CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects
Lecture 1: What is a proof?
July 30, 2012

Credit Structure

Course credit structure

quizzes	20%
assignments	10%
mid-sem	30%
end-sem	40%

Office hours:
11:00am to $1: 00 \mathrm{pm}$ (Wednesday)
TA meeting hours: $5: 15 \mathrm{pm}$ to $6: 15 \mathrm{pm}$ (Thursday) - ?

Course Outline

- Mathematical reasoning and mathematical objects
- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
- What is a proof? Types of proof methods
- Induction
- Sets, relations, functions, partial orders, graphs
- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
- What is a proof? Types of proof methods
- Induction
- Sets, relations, functions, partial orders, graphs

Text: \quad Discrete Mathematics and its applictions, by Kenneth Rosen Chapter 2 : 2.1, 2.2, 2.3, Chapter $8: 8.1,8.5,8.6$
Class notes: will be uploaded on Moodle

- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

What is a proposition?

A statement that is either true or false.

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2;

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2 ;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}+b^{2}=c$;

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2 ;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}+b^{2}=c$;
\forall : for all,
\exists : there exists,
ϵ, \notin : contained in, and not contained in

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2 ;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}+b^{2}=c$;
\forall : for all,
\exists : there exists,
ϵ, \notin : contained in, and not contained in
\mathbb{N} : the set of natural numbers,
\mathbb{Z} : the set of integers,
\mathbb{Q} : the set of rationals,
\mathbb{Z}^{+}: the set of positive integers,
\mathbb{R} : the set of reals

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}+b^{2}=c$;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}-b^{2}=c$;

What is a proposition?

A statement that is either true or false.

- $2+2=4$, every odd number is a prime, there are no even primes other than 2;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}+b^{2}=c$;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N}: a^{2}-b^{2}=c$;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{Z}: a^{2}-b^{2}=c$;

It is not always easy to tell whether a proposition is true or false.

Theorems and proofs

Theorem
If $0 \leq x \leq 2$, then $-x^{3}+4 x+1>0$

Theorems and proofs

Theorem
If $0 \leq x \leq 2$, then $-x^{3}+4 x+1>0$
(scratchpad)

Theorems and proofs

```
Theorem
If \(0 \leq x \leq 2\), then \(-x^{3}+4 x+1>0\)
```

(scratchpad)

Proof.

As $-x^{3}+4 x=x\left(4-x^{2}\right)$, which is in fact $x(2-x)(2+x)$, the quantity is positive non-negative for $0 \leq x \leq 2$. Adding 1 to a non-negative quantity makes it positive. Therefore, the above theorem.

Theorems and Proofs

Given: a number $n \in \mathbb{N}$
Check: Is n prime?

Theorems and Proofs

Given: a number $n \in \mathbb{N}$
Check: Is n prime?

for $i=2$ to \sqrt{n} do
if $i \mid n$ then output "no" end if
end for

Theorems and Proofs

Given: a number $n \in \mathbb{N}$
Check: Is n prime?

```
for \(i=2\) to \(\sqrt{n}\) do
    if \(i \mid n\) then
        output "no"
    end if
end for
```

Why is this algorithm correct?
Is there a number $n \in \mathbb{N}$ s.t
$\forall i: i \in\{2,3, \ldots, \sqrt{n}\} i \nmid n$, but $\exists j>\sqrt{n}$ s.t. $j \mid n$?

Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?

Theorems and Proofs

Is there a number $n \in \mathbb{N}$ s.t
$\forall i: i \in\{2,3, \ldots, \sqrt{n}\} i \nmid n$,
but $\exists j>\sqrt{n}$ s.t. $j \mid n$?
Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?
Theorem
If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}

Proof.

As n is a composite, $\exists x, y \in \mathbb{N}, x, y<n: n=x y$. If $x>\sqrt{n}$ and $y>\sqrt{n}$ then $x y>n$. Therefore, one of x or y is less than or equal to \sqrt{n}. Say x is smaller than \sqrt{n}. It is either a composite or a prime. If it is a prime, then we are done. Else, it has prime factorization (axiom: unique factorization in \mathbb{N}) and again, we are done.

Theorems and Proofs

Is there a number $n \in \mathbb{N}$ s.t
$\forall i: i \in\{2,3, \ldots, \sqrt{n}\} i \nmid n$,
but $\exists j>\sqrt{n}$ s.t. $j \mid n$?
Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?
Theorem
If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}

Proof.

As n is a composite, $\exists x, y \in \mathbb{N}, x, y<n: n=x y$. If $x>\sqrt{n}$ and $y>\sqrt{n}$ then $x y>n$. Therefore, one of x or y is less than or equal to \sqrt{n}. Say x is smaller than \sqrt{n}. It is either a composite or a prime. If it is a prime, then we are done. Else, it has prime factorization (axiom: unique factorization in \mathbb{N}) and again, we are done.

Axioms

Euclid in 300BC invented the method of axioms-and-proofs.
Using only a handful of axioms called Zermelo-Fraenkel and Choice (ZFC) and a few rules of deductions the entire mathematics can be deduced!

Proving theorems starting from ZFC alone is tedious. $20,000+$ lines proof for $2+2=4$

We will assume a whole lot of axioms to prove theorems: all familiar facts from high school math.

Class problems

- (CW1.1) Prove that for any $n \in \mathbb{N}, n\left(n^{2}-1\right)(n+2)$ is divisible by 4 . (what about divisible by 8?)
- (CW1.2) Prove that for any $n \in \mathbb{N}, 2^{n}<(n+2)$!

Bogus proofs

Theorem (Bogus)
$1 / 8>1 / 4$

Proof.

$$
\begin{aligned}
3 & >2 \\
3 \log _{10}(1 / 2) & >2 \log _{10}(1 / 2) \\
\log _{10}(1 / 2)^{3} & >\log _{10}(1 / 2)^{2} \\
(1 / 2)^{3} & >(1 / 2)^{2}
\end{aligned}
$$

Another bogus proof

Theorem

For all non-negative numbers $a, b \frac{a+b}{2} \geq \sqrt{a b}$

Proof.

$$
\begin{aligned}
\frac{a+b}{2} & \geq ? \sqrt{a b} \\
a+b & \geq ? 2 \sqrt{a b} \\
a^{2}+2 a b+b^{2} & \geq ? 4 a b \\
a^{2}-2 a b+b^{2} & \geq^{?} 0 \\
(a-b)^{2} & \geq 0
\end{aligned}
$$

Proof Methods

Proof by contrapositive

Theorem

If r is irrational then \sqrt{r} is also irrational.

Proof by contrapositive

Theorem

If r is irrational then \sqrt{r} is also irrational.

Definition (Contrapozitive)

The contrapositive of "if P then Q " is "if $\neg Q$ then $\neg P$ "

Proof by contrapositive

Theorem
If r is irrational then \sqrt{r} is also irrational. If \sqrt{r} is rational then r is rational.

Proof.

Suppose \sqrt{r} is rational. Then $\sqrt{r}=p / q$ for $p, q \in \mathbb{Z}$. Therefore, $r=p^{2} / q^{2}$.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even.

Proof by contradiction

Theorem
$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even. (CW2.1) If p^{2} is even, then p is even.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even. If p^{2} is even, then p is even. (why?)
Suppose not, i..e p^{2} is even but p is not. Then $p=2 k+1$ for some integer $k . p^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$. As $4\left(k^{2}+k\right)$ is even, $4 k^{2}+4 k+1$ is odd, which is a contradiction.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even. If p^{2} is even, then p is even.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even. If p^{2} is even, then p is even. Therefore, $p=2 k$ for some $k \in \mathbb{Z} \Rightarrow$ $2 q^{2}=4 k^{2} \Rightarrow q^{2}=2 k^{2} \Rightarrow q^{2}$ is even. Therefore, q is even. That is, p, q have a common factor. This leads to a contradiction.

Proof by contradiction

Theorem

$\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2}=p / q$, where p, q do not have any common divisors. Therefore, $2 q^{2}=p^{2}$, i.e. p^{2} is even. If p^{2} is even, then p is even. Therefore, $p=2 k$ for some $k \in \mathbb{Z} \Rightarrow$ $2 q^{2}=4 k^{2} \Rightarrow q^{2}=2 k^{2} \Rightarrow q^{2}$ is even. Therefore, q is even. That is, p, q have a common factor. This leads to a contradiction.
(CW2.2) Prove that there are infinitely many primes.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let $P(n)$ be a property of non-negative integers. If
(1) $P(0)$ is true (Base case)
(2) for all $n \geq 0, P(n) \Rightarrow P(n+1)$ (Induction step)
then $P(n)$ is true for for all $n \in \mathbb{N}$.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let $P(n)$ be a property of non-negative integers. If
(1) $P(0)$ is true (Base case)
(2) for all $n \geq 0, P(n) \Rightarrow P(n+1)$ (Induction step)
then $P(n)$ is true for for all $n \in \mathbb{N}$.

Axiom (Strong Induction)

Let $P(n)$ be a property of non-negative integers. If
(1) $P(0)$ is true (Base case)
(2) $[\forall k \in\{0,1, \ldots, n\}: P(k)] \Rightarrow P(n+1)$ (Induction step)
then $P(n)$ is true for for all $n \in \mathbb{N}$.

WOP \Rightarrow Induction

Theorem

Well-ordering principle implies Induction

Proof.

Let $P(0)$ be true and for each $n \geq 0$, let $P(n) \Rightarrow P(n+1)$.
Let us assume for the sake of contradiction that $P(n)$ is not true for all positive integers.
Let $C=\{i \mid P(i)$ is false $\}$. As C is non-empty and non-negative integers
C has a smallest element (due to WOP), say i_{0}.
Now, $i_{0} \neq 0$. Also $P\left(i_{0}-1\right)$ is true, as $i_{0}-1$ is not in C. But $P\left(i_{0}-1\right) \Rightarrow P\left(i_{0}\right)$, which is a contradiction.

$\mathrm{WOP} \Rightarrow$ Induction

Theorem

Well-ordering principle implies Induction

Proof.

Let $P(0)$ be true and for each $n \geq 0$, let $P(n) \Rightarrow P(n+1)$.
Let us assume for the sake of contradiction that $P(n)$ is not true for all positive integers.
Let $C=\{i \mid P(i)$ is false $\}$. As C is non-empty and non-negative integers C has a smallest element (due to WOP), say i_{0}.
Now, $i_{0} \neq 0$. Also $P\left(i_{0}-1\right)$ is true, as $i_{0}-1$ is not in C. But $P\left(i_{0}-1\right) \Rightarrow P\left(i_{0}\right)$, which is a contradiction.

Theorem
WOP \Leftrightarrow Induction \Leftrightarrow Strong Induction [HW]

Using Induction to prove theorems

Theorem
 $2^{n} \leq(n+1)$!

Proof.

Base case $(n=0): 2^{0}=1=1$!

Using Induction to prove theorems

Theorem
$2^{n} \leq(n+1)$!

Proof.

Base case $(n=0): 2^{0}=1=1$!
Induction hypothesis: $2^{n} \leq(n+1)$!.

$$
\begin{aligned}
2^{n+1} & =2 \cdot 2^{n} \\
& \leq 2 \cdot(n+1)!\text { (by indiction hypothesis) } \\
& \leq(n+2) \cdot(n+1)! \\
& \leq(n+2)!
\end{aligned}
$$

Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:
Theorem
The following equation does not have any solutions over \mathbb{N} : $4 a^{3}+2 b^{3}=c^{3}$

Using Well-ordering principle to prove theorems

 Here is a slightly non-trivial example:
Theorem

The following equation does not have any solutions over \mathbb{N} : $4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S.

Using Well-ordering principle to prove theorems

 Here is a slightly non-trivial example:
Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S. (Such an s exists due to WOP.)

Using Well-ordering principle to prove theorems

 Here is a slightly non-trivial example:
Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S.
Observe that C^{3} is even. Therefore, C is even. Say $C=2 \gamma$.
Therefore, $4 A^{3}+2 B^{3}=8 \gamma^{3}$, i.e. $2 A^{3}+B^{3}=4 \gamma^{3}$.

Using Well-ordering principle to prove theorems

 Here is a slightly non-trivial example:
Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S.
Observe that C^{3} is even. Therefore, C is even. Say $C=2 \gamma$.
Therefore, $4 A^{3}+2 B^{3}=8 \gamma^{3}$, i.e. $2 A^{3}+B^{3}=4 \gamma^{3}$.
Now, B^{3} is even and so is B. Say $B=2 \beta . \therefore 2 A^{3}+8 \beta^{3}=4 \gamma^{3}$.

Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S.
Observe that C^{3} is even. Therefore, C is even. Say $C=2 \gamma$.
Therefore, $4 A^{3}+2 B^{3}=8 \gamma^{3}$, i.e. $2 A^{3}+B^{3}=4 \gamma^{3}$.
Now, B^{3} is even and so is B. Say $B=2 \beta . \therefore 2 A^{3}+8 \beta^{3}=4 \gamma^{3}$.
And, now we can repeat the argument with respect to A.
Therefore, if (A, B, C) is a solution then so is (α, β, γ).

Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N}. Let (A, B, C) be the solution with the smallest value of b in S.
Observe that C^{3} is even. Therefore, C is even. Say $C=2 \gamma$.
Therefore, $4 A^{3}+2 B^{3}=8 \gamma^{3}$, i.e. $2 A^{3}+B^{3}=4 \gamma^{3}$.
Now, B^{3} is even and so is B. Say $B=2 \beta . \therefore 2 A^{3}+8 \beta^{3}=4 \gamma^{3}$.
And, now we can repeat the argument with respect to A.
Therefore, if (A, B, C) is a solution then so is (α, β, γ).
But $\beta<B$, which is a contradiction.

Using Well-ordering principle to prove theorems

 Here is a slightly non-trivial example:
Theorem

The following equation does not have any solutions over \mathbb{N} :
$4 a^{3}+2 b^{3}=c^{3}$
It is not always as easy to prove such theorems.

Conjecture (Euler, 1769)

There are no positive integer solutions over \mathbb{Z} to the equation:

$$
a^{4}+b^{4}+c^{4}=d^{4}
$$

Integer values for a, b, c, d that do satisfy this equation were first discovered in 1986.
It took more two hundred years to prove it.

