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Last time
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Recap

@ What are finite and infinite sets?
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Recap

@ What are finite and infinite sets?

@ What are functions?

CS 207 Discrete Mathematics — 2012-2013

[m]

=



Recap

@ What are finite and infinite sets?
functions?

@ What are functions? What are injective, surjective, and bijective
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Recap

@ What are finite and infinite sets?

functions?

@ What are functions? What are injective, surjective, and bijective
@ Comparing sizes of infinite sets.
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

o =
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Back to infinite sets
We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
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Back to infinite sets
We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
f(x)=2x,f:N— E.
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Back to infinite sets
We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N
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Back to infinite sets
We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N

—2x if x<0
Fx) = { 2x —1 otherwise
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Back to infinite sets
We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N

@ There is a bijection f : N x N — N
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N

@ There is a bijection f : Nx N — N
f(x,y) = (ZX” ) +y+1
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N

@ There is a bijection f : Nx N — N

@ There is a bijection f : N X N x N — N
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N
@ There is a bijection f : N x N — N

@ There is a bijection f : N X N x N — N
cw
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples
@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N
@ There is a bijection f : Nx N — N
@ There is a bijection f : N X N x N — N
[

Is there a bijection between N and set of all subsets of N7
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.
Definition

We say that two sets A, B have the same size if and only if there is a
bijection between A and B

Examples

@ Let E be a set of even numbers. There is a bijection between E and N
@ There is a bijection f : Z —+ N

@ There is a bijection f : Nx N — N

@ There is a bijection f : N X N x N — N

@ Is there a bijection between N and set of all subsets of N?

o

Is there a bijection between R and N?
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Finite sets vs infinite sets
On the one hand

o If Ais finite then there is no bijection from A x A to A. Whereas if A
is countably infinite
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Finite sets vs infinite sets
On the one hand

a bijection from A to N

o If Ais finite then there is no bijection from A x A to A. Whereas if A
is countably infinite, where A is said to be countably infinite if there is
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Finite sets vs infinite sets
On the one hand

o If Ais finite then there is no bijection from A x A to A. Whereas if A
is countably infinite then there is a bijection from A x A to A
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Finite sets vs infinite sets
On the one hand

o If Ais finite then there is no bijection from A x A to A. Whereas if A
is countably infinite then there is a bijection from A x A to A
On the other hand
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Finite sets vs infinite sets
On the one hand

o If Ais finite then there is no bijection from A x A to A. Whereas if A
is countably infinite then there is a bijection from A x A to A
On the other hand

@ Today we will see two theorems which prove two properties of infinite
sets that they share with finite sets.
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f,
between set of all subsets of N.

0 1 2 3
0
{1}
{2}
{1,2}
= =) E E
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f,
between set of all subsets of N.

0o 1 2 3
] X X X X
n |x v x x
2y |[x x v X
12y | x v v X
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f,
between set of all subsets of N.

o 1 2 3
] X X X
(y |x X x X
{2y |x x x X
1Ly x v v
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f,
between set of all subsets of N.

o 1 2 3
] X X X
{1y |x x x X
2y |x x x x
L2 lx v v v

The inverted diagonal set does not belong to any of the existing sets! [
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