CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay
nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects
Lecture 2: Induction
July 31, 2012

Yesterday

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
- If r is irrational then \sqrt{r} is irrational.

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
- If r is irrational then \sqrt{r} is irrational.
- $\sqrt{2}$ is irrational.

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
- If r is irrational then \sqrt{r} is irrational.
- $\sqrt{2}$ is irrational.
- Well-ordering principle implies induction.

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
- If r is irrational then \sqrt{r} is irrational.
- $\sqrt{2}$ is irrational.
- Well-ordering principle implies induction.
- $2^{n}<n$!

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.
- If r is irrational then \sqrt{r} is irrational.
- $\sqrt{2}$ is irrational.
- Well-ordering principle implies induction.
- $2^{n}<n$!
- $4 a^{3}+2 b^{3}=c^{3}$ does not have roots over \mathbb{N}.

Recap

- What are axioms, propositions, theorems, claims and proofs?
- Various theorems we proved in class:
- The well ordering principle, induction, and strong induction.

You were asked to think about the following two problems:

- Is $2^{n}<\frac{n}{2}$!?
- For every positive integer n there exists another positive integer k such that n is of the form $9 k, 9 k+1$, or $9 k-1$.

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3$

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3$
scratch pad

Another proof by induction

Theorem

For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3$
scratch pad
a slightly stronger induction hypothesis is required

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3$

Proof.

For all $2 \leq i \leq j, i, j \in \mathbb{N}$ let $f(i, j)=\sqrt{i \sqrt{i+1 \ldots \sqrt{j}}}$.
We will prove a slightly more general statement:
For all $2 \leq i \leq j, i, j \in \mathbb{N}, f(i, j)<i+1$
This is more general than the theorem statement we wanted to prove.

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3 \Leftarrow \forall 2 \leq i<j, i, j \in \mathbb{N}, f(i, j)<i+1$

Proof.

For all $2 \leq i \leq j, i, j \in \mathbb{N}$ let $f(i, j)=\sqrt{i \sqrt{i+1 \ldots \sqrt{j}}}$.

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3 \Leftarrow \forall 2 \leq i<j, i, j \in \mathbb{N}, f(i, j)<i+1$

Proof.

For all $2 \leq i \leq j, i, j \in \mathbb{N}$ let $f(i, j)=\sqrt{i \sqrt{i+1 \ldots \sqrt{j}}}$.
We prove $(*)$ by induction on $j-i$.

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3 \Leftarrow \forall 2 \leq i<j, i, j \in \mathbb{N}, f(i, j)<i+1$

Proof.

For all $2 \leq i \leq j, i, j \in \mathbb{N}$ let $f(i, j)=\sqrt{i \sqrt{i+1 \ldots \sqrt{j}}}$.
We prove $(*)$ by induction on $j-i$.
Base case: $j-i=1 . f(i, i+1)=\sqrt{i \sqrt{i+1}}<i+1$.

Another proof by induction

Theorem
For any $n \in \mathbb{N}, n \geq 2$ prove that
$\sqrt{2 \sqrt{3 \sqrt{4 \ldots \sqrt{n-1 \sqrt{n}}}}}<3 \Leftarrow \forall 2 \leq i<j, i, j \in \mathbb{N}, f(i, j)<i+1$

Proof.

For all $2 \leq i \leq j, i, j \in \mathbb{N}$ let $f(i, j)=\sqrt{i \sqrt{i+1 \ldots \sqrt{j}}}$.
We prove $(*)$ by induction on $j-i$.
Base case: $j-i=1 . f(i, i+1)=\sqrt{i \sqrt{i+1}}<i+1$. Induction:

$$
\begin{aligned}
f(i, j+1) & =\sqrt{i \cdot f(i+1, j+1)} \\
& <\sqrt{i \cdot(i+2)} \\
& \leq i+1
\end{aligned}
$$

(by Induction Hypothesis)
(by AM-GM inequality)

A Bogus Inductive proof

Theorem (Bogus, CW2.2)
$a \in \mathbb{R}, a>0$. Then, $\forall n \in \mathbb{N}, a^{n}=1$.

A Bogus Inductive proof

Theorem (Bogus, CW2.2)
$a \in \mathbb{R}, a>0$. Then, $\forall n \in \mathbb{N}, a^{n}=1$.
By Strong Induction.
Base case: $n=0$. So $a^{n}=1$.

A Bogus Inductive proof

Theorem (Bogus, CW2.2)
$a \in \mathbb{R}, a>0$. Then, $\forall n \in \mathbb{N}, a^{n}=1$.
By Strong Induction.
Base case: $n=0$. So $a^{n}=1$. Induction: $n \rightarrow n+1$.

A Bogus Inductive proof

Theorem (Bogus, CW2.2)
$a \in \mathbb{R}, a>0$. Then, $\forall n \in \mathbb{N}, a^{n}=1$.
By Strong Induction.
Base case: $n=0$. So $a^{n}=1$.
Induction: $n \rightarrow n+1$.

$$
a^{n+1}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1
$$

A Bogus Inductive proof

Theorem (Bogus, CW2.2)
$a \in \mathbb{R}, a>0$. Then, $\forall n \in \mathbb{N}, a^{n}=1$.
By Strong Induction.
Base case: $n=0$. So $a^{n}=1$.
Induction: $n \rightarrow n+1$.

$$
a^{n+1}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1
$$

