want to look at some tokens on both sides of the current token
- Including such featuers in HMM increase the complexity of inferencing

Conditional Random Fields

- CRF introduced to overcome this limitation
- Nodes in the graph correspond only to labels
- Model globally conditioned on the observation data
- Potential functions therefore can be over entire data sequence

$$p(Y_V|X) = \frac{\prod_C \phi_C(Y_{V_C}, X)}{\sum_{Y_V} \prod_C \phi_C(Y_{V_C}, X)}$$

Linear CRF

- Potential functions are assumed to be exponential
- Parameters are tied across cliques of same type
- eg: For a chain CRF

$$p(y|x) = \frac{exp(\sum_{e \in E,k} \lambda_k f_k(y_e, x) + \sum_{v \in V,k} \mu_k g_k(y_v, x))}{Z(x)}$$

- > λ_k s and μ_k s common for all edge and singleton cliques resp.
- Intuitively λ_ks are similar to state transition probabilities and μ_k to generation probabilities

Estimation and Inference

- ▶ λ_k s and μ_k s need to be learned from labelled training data
- Parameters are estimated using Maximum Likelihood hypothesis
- Log likelihood of data is maximised using numerical methods

$$L = \sum_{j} \left(\sum_{e \in E, k} \lambda_k f_k(y_e, x) + \sum_{v \in V, k} \mu_k g_k(y_v, x) - \log Z(x) \right)$$

 Gradient of log likelihood involves expected counts of feature values, calculated using dynamic programming

Graphical Models in Reconciliation

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Reconciliation

- Reconciliation means finding duplicate records
- Traditionally based on syntactic similarity between pair of records
- Information flows from similarity of attributes to similarity of records
- But similarity between records also implies that the attributes are same
- eg similar citations means that the journal names in two also refer to same journal
- This bi-directional flow can be used for collective reconciliation

Example

Record	Title	Author	Venue
b1	Record Linkage using CRFs	Linda Stewart	KDD-2003
b2	Record Linkage using CRFs	Linda Stewart	9th SIGKDD
b3	Learning Boolean Formulas	Bill Johnson	KDD-2003
b4	Learning of Boolean Expressions	William Johnson	9th SIGKDD

Table: Duplicate Citations[3]

(ロ)、(型)、(E)、(E)、 E、 の(の)

- b1=b2 means that KDD-2003 is same as 9th SIGKDD
- This will help in inferring similarity between b3 and b4

Collective Model

- Binary nodes for each pair of records
- Nodes for all possible pairs of values for each attribute called evidence nodes
- Value of evidence nodes is similarity measure and is observed
- Binary information nodes corresponding to each evidence node
- Information node represent whether the pair of attribute values are same

Cliques in the Model

- Singleton cliques for information and record nodes
- Edges connecting record nodes to the corresponding information nodes
- Edge connecting information nodes to the corresponding evidence nodes

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inferencing done using graph partitioning

References

M. I. Jordan.

Graphical models.

In *Statistical Science (Special Issue on Bayesian Statistics)*, pages 140–155, 2004.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.

In *Proc. 18th International Conf. on Machine Learning*, pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parag and P. Domingos. Multi-relational record links

Multi-relational record linkage.

In Proceedings of the KDD-2004 Workshop on Multi-Relational Data Mining, pages 31–48, 2004.