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Recap

What are finite and infinite sets?

What are functions? What are injective, surjective, and bijective
functions?

Comparing sizes of infinite sets.
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A,B have the same size if and only if there is a
bijection between A and B

Examples

Let E be a set of even numbers. There is a bijection between E and N
There is a bijection f : Z→ N
There is a bijection f : N× N→ N
There is a bijection f : N× N× N→ N
Is there a bijection between N and set of all subsets of N?

Is there a bijection between R and N?
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Examples

Let E be a set of even numbers. There is a bijection between E and N
There is a bijection f : Z→ N

f (x) =

{
−2x if x ≤ 0

2x − 1 otherwise
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We say that two sets A,B have the same size if and only if there is a
bijection between A and B

Examples

Let E be a set of even numbers. There is a bijection between E and N
There is a bijection f : Z→ N
There is a bijection f : N× N→ N
f (x , y) =

(∑x+y
i=1 i

)
+ y + 1
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Finite sets vs infinite sets

On the one hand

If A is finite then there is no bijection from A× A to A. Whereas if A
is countably infinite

then there is a bijection from A× A to A

On the other hand

Today we will see two theorems which prove two properties of infinite
sets that they share with finite sets.
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f ,
between set of all subsets of N.

0 1 2 3 ...

∅
{1}
{2}
{1, 2}
:
:
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0 1 2 3 ...

∅ X 7 7 7 . . .
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{2} 7 7 7 7 . . .
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f ,
between set of all subsets of N.

0 1 2 3 ...

∅ X 7 7 7 . . .
{1} 7 7 7 7 . . .
{2} 7 7 7 7 . . .
{1, 2} 7 X X X . . .
: . . . . . . . . . . . . . . .
: . . . . . . . . . . . . . . .

The inverted diagonal set does not belong to any of the existing sets!
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