CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in
\section*{Combinatorics}
Lecture 12: Catalan numbers, derrangements
August 30, 2012

Last time

Recap

- Introduction to recurrences and generating functions
- Compute the n-th Catalan number using generating functions

Recap

- Introduction to recurrences and generating functions
- Compute the n-th Catalan number using generating functions

Theorem (n-th Catalan Number)
If the recurrence for $C(n)$ is given as follows:

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \quad \text { for } n>1
$$

then

$$
C(n)=\frac{1}{n}\binom{2 n-2}{n-1}
$$

Today

- Coming up with recurrence relations.
- Computing the number of derrangements
- Exponential generating functions

Find recurrence relations

- [CW] What is the number of different ways a convex polygon with $n+2$ sides can be cut into triangles by connecting vertices with straight lines?

Find recurrence relations

- [CW] What is the number of different ways a convex polygon with $n+2$ sides can be cut into triangles by connecting vertices with straight lines?
- [CW] What is the number of monotonic paths along the edges of a grid with $n \times n$ square cells, which do not pass above the diagonal?

Derrangements

What is the recurrence relation for the number of derrangements?

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

- Either letter 1 goes to i th envelope and i th letter comes to the first envelope. And the other $n-2$ envelopes form a derrangement among themselves.

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

- Either letter 1 goes to i th envelope and i th letter comes to the first envelope. And the other $n-2$ envelopes form a derrangement among themselves.
- Or letter 1 goes i th envelope and other $n-1$ envelopes form a derrangement among themselves.

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

- Either letter 1 goes to i th envelope and i th letter comes to the first envelope. And the other $n-2$ envelopes form a derrangement among themselves.
- Or letter 1 goes i th envelope and other $n-1$ envelopes form a derrangement among themselves.
Note, there are $n-1$ ways of choosing i

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

- Either letter 1 goes to i th envelope and i th letter comes to the first envelope. And the other $n-2$ envelopes form a derrangement among themselves.
- Or letter 1 goes i th envelope and other $n-1$ envelopes form a derrangement among themselves.
Note, there are $n-1$ ways of choosing i
$\therefore D(n)=(n-1)(D(n-2)+D(n-1)) \forall n>2$

Derrangements

What is the recurrence relation for the number of derrangements?
Let $D(n)$ denote the number of ways to arrange n letters into n envelopes such that no letter goes to the same envelope.

- Either letter 1 goes to i th envelope and ith letter comes to the first envelope. And the other $n-2$ envelopes form a derrangement among themselves.
- Or letter 1 goes i th envelope and other $n-1$ envelopes form a derrangement among themselves.
Note, there are $n-1$ ways of choosing i
$\therefore D(n)=(n-1)(D(n-2)+D(n-1)) \forall n>2$
$D(0)=1, D(1)=0$ by convention.

Closed form for $D(n)$

Theorem

Let $D(n)$ denote the number of derrangements for n elements then

$$
D(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)
$$

Proof.

We will prove that RHS has the same recurrence as LHS and RHS matches with LHS for $n=0,1$.

Closed form for $D(n)$

Theorem

Let $D(n)$ denote the number of derrangements for n elements then

$$
D(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)
$$

Proof.

We will prove that RHS has the same recurrence as LHS and RHS matches with LHS for $n=0,1$. For $n=0$, RHS $=1$ and $n=1$ RHS $=0$.

Closed form for $D(n)$

Theorem

Let $D(n)$ denote the number of derrangements for n elements then

$$
D(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)
$$

Proof.

We will prove that RHS has the same recurrence as LHS and RHS matches with LHS for $n=0,1$. For $n=0$, RHS $=1$ and $n=1$ RHS $=0$.

$$
\begin{aligned}
& (n-1)(f(n-1)+f(n-2)) \\
& =(n-1)\left[(n-1)!\left(\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}\right)+(n-2)!\left(\sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}\right)\right]
\end{aligned}
$$

Closed form for $D(n)$

Theorem

Let $D(n)$ denote the number of derrangements for n elements then

$$
D(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)
$$

Proof.

We will prove that RHS has the same recurrence as LHS and RHS matches with LHS for $n=0,1$. For $n=0$, RHS $=1$ and $n=1$ RHS $=0$.
$(n-1)(f(n-1)+f(n-2))$
$=(n-1)\left[(n-1)!\left(\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}\right)+(n-2)!\left(\sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}\right)\right]$
after come calculations

Closed form for $D(n)$

Theorem

Let $D(n)$ denote the number of derrangements for n elements then

$$
D(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)
$$

Proof.

We will prove that RHS has the same recurrence as LHS and RHS matches with LHS for $n=0,1$. For $n=0$, RHS $=1$ and $n=1$ RHS $=0$.

$$
\begin{aligned}
& (n-1)(f(n-1)+f(n-2)) \\
& =(n-1)\left[(n-1)!\left(\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}\right)+(n-2)!\left(\sum_{i=0}^{n-2} \frac{(-1)^{i}}{i!}\right)\right]
\end{aligned}
$$

after come calculations
$=f(n)$

