CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects Lecture 1: What is a proof? July 30, 2012

Credit Structure

Course credit structure

quizzes	20%
assignments	10%
mid-sem	30%
end-sem	40%

Office hours:11:00am to 1:00pm (Wednesday)TA meeting hours:5:15pm to 6:15pm (Thursday) — ?

Course Outline

- Mathematical reasoning and mathematical objects
- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
 - What is a proof? Types of proof methods
 - Induction
 - Sets, relations, functions, partial orders, graphs
- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
 - What is a proof? Types of proof methods
 - Induction
 - Sets, relations, functions, partial orders, graphs

Text:	Discrete Mathematics and its applictions, by Kenneth Rosen
	Chapter 2 : 2.1, 2.2, 2.3, Chapter 8 : 8.1, 8.5, 8.6
Class notes:	will be uploaded on Moodle

Combinatorics

- Elements of graph theory
- Elements of abstract algebra

A statement that is either true or false.

∃ ►

nac

A statement that is either true or false.

• 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;

A statement that is either true or false.

- 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 + b^2 = c;$

A statement that is either true or false.

• 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;

•
$$\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 + b^2 = c;$$

 \forall : for all,

 \exists : there exists,

 $\in, \notin:$ contained in, and not contained in

A statement that is either true or false.

• 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;

A statement that is either true or false.

- 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 + b^2 = c;$
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 b^2 = c;$

A statement that is either true or false.

- 2 + 2 = 4, every odd number is a prime, there are no even primes other than 2;
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 + b^2 = c;$
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{N} : a^2 b^2 = c;$
- $\forall a, b \in \mathbb{N}, \exists c \in \mathbb{Z} : a^2 b^2 = c;$

It is not always easy to tell whether a proposition is true or false.

Theorem

If $0 \le x \le 2$, then $-x^3 + 4x + 1 > 0$

∃ >

DQC

Theorem

If $0 \le x \le 2$, then $-x^3 + 4x + 1 > 0$

(scratchpad)

∃ >

DQC

Theorem

If
$$0 \le x \le 2$$
, then $-x^3 + 4x + 1 > 0$

(scratchpad)

Proof.

As $-x^3 + 4x = x(4 - x^2)$, which is in fact x(2 - x)(2 + x), the quantity is positive non-negative for $0 \le x \le 2$. Adding 1 to a non-negative quantity makes it positive. Therefore, the above theorem.

Given: a number $n \in \mathbb{N}$

Check: Is *n* prime?

(日) (同) (三) (三)

DQC

Given: a number $n \in \mathbb{N}$ Check: Is *n* prime?

for i = 2 to \sqrt{n} do if *i*|*n* then output "no" end if end for

∃ > - Sac

Given: a number $n \in \mathbb{N}$ Check: Is *n* prime?

for i = 2 to \sqrt{n} do if i|n then output "no" end if end for

Why is this algorithm correct? Is there a number $n \in \mathbb{N}$ s.t $\forall i : i \in \{2, 3, \dots, \sqrt{n}\} \ i \nmid n$, but $\exists j > \sqrt{n}$ s.t. $j \mid n$?

Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?

Is there a number $n \in \mathbb{N}$ s.t $\forall i : i \in \{2, 3, \dots, \sqrt{n}\} \ i \nmid n,$ but $\exists j > \sqrt{n}$ s.t. $j \mid n$?

Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}

Proof.

As *n* is a composite, $\exists x, y \in \mathbb{N}, x, y < n : n = xy$. If $x > \sqrt{n}$ and $y > \sqrt{n}$ then xy > n. Therefore, one of *x* or *y* is less than or equal to \sqrt{n} . Say *x* is smaller than \sqrt{n} . It is either a composite or a prime. If it is a prime, then we are done. Else, it has prime factorization (axiom: unique factorization in \mathbb{N}) and again, we are done.

Nutan (IITB)

CS 207 Discrete Mathematics - 2012-2013

Is there a number $n \in \mathbb{N}$ s.t $\forall i : i \in \{2, 3, \dots, \sqrt{n}\} \ i \nmid n,$ but $\exists j > \sqrt{n}$ s.t. $j \mid n$?

Is there a composite $n \in \mathbb{N}$ s.t. all its prime factors are greater than \sqrt{n} ?

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}

Proof.

As *n* is a composite, $\exists x, y \in \mathbb{N}, x, y < n : n = xy$. If $x > \sqrt{n}$ and $y > \sqrt{n}$ then xy > n. Therefore, one of *x* or *y* is less than or equal to \sqrt{n} . Say *x* is smaller than \sqrt{n} . It is either a composite or a prime. If it is a prime, then we are done. Else, it has prime factorization (axiom: unique factorization in \mathbb{N}) and again, we are done.

Nutan (IITB)

CS 207 Discrete Mathematics - 2012-2013

Axioms

Euclid in 300BC invented the method of axioms-and-proofs.

Using only a handful of axioms called Zermelo-Fraenkel and Choice (ZFC) and a few rules of deductions the entire mathematics can be deduced!

Proving theorems starting from ZFC alone is tedious. 20,000+ lines proof for $\mathbf{2}+\mathbf{2}=\mathbf{4}$

We will assume a whole lot of axioms to prove theorems: all familiar facts from high school math.

Class problems

- (CW1.1) Prove that for any n ∈ N, n(n² − 1)(n + 2) is divisible by 4. (what about divisible by 8?)
- (CW1.2) Prove that for any $n \in \mathbb{N}$, $2^n < (n+2)!$

Bogus proofs

Theorem (Bogus) 1/8 > 1/4

Proof.

$$\begin{split} 3 &> 2 \\ 3 \log_{10}(1/2) &> 2 \log_{10}(1/2) \\ \log_{10}(1/2)^3 &> \log_{10}(1/2)^2 \\ (1/2)^3 &> (1/2)^2 \end{split}$$

Another bogus proof

Theorem

For all non-negative numbers $a, b \frac{a+b}{2} \ge \sqrt{ab}$

Proof.

$$\frac{a+b}{2} \ge \sqrt[?]{ab}$$
$$a+b \ge 2\sqrt[?]{ab}$$
$$a^{2}+2ab+b^{2} \ge 4ab$$
$$a^{2}-2ab+b^{2} \ge 0$$
$$(a-b)^{2} \ge 0$$

Nutan (IITB)

CS 207 Discrete Mathematics - 2012-2013

< (T) >

Proof Methods

-

A (1) > (1) > (1)

990

Proof by contrapositive

Theorem

If r is irrational then \sqrt{r} is also irrational.

Proof by contrapositive

Theorem

If r is irrational then \sqrt{r} is also irrational.

Definition (Contrapozitive)

The contrapositive of "if P then Q" is "if $\neg Q$ then $\neg P$ "

Proof by contrapositive

Theorem

If r is irrational then \sqrt{r} is also irrational. If \sqrt{r} is rational then r is rational.

Proof.

Suppose \sqrt{r} is rational. Then $\sqrt{r} = p/q$ for $p, q \in \mathbb{Z}$. Therefore, $r = p^2/q^2$.

Theorem

 $\sqrt{2}$ is irrational.

990

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even. (CW2.1) If p^2 is even, then p is even.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even. If p^2 is even, then p is even. (why?) Suppose not, i.e. p^2 is even but p is not. Then p = 2k + 1 for some integer k. $p^2 = (2k + 1)^2 = 4k^2 + 4k + 1$. As $4(k^2 + k)$ is even, $4k^2 + 4k + 1$ is odd, which is a contradiction.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even. If p^2 is even, then p is even.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even. If p^2 is even, then p is even. Therefore, p = 2k for some $k \in \mathbb{Z} \Rightarrow 2q^2 = 4k^2 \Rightarrow q^2 = 2k^2 \Rightarrow q^2$ is even. Therefore, q is even. That is, p, q have a common factor. This leads to a contradiction.

Theorem

 $\sqrt{2}$ is irrational.

Proof.

Suppose not. Then there exists $p, q \in \mathbb{Z}$ such that $\sqrt{2} = p/q$, where p, q do not have any common divisors. Therefore, $2q^2 = p^2$, i.e. p^2 is even. If p^2 is even, then p is even. Therefore, p = 2k for some $k \in \mathbb{Z} \Rightarrow 2q^2 = 4k^2 \Rightarrow q^2 = 2k^2 \Rightarrow q^2$ is even. Therefore, q is even. That is, p, q have a common factor. This leads to a contradiction.

(CW2.2) Prove that there are infinitely many primes.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let P(n) be a property of non-negative integers. If

- P(0) is true (Base case)
- 2 for all $n \ge 0$, $P(n) \Rightarrow P(n+1)$ (Induction step)

then P(n) is true for for all $n \in \mathbb{N}$.

Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let P(n) be a property of non-negative integers. If

1 P(0) is true (Base case)

2 for all
$$n \ge 0$$
, $P(n) \Rightarrow P(n+1)$ (Induction step)

then P(n) is true for for all $n \in \mathbb{N}$.

Axiom (Strong Induction)

Let P(n) be a property of non-negative integers. If

- **1** P(0) is true (Base case)
- 2 $[\forall k \in \{0, 1, \dots, n\} : P(k)] \Rightarrow P(n+1)$ (Induction step)

then P(n) is true for for all $n \in \mathbb{N}$.

$\mathsf{WOP} \Rightarrow \mathsf{Induction}$

Theorem

Well-ordering principle implies Induction

Proof.

Let P(0) be true and for each $n \ge 0$, let $P(n) \Rightarrow P(n+1)$. Let us assume for the sake of contradiction that P(n) is not true for all positive integers. Let $C = \{i \mid P(i) \text{ is false}\}$. As C is non-empty and non-negative integers C has a smallest element (due to WOP), say i_0 . Now, $i_0 \ne 0$. Also $P(i_0 - 1)$ is true, as $i_0 - 1$ is not in C. But $P(i_0 - 1) \Rightarrow P(i_0)$, which is a contradiction.

$\mathsf{WOP} \Rightarrow \mathsf{Induction}$

Theorem

Well-ordering principle implies Induction

Proof.

Let P(0) be true and for each $n \ge 0$, let $P(n) \Rightarrow P(n+1)$. Let us assume for the sake of contradiction that P(n) is not true for all positive integers.

Let $C = \{i \mid P(i) \text{ is false}\}$. As C is non-empty and non-negative integers C has a smallest element (due to WOP), say i_0 . Now, $i_0 \neq 0$. Also $P(i_0 - 1)$ is true, as $i_0 - 1$ is not in C. But

 $P(i_0 - 1) \Rightarrow P(i_0)$, which is a contradiction.

Theorem

 $WOP \Leftrightarrow Induction \Leftrightarrow Strong Induction [HW]$

Using Induction to prove theorems

Theorem $2^n \leq (n+1)!$

Proof.

Base case (n = 0): $2^0 = 1 = 1!$

3 → - + -

Using Induction to prove theorems

Theorem

 $2^n \le (n+1)!$

Proof.

Base case (n = 0): $2^0 = 1 = 1!$ Induction hypothesis: $2^n \le (n + 1)!$.

$$2^{n+1} = 2 \cdot 2^n$$

$$\leq 2 \cdot (n+1)! \text{ (by indiction hypothesis)}$$

$$\leq (n+2) \cdot (n+1)!$$

$$\leq (n+2)!$$

∃ ▶ ∢

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over $\mathbb{N}: 4a^3+2b^3=c^3$

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} : $4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S.

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} : $4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S. (Such an s exists due to WOP.)

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} : $4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S. Observe that C^3 is even. Therefore, C is even. Say $C = 2\gamma$. Therefore, $4A^3 + 2B^3 = 8\gamma^3$, i.e. $2A^3 + B^3 = 4\gamma^3$.

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} : $4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S. Observe that C^3 is even. Therefore, C is even. Say $C = 2\gamma$. Therefore, $4A^3 + 2B^3 = 8\gamma^3$, i.e. $2A^3 + B^3 = 4\gamma^3$. Now, B^3 is even and so is B. Say $B = 2\beta$. $\therefore 2A^3 + 8\beta^3 = 4\gamma^3$.

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over $\mathbb{N}: 4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S. Observe that C^3 is even. Therefore, C is even. Say $C = 2\gamma$. Therefore, $4A^3 + 2B^3 = 8\gamma^3$, i.e. $2A^3 + B^3 = 4\gamma^3$. Now, B^3 is even and so is B. Say $B = 2\beta$. $\therefore 2A^3 + 8\beta^3 = 4\gamma^3$. And, now we can repeat the argument with respect to A. Therefore, if (A, B, C) is a solution then so is (α, β, γ) .

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over $\mathbb{N}: 4a^3+2b^3=c^3$

Proof.

Suppose (for the sake of contradiction) this has a solution over \mathbb{N} . Let (A, B, C) be the solution with the smallest value of b in S. Observe that C^3 is even. Therefore, C is even. Say $C = 2\gamma$. Therefore, $4A^3 + 2B^3 = 8\gamma^3$, i.e. $2A^3 + B^3 = 4\gamma^3$. Now, B^3 is even and so is B. Say $B = 2\beta$. $\therefore 2A^3 + 8\beta^3 = 4\gamma^3$. And, now we can repeat the argument with respect to A. Therefore, if (A, B, C) is a solution then so is (α, β, γ) . But $\beta < B$, which is a contradiction.

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over \mathbb{N} : $4a^3+2b^3=c^3$

It is not always as easy to prove such theorems.

Conjecture (Euler, 1769)

There are no positive integer solutions over \mathbb{Z} to the equation:

$$a^4 + b^4 + c^4 = d^4$$

Integer values for a, b, c, d that do satisfy this equation were first discovered in 1986.

It took more two hundred years to prove it.