CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Combinatorics

Lecture 11: Catalan numbers August 28, 2012

Last time

Recap

- Cayley's number: the number of labelled trees is n^{n-2}
- Using generating functions to solve recurrences.

Today

- Doubt solving session.
- Generating functions and recurrences.

Theorem

Let $x_1 \leq x_2 \leq \ldots \leq x_n$. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Theorem

Let $x_1 \le x_2 \le \ldots \le x_n$. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Proof.

• Let the *precision* of a rational $\frac{a}{b}$ be p where, $\frac{a}{b}$ equals $\frac{q}{p}$ after cancellations.

Theorem

Let $x_1 \le x_2 \le \ldots \le x_n$. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Proof.

• Let $s = \frac{1}{x_k} + \frac{1}{x_{k+1}} + \ldots + \frac{1}{x_n}$. Let y_k be the precision of s.

Theorem

Let $x_1 \le x_2 \le \ldots \le x_n$. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Proof.

• Let $s = \frac{1}{x_k} + \frac{1}{x_{k+1}} + \ldots + \frac{1}{x_n}$. Let y_k be the precision of s. $y_k \ge x_k/(n-k+1)$.

Theorem

Let
$$x_1 \le x_2 \le \ldots \le x_n$$
. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Proof.

- Let $s = \frac{1}{x_k} + \frac{1}{x_{k+1}} + \ldots + \frac{1}{x_n}$. Let y_k be the precision of s. $y_k \ge x_k/(n-k+1)$.
- And $y_k \le x_1 x_2 \dots x_{k-1}$

Theorem

Let
$$x_1 \le x_2 \le \ldots \le x_n$$
. Prove that if $\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} = 1$ then $x_n < 2^{n!}$

Proof.

- Let $s = \frac{1}{x_k} + \frac{1}{x_{k+1}} + \ldots + \frac{1}{x_n}$. Let y_k be the precision of s. $y_k \ge x_k/(n-k+1)$.
- And $y_k \le x_1 x_2 \dots x_{k-1}$
- $\bullet :: x_k \leq x_1 x_2 \dots x_{k-1} (n-k+1)$
- Solving, we get $\forall n > 3 : x_n \leq 2^{n!}$

Anti-chains

Q. Can there be an anti-chain of size more than $\binom{n}{n/2}$ in $(\mathcal{P}(A),\subseteq)$, where |A|=n?

Anti-chains

Q. Can there be an anti-chain of size more than $\binom{n}{n/2}$ in $(\mathcal{P}(A),\subseteq)$, where |A|=n?

No! This a is a theorem called Spencer's theorem. It can be derived using another heavy hammer. Those interested may look up on Google. (Beyond the scope for now.)

Cayley's number

Towards the end of the lecture. (Last 5-7 minutes)

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

$$n = 3 : ((a + b) + c), (a + (b + c))$$

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

Example:

$$n = 3 : ((a + b) + c), (a + (b + c))$$

 $n = 4 : (((a + b) + c) + d), ((a + b) + (c + d)), ((a + (b + c)) + d), ...$

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time? Example:

n = 3 : ((a + b) + c), (a + (b + c)) $n = 4 : (((a + b) + c) + d), ((a + b) + (c + d)), ((a + (b + c)) + d), \dots$ In general, let C(n) be the number of ways of doing this.

• Note that (I, r) is a bracketed expression where I is a bracketed expression with i terms and r with n - i terms for some i such that $1 \le i \le n - 1$. Therefore, the recurrence for C(n):

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

Example:

$$n = 3: ((a+b)+c), (a+(b+c))$$

 $n = 4: (((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), \dots$ In general, let $C(n)$ be the number of ways of doing this.

• Note that (I, r) is a bracketed expression where I is a bracketed expression with i terms and r with n - i terms for some i such that $1 \le i \le n - 1$. Therefore, the recurrence for C(n):

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i)$$
 for $n > 1$

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

Example:

$$n = 3: ((a+b)+c), (a+(b+c))$$

 $n = 4: (((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), \dots$ In general, let $C(n)$ be the number of ways of doing this.

• Note that (I, r) is a bracketed expression where I is a bracketed expression with i terms and r with n - i terms for some i such that $1 \le i \le n - 1$. Therefore, the recurrence for C(n):

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i)$$
 for $n > 1$

How to solve this recurrence?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

Example:

$$n = 3: ((a+b)+c), (a+(b+c))$$

 $n = 4: (((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), \dots$ In general, let $C(n)$ be the number of ways of doing this.

• Note that (I, r) is a bracketed expression where I is a bracketed expression with i terms and r with n - i terms for some i such that $1 \le i \le n - 1$. Therefore, the recurrence for C(n):

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i)$$
 for $n > 1$

How to solve this recurrence? Using generating functions, of course!

• Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$ $\phi(t)^2 = (\sum_{n=1}^{\infty} C(n)t^n)(\sum_{n=1}^{\infty} C(n)t^n)$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

= $\sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}
= \sum_{n=2}^{\infty} C(n)t^{n}
= \phi(t) - t$$

• Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} (1 \pm (1 - 4t)^{1/2})$.

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

• Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 - 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right)$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}
= \sum_{n=2}^{\infty} C(n)t^{n}
= \phi(t) - t$$

• Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 - 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = \left(\sum_{n=1}^{\infty} C(n)t^{n}\right)\left(\sum_{n=1}^{\infty} C(n)t^{n}\right) \\
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n} \\
= \sum_{n=2}^{\infty} C(n)t^{n} \\
= \phi(t) - t$$

• Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 - 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$

Theorem (Extended Binomial Theorem)

Let
$$\alpha \in \mathbb{R}^+$$
. $(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n$, where $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = \left(\sum_{n=1}^{\infty} C(n)t^{n}\right)\left(\sum_{n=1}^{\infty} C(n)t^{n}\right) \\
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n} \\
= \sum_{n=2}^{\infty} C(n)t^{n} \\
= \phi(t) - t$$

• Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 - 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$

Theorem (Extended Binomial Theorem)

Let
$$\alpha \in \mathbb{R}^+$$
. $(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n$, where $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-n+1)}{n!}$

• The coefficient of t^n is $C(n) = -\frac{1}{2} {1/2 \choose n} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} {\binom{1/2}{n}} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$$

• $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} {\binom{1/2}{n}} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$$

- $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$
- $C(n) = \frac{(-1)^n}{2^{n+1}} \frac{(-4)^n}{n!} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} \binom{1/2}{n} (-4)^n = -\frac{1}{2} \left(\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1) \right) \frac{(-4)^n}{n!}$$

- $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$
- $C(n) = \frac{(-1)^n}{2^{n+1}} \frac{(-4)^n}{n!} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)$
- $C(n) = \frac{(-1)^{2n}}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}
= \sum_{n=2}^{\infty} C(n)t^{n}
= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} {\binom{1/2}{n}} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$$

- $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$
- $C(n) = \frac{(-1)^n}{2^{n+1}} \frac{(-4)^n}{n!} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)$
- $C(n) = \frac{(-1)^{2n}}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!}$
- $C(n) = \frac{1}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})$$

$$= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}$$

$$= \sum_{n=2}^{\infty} C(n)t^{n}$$

$$= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} {\binom{1/2}{n}} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$$

- $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$
- $C(n) = \frac{(-1)^n}{2^{n+1}} \frac{(-4)^n}{n!} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)$
- $C(n) = \frac{(-1)^{2n}}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!}$
- $C(n) = \frac{1}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!} = \frac{(2n-2)!}{n!(n-1)!}$

- Let $\phi(t) = \sum_{n=1}^{\infty} C(n)t^n$. C(0) = 0, C(1) = 1 by convention.
- Now consider $\phi(t)^2$

$$\phi(t)^{2} = (\sum_{n=1}^{\infty} C(n)t^{n})(\sum_{n=1}^{\infty} C(n)t^{n})
= \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} C(i)C(n-i)t^{n}
= \sum_{n=2}^{\infty} C(n)t^{n}
= \phi(t) - t$$

- Solving for $\phi(t)$, we get $\phi(t) = \frac{1}{2} \left(1 \pm (1 4t)^{1/2} \right)$. As $\phi(0) = 0$, $\phi(t) = \frac{1}{2} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2} + \left(-\frac{1}{2} (1 - 4t)^{1/2} \right)$
- The coefficient of t^n is

$$C(n) = -\frac{1}{2} {\binom{1/2}{n}} (-4)^n = -\frac{1}{2} (\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \dots (\frac{1}{2} - n + 1)) \frac{(-4)^n}{n!}$$

- $C(n) = -\frac{1}{2} \cdot \frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2} \cdot -\frac{5}{2} \cdot \dots \cdot -\frac{2n-3}{2} \frac{(-4)^n}{n!}$
- $C(n) = \frac{(-1)^n}{2^{n+1}} \frac{(-4)^n}{n!} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-3)$
- $C(n) = \frac{(-1)^{2n}}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!}$
- $C(n) = \frac{1}{2^{n+1}} \frac{(4)^n}{n!} \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2n-3) \cdot (2n-2)}{2^{n-1}(n-1)!} = \frac{(2n-2)!}{n!(n-1)!} = \frac{1}{n} {2n-2 \choose n-1}$

Theorem (n-th Catalan Number)

If the recurrence for C(n) is given as follows:

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i)$$
 for $n > 1$

then

$$C(n) = \frac{1}{n} \binom{2n-2}{n-1}$$

