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Graphical Models



Introduction

I Traditional Classification: each instance is labeled individually
I In many tasks this model is inadequate

I POS tagging: tags of neighboring words important clues
I Web Page Classification: classes of linked pages useful

I Collective Classification: classes/labels of all the instances
inferred collectively

I Graphical Models a formalism for collective classification



Graphical Models

I Relations represented as a graph

Vertices Labels/Observations eg: features of web page
(observed), class of page (hidden)

Edges Dependencies eg: edge between linked web
pages



Markov Property

I Probability distribution defined over values of all nodes in
graph

I Local Markov Property : Given the values of its neighbours,
value of the node is conditionally independent of values of
other nodes

p(Yv |Yw ,w 6= v) = p(Yv |Yw ,w ∼ v)

I Global Markov Property

p(YV ) =

∏
C φC (YVC

)∑
YV

∏
C φC (YVC

)

φC Potential functions over labels
of nodes in clique C



Example Graph

p(XV ) =
φ(x1, x2)φ(x1, x3)φ(x2, x4)φ(x3, x5)φ(x2, x5, x6)

Z



Inferencing Algorithm



Two Inferencing Tasks

I Finding the most likely value of the variables

max
x1,x2,x3,x4,x5,x6

p(XV )

I Finding the marginal probabilities

p(x1) =
∑

x2,x3,x4,x5,x6

p(XV )



Naive Approach

I Enumerate all possible combinations of values to all the
variables

I Exponential number of possibilities, r6 where r is the
cardinality of each variable

I Clearly intractable for large graphs

I Insight: multiplication distributes over both max and sum
operator



Example
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Some Observations

I No more than 3 variables occur together in any summand

I Complexity is therefore r3

I The order in which variables were chosen is elimination order

I Complexity would depend on the elimination order



Graph Theory Problem

I Variable that is summed over can be removed from the graph

I Intermediate function created is function of all the variables
connected to the variable being summed over

I Therefore create a clique of all those variables

I Repeat till all the nodes are removed

I Largest clique created corresponds to the complexity





Treewidth

I Different elimination order give rise to different max clique size

I Treewidth is the minimum over all such max clique size

I To minimise complexity chose elimination order which gives
rise to treewidth

I Unfortunately this problem is NP-Hard



Elimination Order in Specific Cases

I For specific types of graphs optimal elimination order is easy
to see

I Example: for chains just keep on removing vertices from one
end

I Gives rise to the Viterbi Algorithm

I Columns of the table correspond to the intermediate functions



Elimination Order for Trees

I Eliminate all children of a node before a node is eliminated



Conditional Random Fields



Limitation of HMM

I In Hidden Markov Models we assume that generation of a
token depends only on the current state

I This restriction might be too limiting, we might want to
include arbitrary features of data

I For example: we might want to look at some tokens on both
sides of the current token

I Including such featuers in HMM increase the complexity of
inferencing



Conditional Random Fields

I CRF introduced to overcome this limitation

I Nodes in the graph correspond only to labels

I Model globally conditioned on the observation data

I Potential functions therefore can be over entire data sequence

p(YV |X ) =

∏
C φC (YVC

,X )∑
YV

∏
C φC (YVC

,X )



Linear CRF

I Potential functions are assumed to be exponential

I Parameters are tied across cliques of same type
I eg: For a chain CRF

p(y |x) =
exp(

∑
e∈E ,k λk fk(ye , x) +

∑
v∈V ,k µkgk(yv , x))

Z (x)

I λks and µks common for all edge and singleton cliques resp.

I Intuitively λks are similar to state transition probabilities and µk to
generation probabilities



Estimation and Inference

I λks and µks need to be learned from labelled training data

I Parameters are estimated using Maximum Likelihood
hypothesis

I Log likelihood of data is maximised using numerical methods

L =
∑

j

(
∑

e∈E ,k

λk fk(ye , x) +
∑

v∈V ,k

µkgk(yv , x)− log Z (x))

I Gradient of log likelihood involves expected counts of feature values,
calculated using dynamic programming



Graphical Models in Reconciliation



Reconciliation

I Reconciliation means finding duplicate records

I Traditionally based on syntactic similarity between pair of
records

I Information flows from similarity of attributes to similarity of
records

I But similarity between records also implies that the attributes
are same

I eg similar citations means that the journal names in two also
refer to same journal

I This bi-directional flow can be used for collective reconciliation



Example

Record Title Author Venue
b1 Record Linkage using CRFs Linda Stewart KDD-2003
b2 Record Linkage using CRFs Linda Stewart 9th SIGKDD
b3 Learning Boolean Formulas Bill Johnson KDD-2003
b4 Learning of Boolean Expressions William Johnson 9th SIGKDD

Table: Duplicate Citations[3]

I b1=b2 means that KDD-2003 is same as 9th SIGKDD

I This will help in inferring similarity between b3 and b4



Collective Model

I Binary nodes for each pair of records

I Nodes for all possible pairs of values for each attribute called
evidence nodes

I Value of evidence nodes is similarity measure and is observed

I Binary information nodes corresponding to each evidence node

I Information node represent whether the pair of attribute
values are same



Cliques in the Model

I Singleton cliques for information and record nodes

I Edges connecting record nodes to the corresponding
information nodes

I Edge connecting information nodes to the corresponding
evidence nodes

I Inferencing done using graph partitioning
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