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Recap

What are axioms, propositions, theorems, claims and proofs?

Various theorems we proved in class:

The well ordering principle, induction, and strong induction.

You were asked to think about the following two problems:

Is 2n < n
2 !?

For every positive integer n there exists another positive integer k
such that n is of the form 9k , 9k + 1, or 9k − 1.
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Another proof by induction

Theorem

For any n ∈ N, n ≥ 2 prove that√
2

√
3
√

4 . . .
√
n − 1

√
n < 3

Proof.

For all 2 ≤ i ≤ j , i , j ∈ N let f (i , j) =

√
i
√
i + 1 . . .

√
j .

We prove (∗) by induction on j − i .

Base case: j − i = 1. f (i , i + 1) =
√

i
√
i + 1 < i + 1.

Induction:

f (i , j + 1) =
√

i · f (i + 1, j + 1)

<
√

i · (i + 2) (by Induction Hypothesis)

≤ i + 1 (by AM-GM inequality)
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A Bogus Inductive proof

Theorem (Bogus, CW2.2)

a ∈ R, a > 0. Then, ∀n ∈ N, an = 1.

By Strong Induction.

Base case: n = 0. So an = 1.
Induction: n→ n + 1.

an+1 =
an · an

an−1
=

1 · 1
1

= 1

???
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