CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects Lecture 4: Cantor's diagonalisation? Aug 6, 2012

Last time

990

◆□▶ ◆□▶ ◆□▶ ◆□▶

• What are finite and infinite sets?

-

• • • • • • • • • • • •

DQC

- What are finite and infinite sets?
- What are functions?

∃ → -4 ∃

990

- What are finite and infinite sets?
- What are functions? What are injective, surjective, and bijective functions?

- What are finite and infinite sets?
- What are functions? What are injective, surjective, and bijective functions?
- Comparing sizes of infinite sets.

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A,B have the same size if and only if there is a bijection between A and B

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

• Let E be a set of even numbers. There is a bijection between E and $\mathbb N$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

• Let *E* be a set of even numbers. There is a bijection between *E* and \mathbb{N} $f(x) = 2x, f : \mathbb{N} \to E$.

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

Examples

• Let E be a set of even numbers. There is a bijection between E and $\mathbb N$

• There is a bijection
$$f : \mathbb{Z} \to \mathbb{N}$$

 $f(x) = \begin{cases} -2x & \text{if } x \leq 0 \\ 2x - 1 & \text{otherwise} \end{cases}$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $f(x, y) = \left(\sum_{i=1}^{x+y} i\right) + y + 1$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ CW

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- Is there a bijection between $\mathbb N$ and set of all subsets of $\mathbb N$?

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A, B have the same size if and only if there is a bijection between A and B

- Let E be a set of even numbers. There is a bijection between E and $\mathbb N$
- There is a bijection $f : \mathbb{Z} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- There is a bijection $f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- Is there a bijection between \mathbb{N} and set of all subsets of \mathbb{N} ?
- Is there a bijection between \mathbb{R} and \mathbb{N} ?

On the one hand

• If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite

On the one hand

If A is finite then there is no bijection from A × A to A. Whereas if A is countably infinite, where A is said to be countably infinite if there is a bijection from A to N

On the one hand

• If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A

On the one hand

• If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A

On the other hand

On the one hand

• If A is finite then there is no bijection from $A \times A$ to A. Whereas if A is countably infinite then there is a bijection from $A \times A$ to A

On the other hand

• Today we will see two theorems which prove two properties of infinite sets that they share with finite sets.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N} .

Proof.

	0	1	2	3	
Ø					
$\{1\}$					
{2}					
$\{1, 2\}$					
:					
:					
·	l				

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N} .

Proof.

	0	1	2	3	
Ø	X	X	X	X	
$\{1\}$	X	\checkmark	X	X	
{2}	X	X	\checkmark	X	
$\{1, 2\}$	X	\checkmark	\checkmark	X	
:			•••	•••	
:			•••	•••	

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N} .

Proof.

	0	1	2	3	
Ø	\checkmark	X	X	X	
$\{1\}$	X	×	X	X	
{2}	X	X	X	X	
$\{1, 2\}$	X	\checkmark	\checkmark	\checkmark	
:					
:					

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N} .

Proof.

	0	1	2	3				
Ø	\checkmark	X	X	X				
$\{1\}$	X	X	X	X				
{2}	X	X	X	X				
$\{1,2\}$	X	\checkmark	\checkmark	\checkmark				
:								
:		•••	•••	•••				
The inverted diagonal set does not belong to any of the existing sets! $\hfill\square$								