CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects
Lecture 5: Schroder-Bernstein
Aug 7, 2012

Last time

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
$f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y$
Why is this a bijection?

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
$f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y=\frac{(x+y)(x+y+1)}{2}+y$
Why is this a bijection?

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
$f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y=\frac{(x+y)(x+y+1)}{2}+y$
Why is this a bijection?
Hint: Any point (x, y) such that $x+y=k$ is mapped to an interval of size $k+1$ which starts at $\frac{k(k+1)}{2}$.

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
$f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y=\frac{(x+y)(x+y+1)}{2}+y$
Why is this a bijection?
Hint: Any point (x, y) such that $x+y=k$ is mapped to an interval of size $k+1$ which starts at $\frac{k(k+1)}{2}$.

Why injective: If $x+y \neq x^{\prime}+y^{\prime}$ then $f(x, y) \neq f\left(x^{\prime}, y^{\prime}\right)$.
If $x+y=x^{\prime}+y^{\prime}$ and $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$ then $y=y^{\prime}$. But if
$x+y=x^{\prime}+y^{\prime}$ and $y=y^{\prime}$ then $x=x^{\prime}$
Why surjective: Say $\exists k \in \mathbb{N}$ such that k has no inverse. But for any $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $\frac{n(n+1)}{2} \leq k \leq \frac{(n+1)(n+2)}{2}$

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}

$$
f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y
$$

- There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}.

Recap

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}
$f(x, y)=\left(\sum_{i=1}^{x+y} i\right)+y$
- There is no bijection between \mathbb{N} and set of all subsets of \mathbb{N}. Proof by Cantor's diagonalization. [Cantor, 1891]

Today

- Another property of sets which holds for both finite and infinite sets. [Schröder-Bernstein Theorem]

Today

- Another property of sets which holds for both finite and infinite sets. [Schröder-Bernstein Theorem]
- An interesting game and an open problem (If time permits).

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

A toy example:
Say $g: \mathbb{N} \rightarrow \mathbb{N}, g(x)=x+1$ and $h: \mathbb{N} \rightarrow \mathbb{N}, h(x)=x+1$.

Schröder-Bernstein

```
Theorem
Let \(A, B\) be two sets. If there is a injective map \(g\) from \(A\) to \(B\) and another injective map \(h\) from \(B\) to \(A\) then there is a bijection between \(A, B\).
```

A toy example:
Say $g: \mathbb{N} \rightarrow \mathbb{N}, g(x)=x+1$ and $h: \mathbb{N} \rightarrow \mathbb{N}, h(x)=x+1$.
Why are g, h injective? Are they bijective?

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

A toy example:
Say $g: \mathbb{N} \rightarrow \mathbb{N}, g(x)=x+1$ and $h: \mathbb{N} \rightarrow \mathbb{N}, h(x)=x+1$.

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

A toy example:
Say $g: \mathbb{N} \rightarrow \mathbb{N}, g(x)=x+1$ and $h: \mathbb{N} \rightarrow \mathbb{N}, h(x)=x+1$.

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_{0}=\{b \in B \mid \exists a \in A$ s.t. $g(a)=b\}$
- $B_{1}=\{b \in B \mid \nexists a \in A$ s.t. $g(a)=b\}$

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_{0}=\{b \in B \mid \exists a \in A$ s.t. $g(a)=b\}$
- $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_{0}=\{b \in B \mid \exists a \in A$ s.t. $g(a)=b\}$
- $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$

An element $b \in B$ be called h-good if $\exists \beta \in B_{1}, \exists n \in \mathbb{N}$ s.t. $b=(g \odot h)^{n} \beta$

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_{0}=\{b \in B \mid \exists a \in A$ s.t. $g(a)=b\}$
- $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$

An element $b \in B$ be called h-good if $\exists \beta \in B_{1}, \exists n \in \mathbb{N}$ s.t. $b=(g \odot h)^{n} \beta$ What is $(f \odot g)^{n}$? What does it mean to be h-good?

Schröder-Bernstein

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_{0}=\{b \in B \mid \exists a \in A$ s.t. $g(a)=b\}$
- $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$

An element $b \in B$ be called h-good if $\exists \beta \in B_{1}, \exists n \in \mathbb{N}$ s.t. $b=(g \odot h)^{n} \beta$ We now define another map from A to B as follows:
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
To finish the proof, we will prove the following lemma about f.

Lemma

The map f defined above is a

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h-g o o d \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case $1\left[g(a), g\left(a^{\prime}\right)\right.$ are h-good:] then $f(a)=h^{-1}(a)=f\left(a^{\prime}\right)=h^{-1}\left(a^{\prime}\right)$. Say $h^{-1}(a)=b_{0}$. Then we have, $h\left(b_{0}\right)=a$ and $h\left(b_{0}\right)=a^{\prime}$, i.e. h is not a well-defined functions. This is a contradiction.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case $2\left[g(a), g\left(a^{\prime}\right)\right.$ are not h-good:] then $f(a)=g(a)=f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$. Then we have, $g(a)=g\left(a^{\prime}\right)$, i.e. g is not injective. This is a contradiction.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h-g o o d \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case 3 [only $g(a)$ is h-good:] We have that $f(a)=f\left(a^{\prime}\right)$.
As $g(a)$ is h-good, $f(a)=h^{-1}(a)$. As $g\left(a^{\prime}\right)$ is not h-good, $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h-g o o d \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case 3 [only $g(a)$ is h-good:] We have that $f(a)=f\left(a^{\prime}\right)$.
As $g(a)$ is h-good, $f(a)=h^{-1}(a)$. As $g\left(a^{\prime}\right)$ is not h-good, $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$. Therefore, $h^{-1}(a)=g\left(a^{\prime}\right)$. Call this element b^{*}.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case 3 [only $g(a)$ is h-good:] We have that $f(a)=f\left(a^{\prime}\right)$.
As $g(a)$ is h-good, $f(a)=h^{-1}(a)$. As $g\left(a^{\prime}\right)$ is not h-good, $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$.
Therefore, $h^{-1}(a)=g\left(a^{\prime}\right)$. Call this element b^{*}.
As $g\left(a^{\prime}\right)=b^{*}, b^{*} \notin B_{1}$. But as $g(a)$ is h-good. Therefore, $(h \odot g)^{-i}\left(b^{*}\right) \in B_{1}$ for some $i \in \mathbb{N}$.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case 3[only $g(a)$ is h-good:] We have that $f(a)=f\left(a^{\prime}\right)$.
As $g(a)$ is h-good, $f(a)=h^{-1}(a)$. As $g\left(a^{\prime}\right)$ is not h-good, $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$.
Therefore, $h^{-1}(a)=g\left(a^{\prime}\right)$. Call this element b^{*}.
As $g\left(a^{\prime}\right)=b^{*}, b^{*} \notin B_{1}$. But as $g(a)$ is h-good. Therefore, $(h \odot g)^{-i}\left(b^{*}\right) \in B_{1}$ for some $i \in \mathbb{N}$.
Assuming $g\left(a^{\prime}\right)$ is not h-good, paths walked backwards from b^{*} lead to B_{0}. But Assuming $g(a)$ is h-good, paths walked backwards from b^{*} lead to B_{1}.

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and
$f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a^{\prime}$ and $f(a)=f\left(a^{\prime}\right)$.
Case 3[only $g(a)$ is h-good:] We have that $f(a)=f\left(a^{\prime}\right)$.
As $g(a)$ is h-good, $f(a)=h^{-1}(a)$. As $g\left(a^{\prime}\right)$ is not h-good, $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$.
Therefore, $h^{-1}(a)=g\left(a^{\prime}\right)$. Call this element b^{*}.
As $g\left(a^{\prime}\right)=b^{*}, b^{*} \notin B_{1}$. But as $g(a)$ is h-good. Therefore, $(h \odot g)^{-i}\left(b^{*}\right) \in B_{1}$ for some $i \in \mathbb{N}$.
Assuming $g\left(a^{\prime}\right)$ is not h-good, paths walked backwards from b^{*} lead to B_{0}. But Assuming $g(a)$ is h-good, paths walked backwards from b^{*} lead to B_{1}. Contradiction!

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and $f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text {-good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is surjective from A to B

Schröder-Bernstein

Lemma

Let $B_{1}=\{b \in B \mid \forall a \in A$ s.t. $g(a) \neq b\}$, and $f(a)=\left\{\begin{array}{cc}h^{-1}(a) & \text { if } g(a) \text { is } h \text { - good } \\ g(a) & \text { otherwise }\end{array}\right.$
Then f is surjective from A to B

Proof.

HW

Subset Take-away Game - David Gale

I am player 1 and you are player 2 . We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:
(1) We do not choose the empty set
(2) We do not choose the entire set A
(3) We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.

Subset Take-away Game - David Gale

I am player 1 and you are player 2 . We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:
(1) We do not choose the empty set
(2) We do not choose the entire set A
(3) We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.
If $|A|=1$ then I lose.

Subset Take-away Game - David Gale

I am player 1 and you are player 2 . We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:
(1) We do not choose the empty set
(2) We do not choose the entire set A
(3) We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.
If $|A|=1$ then I lose. If $|A|=2$ then you will always win.

Subset Take-away Game - David Gale

I am player 1 and you are player 2 . We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:
(1) We do not choose the empty set
(2) We do not choose the entire set A
(3) We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.
If $|A|=1$ then I lose. If $|A|=2$ then you will always win. If $|A|=3$ then again you can win. What happens when $|A|=4$?

Subset Take-away Game - David Gale

I am player 1 and you are player 2 . We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:
(1) We do not choose the empty set
(2) We do not choose the entire set A
(3) We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.
If $|A|=1$ then I lose. If $|A|=2$ then you will always win. If $|A|=3$ then again you can win. What happens when $|A|=4$?
(Source - Mathematics for Computer Science, 2012, by Eric Lehman and F Thomson Leighton)

