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Graphical Models



Introduction

» Traditional Classification: each instance is labeled individually
» In many tasks this model is inadequate

» POS tagging: tags of neighboring words important clues

» Web Page Classification: classes of linked pages useful

» Collective Classification: classes/labels of all the instances
inferred collectively

» Graphical Models a formalism for collective classification



Graphical Models

» Relations represented as a graph

Vertices Labels/Observations eg: features of web page
(observed), class of page (hidden)
Edges Dependencies eg: edge between linked web

pages

Y1 /‘; Y3




Markov Property

» Probability distribution defined over values of all nodes in

graph

» Local Markov Property : Given the values of its neighbours,
value of the node is conditionally independent of values of
other nodes

p(YV|YW7 w # V) = p(Yv|YW> W~ V)
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» Global Markov Property

 Tlcoc(Yv)
POV) = S e oc(Vve)

¢c Potential functions over labels
of nodes in clique C




Example Graph

P(x1, x2)P(x1, X3)P(x2, Xa)P(x3, X5 ) H(x2, X5, X6)

p(Xv) = Z



Inferencing Algorithm



Two Inferencing Tasks

» Finding the most likely value of the variables

max  p(Xv)
X1,X2,X3,X4,X5,X6

» Finding the marginal probabilities

pla)= > p(Xv)

X2,X3,X4,X5,X6



Naive Approach

Enumerate all possible combinations of values to all the
variables

Exponential number of possibilities, r® where r is the
cardinality of each variable

Clearly intractable for large graphs

» Insight: multiplication distributes over both max and sum
operator



p(x1)

Example
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Some Observations

» No more than 3 variables occur together in any summand
» Complexity is therefore r3
» The order in which variables were chosen is elimination order

» Complexity would depend on the elimination order
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Graph Theory Problem

Variable that is summed over can be removed from the graph

Intermediate function created is function of all the variables
connected to the variable being summed over

Therefore create a clique of all those variables
Repeat till all the nodes are removed

Largest clique created corresponds to the complexity






Treewidth

» Different elimination order give rise to different max clique size
» Treewidth is the minimum over all such max clique size

» To minimise complexity chose elimination order which gives
rise to treewidth

» Unfortunately this problem is NP-Hard



Elimination Order in Specific Cases

» For specific types of graphs optimal elimination order is easy
to see

» Example: for chains just keep on removing vertices from one
end

» Gives rise to the Viterbi Algorithm

» Columns of the table correspond to the intermediate functions



Elimination Order for Trees

» Eliminate all children of a node before a node is eliminated

O



Conditional Random Fields



Limitation of HMM

In Hidden Markov Models we assume that generation of a
token depends only on the current state

This restriction might be too limiting, we might want to
include arbitrary features of data

For example: we might want to look at some tokens on both
sides of the current token

Including such featuers in HMM increase the complexity of
inferencing
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Conditional Random Fields

CRF introduced to overcome this limitation
Nodes in the graph correspond only to labels
Model globally conditioned on the observation data

Potential functions therefore can be over entire data sequence

C esc(VeX)
POVIX) = = (Ve 0




v

\ A 4

vV YV

Linear CRF

Potential functions are assumed to be exponential

Parameters are tied across cliques of same type
eg: For a chain CRF

—oP(Y ek Mk(Yes X) + 2 e vk k8K (Yv, X))
p(ylx) = 709

Aks and pxs common for all edge and singleton cliques resp.

Intuitively Ags are similar to state transition probabilities and uy to
generation probabilities



Estimation and Inference

> Ags and ps need to be learned from labelled training data

» Parameters are estimated using Maximum Likelihood
hypothesis

» Log likelihood of data is maximised using numerical methods

L= (D Mfilye: )+ > ngulyv, x) — log Z(x))

j ecEk VeV k

> Gradient of log likelihood involves expected counts of feature values,
calculated using dynamic programming



Graphical Models in Reconciliation



Reconciliation

» Reconciliation means finding duplicate records

Traditionally based on syntactic similarity between pair of
records

Information flows from similarity of attributes to similarity of
records

But similarity between records also implies that the attributes
are same

eg similar citations means that the journal names in two also
refer to same journal

This bi-directional flow can be used for collective reconciliation



Example

Record Title Author Venue
bl Record Linkage using CRFs Linda Stewart KDD-2003
b2 Record Linkage using CRFs Linda Stewart 9th SIGKDD
b3 Learning Boolean Formulas Bill Johnson KDD-2003
b4 Learning of Boolean Expressions William Johnson 9th SIGKDD

Table: Duplicate Citations[3]

» bl=b2 means that KDD-2003 is same as 9th SIGKDD
» This will help in inferring similarity between b3 and b4



Collective Model

sim{KDD-2008,
Gth SIGKDD)

» Binary nodes for each pair of records

» Nodes for all possible pairs of values for each attribute called
evidence nodes

» Value of evidence nodes is similarity measure and is observed
» Binary information nodes corresponding to each evidence node

Information node represent whether the pair of attribute
values are same



Cliques in the Model

» Singleton cliques for information and record nodes

» Edges connecting record nodes to the corresponding
information nodes

» Edge connecting information nodes to the corresponding
evidence nodes

» Inferencing done using graph partitioning



References |

4 M. I. Jordan.
Graphical models.
In Statistical Science (Special Issue on Bayesian Statistics),
pages 140-155, 2004.

@ John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional random fields: Probabilistic models for segmenting
and labeling sequence data.

In Proc. 18th International Conf. on Machine Learning, pages
282-289. Morgan Kaufmann, San Francisco, CA, 2001.

[@ Parag and P. Domingos.
Multi-relational record linkage.
In Proceedings of the KDD-2004 Workshop on
Multi-Relational Data Mining, pages 31-48, 2004.



	Graphical Models
	Inferencing Algorithm
	Conditional Random Fields
	Graphical Models in Reconciliation

