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Credit Structure

Course credit structure

quizzes 20%
assignments 10%
mid-sem 30%
end-sem 40%

Office hours: 11:00am to 1:00pm (Wednesday)
TA meeting hours: 5:15pm to 6:15pm (Thursday) — ?
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Course Outline

Mathematical reasoning and mathematical objects

Combinatorics

Elements of graph theory

Elements of abstract algebra
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Course Outline

Mathematical reasoning and mathematical objects

I What is a proof? Types of proof methods
I Induction
I Sets, relations, functions, partial orders, graphs

Text: Discrete Mathematics and its applictions, by Kenneth Rosen
Chapter 2 : 2.1, 2.2, 2.3, Chapter 8 : 8.1, 8.5, 8.6

Class notes: will be uploaded on Moodle

Combinatorics

Elements of graph theory

Elements of abstract algebra
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What is a proposition?

A statement that is either true or false.

2 + 2 = 4, every odd number is a prime, there are no even primes
other than 2;

∀a, b ∈ N,∃c ∈ N : a2 + b2 = c ;

∀a, b ∈ N,∃c ∈ N : a2 − b2 = c ;

∀a, b ∈ N,∃c ∈ Z : a2 − b2 = c ;

It is not always easy to tell whether a proposition is true or false.
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Theorems and proofs

Theorem

If 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0

*(scratchpad)*

Proof.

As −x3 + 4x = x(4− x2), which is in fact x(2− x)(2 + x), the quantity is
positive non-negative for 0 ≤ x ≤ 2. Adding 1 to a non-negative quantity
makes it positive. Therefore, the above theorem.
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Theorems and Proofs
Given: a number n ∈ N
Check: Is n prime?

for i = 2 to
√
n do

if i |n then
output “no”

end if
end for

Why is this algorithm correct?

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to√
n

Proof.

As n is a composite, ∃x , y ∈ N, x , y < n : n = xy . If x >
√
n and y >

√
n

then xy > n. Therefore, one of x or y is less than or equal to
√
n. Say x is

smaller than
√
n. It is either a composite or a prime. If it is a prime, then

we are done. Else, it has prime factorization (axiom: unique factorization
in N) and again, we are done.
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Axioms

Euclid in 300BC invented the method of axioms-and-proofs.

Using only a handful of axioms called Zermelo-Fraenkel and Choice (ZFC)
and a few rules of deductions the entire mathematics can be deduced!

Proving theorems starting from ZFC alone is tedious. 20,000+ lines proof
for 2 + 2 = 4

We will assume a whole lot of axioms to prove theorems: all familiar facts
from high school math.
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Class problems

(CW1.1) Prove that for any n ∈ N, n(n2 − 1)(n + 2) is divisible by 4.
(what about divisible by 8?)

(CW1.2) Prove that for any n ∈ N, 2n < (n + 2)!
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Bogus proofs

Theorem (Bogus)

1/8 > 1/4

Proof.

3 > 2

3 log10(1/2) > 2 log10(1/2)

log10(1/2)3 > log10(1/2)2

(1/2)3 > (1/2)2
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Another bogus proof

Theorem

For all non-negative numbers a, b a+b
2 ≥

√
ab

Proof.

a + b

2
≥?
√
ab

a + b ≥? 2
√
ab

a2 + 2ab + b2 ≥? 4ab

a2 − 2ab + b2 ≥? 0

(a− b)2 ≥ 0
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Proof Methods
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Proof by contrapositive

Theorem

If r is irrational then
√
r is also irrational.

Proof.

Suppose
√
r is rational. Then

√
r = p/q for p, q ∈ Z. Therefore,

r = p2/q2.
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Theorem
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√
r is also irrational.

Definition (Contrapozitive)

The contrapositive of “if P then Q” is “if ¬Q then ¬P”

Proof.
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Theorem

If r is irrational then
√
r is also irrational.

If
√
r is rational then r is rational.

Proof.

Suppose
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Proof by contradiction

Theorem
√

2 is irrational.

Proof.

Suppose not. Then there exists p, q ∈ Z such that
√

2 = p/q, where p, q
do not have any common divisors. Therefore, 2q2 = p2, i.e. p2 is even.
If p2 is even, then p is even. Therefore, p = 2k for some k ∈ Z ⇒
2q2 = 4k2 ⇒ q2 = 2k2 ⇒ q2 is even. Therefore, q is even. That is, p, q
have a common factor. This leads to a contradiction.

(CW2.2) Prove that there are infinitely many primes.
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Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let P(n) be a property of non-negative integers. If

1 P(0) is true (Base case)

2 for all n ≥ 0, P(n)⇒ P(n + 1) (Induction step)

then P(n) is true for for all n ∈ N.

Axiom (Strong Induction)

Let P(n) be a property of non-negative integers. If

1 P(0) is true (Base case)

2 [∀k ∈ {0, 1, . . . , n} : P(k)]⇒ P(n + 1) (Induction step)

then P(n) is true for for all n ∈ N.
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WOP ⇒ Induction

Theorem

Well-ordering principle implies Induction

Proof.

Let P(0) be true and for each n ≥ 0, let P(n)⇒ P(n + 1).
Let us assume for the sake of contradiction that P(n) is not true for all
positive integers.
Let C = {i | P(i) is false}. As C is non-empty and non-negative integers
C has a smallest element (due to WOP), say i0.
Now, i0 6= 0. Also P(i0 − 1) is true, as i0 − 1 is not in C . But
P(i0 − 1)⇒ P(i0), which is a contradiction.

Theorem

WOP ⇔ Induction ⇔ Strong Induction [HW]
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Using Induction to prove theorems

Theorem

2n ≤ (n + 1)!

Proof.

Base case (n = 0): 20 = 1 = 1!

Induction hypothesis: 2n ≤ (n + 1)!.

2n+1 = 2 · 2n

≤ 2 · (n + 1)! (by indiction hypothesis)

≤ (n + 2) · (n + 1)!

≤ (n + 2)!
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Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over N :
4a3 + 2b3 = c3

It is not always as easy to prove such theorems.

Conjecture (Euler, 1769)

There are no positive integer solutions over Z to the equation:

a4 + b4 + c4 = d4

Integer values for a, b, c , d that do satisfy this equation were first
discovered in 1986.
It took more two hundred years to prove it.
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