CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects
Lecture 4: Cantor's diagonalisation?
Aug 6, 2012

Last time

Recap

- What are finite and infinite sets?

Recap

- What are finite and infinite sets?
- What are functions?

Recap

- What are finite and infinite sets?
- What are functions? What are injective, surjective, and bijective functions?

Recap

- What are finite and infinite sets?
- What are functions? What are injective, surjective, and bijective functions?
- Comparing sizes of infinite sets.

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N} $f(x)=2 x, f: \mathbb{N} \rightarrow E$.

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$

$$
f(x)=\left\{\begin{array}{cc}
-2 x & \text { if } x \leq 0 \\
2 x-1 & \text { otherwise }
\end{array}\right.
$$

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y+1
$$

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ CW

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- Is there a bijection between \mathbb{N} and set of all subsets of \mathbb{N} ?

Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

- Let E be a set of even numbers. There is a bijection between E and \mathbb{N}
- There is a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- There is a bijection $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- Is there a bijection between \mathbb{N} and set of all subsets of \mathbb{N} ?
- Is there a bijection between \mathbb{R} and \mathbb{N} ?

Finite sets vs infinite sets

On the one hand

- If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite

Finite sets vs infinite sets

On the one hand

- If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite, where A is said to be countably infinite if there is a bijection from A to \mathbb{N}

Finite sets vs infinite sets

On the one hand

- If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A

Finite sets vs infinite sets

On the one hand

- If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A
On the other hand

Finite sets vs infinite sets

On the one hand

- If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A
On the other hand
- Today we will see two theorems which prove two properties of infinite sets that they share with finite sets.

Cantor's diagonalisation

Theorem (Cantor, 1891)
There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N}.

	0	1	2	3	\ldots
\emptyset					
$\{1\}$					
$\{2\}$					
$\{1,2\}$					
\vdots					
\vdots					

Cantor's diagonalisation

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N}.

	0	1	2	3	\ldots
\emptyset	x	x	x	x	\cdots
$\{1\}$	x	\checkmark	x	x	\cdots
$\{2\}$	x	x	\checkmark	x	\ldots
$\{1,2\}$	x	\checkmark	\checkmark	x	\cdots
$:$	\cdots	\cdots	\cdots	\cdots	\cdots
$:$	\cdots	\cdots	\cdots	\cdots	\cdots

Cantor's diagonalisation

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N}.

	0	1	2	3	\ldots
\emptyset	\checkmark	X	X	x	
$\{1\}$	x	x	x	x	
\{2\}	x	x	X	x	
$\{1,2\}$	x	\checkmark	\checkmark	\checkmark	
:					
:					

Cantor's diagonalisation

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f, between set of all subsets of \mathbb{N}.

	0	1	2	3	\ldots
\emptyset	\checkmark	x	x	x	\ldots
$\{1\}$	\boldsymbol{x}	x	\boldsymbol{x}	\boldsymbol{x}	\ldots
$\{2\}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\ldots
$\{1,2\}$	\boldsymbol{x}	\checkmark	\checkmark	\checkmark	\ldots
$:$	\ldots	\ldots	\ldots	\ldots	\ldots
$:$	\ldots	\cdots	\ldots	\ldots	\ldots

The inverted diagonal set does not belong to any of the existing sets!

