CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Mathematical Reasoning and Mathematical Objects Lecture 5: Schroder-Bernstein Aug 7, 2012

Last time

990

◆□▶ ◆□▶ ◆□▶ ◆□▶

 \bullet There is a bijection from $\mathbb{N}\times\mathbb{N}$ to \mathbb{N}

-

▲ @ ▶ < ≥ ▶</p>

DQC

• There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x, y) = \left(\sum_{i=1}^{x+y} i\right) + y$

Why is this a bijection?

- (A 🖓

.⊒ . ►

nac

• There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x,y) = \left(\sum_{i=1}^{x+y} i\right) + y = \frac{(x+y)(x+y+1)}{2} + y$ Why is this a bijection?

.∃ ▶ . ∢

• There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x,y) = \left(\sum_{i=1}^{x+y} i\right) + y = \frac{(x+y)(x+y+1)}{2} + y$ Why is this a bijection? Hint: Any point (x, y) such that x + y = k is mapped to an interval of size k + 1 which starts at $\frac{k(k+1)}{2}$.

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x,y) = \left(\sum_{i=1}^{x+y} i\right) + y = \frac{(x+y)(x+y+1)}{2} + y$ Why is this a bijection? Hint: Any point (x, y) such that x + y = k is mapped to an interval of size k + 1 which starts at $\frac{k(k+1)}{2}$.
 - Why injective: If $x + y \neq x' + y'$ then $f(x, y) \neq f(x', y')$. If x + y = x' + y' and f(x, y) = f(x', y') then y = y'. But if x + y = x' + y' and y = y' then x = x'Why surjective: Say $\exists k \in \mathbb{N}$ such that k has no inverse. But for any $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $\frac{n(n+1)}{2} \leq k \leq \frac{(n+1)(n+2)}{2}$

(日本)

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x,y) = \left(\sum_{i=1}^{x+y} i\right) + y$
- \bullet There is no bijection between $\mathbb N$ and set of all subsets of $\mathbb N.$

- There is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} $f(x,y) = \left(\sum_{i=1}^{x+y} i\right) + y$
- There is no bijection between N and set of all subsets of N.
 Proof by Cantor's diagonalization. [Cantor, 1891]

Today

• Another property of sets which holds for both finite and infinite sets. [Schröder-Bernstein Theorem]

Today

- Another property of sets which holds for both finite and infinite sets. [Schröder-Bernstein Theorem]
- An interesting game and an open problem (If time permits).

Theorem

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

A toy example:

Say $g : \mathbb{N} \to \mathbb{N}$, g(x) = x+1 and $h : \mathbb{N} \to \mathbb{N}$, h(x) = x+1.

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

A toy example: Say $g : \mathbb{N} \to \mathbb{N}$, g(x) = x+1 and $h : \mathbb{N} \to \mathbb{N}$, h(x) = x+1. Why are g, h injective? Are they bijective?

Theorem

Theorem

Theorem

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

•
$$B_0 = \{ b \in B \mid \exists a \in A \text{ s.t. } g(a) = b \}$$

•
$$B_1 = \{b \in B \mid \nexists a \in A \text{ s.t. } g(a) = b\}$$

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

•
$$B_0 = \{ b \in B \mid \exists a \in A \text{ s.t. } g(a) = b \}$$

•
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

- $B_0 = \{ b \in B \mid \exists a \in A \text{ s.t. } g(a) = b \}$
- $B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$

An element $b \in B$ be called *h*-good if $\exists \beta \in B_1, \exists n \in \mathbb{N}$ s.t. $b = (g \odot h)^n \beta$

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

•
$$B_0 = \{ b \in B \mid \exists a \in A \text{ s.t. } g(a) = b \}$$

•
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$

An element $b \in B$ be called *h*-good if $\exists \beta \in B_1, \exists n \in \mathbb{N} \text{ s.t. } b = (g \odot h)^n \beta$ What is $(f \odot g)^n$? What does it mean to be *h*-good?

Theorem

Let A, B be two sets. If there is a injective map g from A to B and another injective map h from B to A then there is a bijection between A, B.

There are two types of elements in B.

•
$$B_0 = \{ b \in B \mid \exists a \in A \text{ s.t. } g(a) = b \}$$

•
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$

An element $b \in B$ be called *h*-good if $\exists \beta \in B_1, \exists n \in \mathbb{N}$ s.t. $b = (g \odot h)^n \beta$ We now define another map from A to B as follows:

$$f(a) = \left\{ egin{array}{cc} h^{-1}(a) & ext{if } g(a) ext{ is } h ext{-good} \ g(a) & ext{otherwise} \end{array}
ight.$$

To finish the proof, we will prove the following lemma about f.

Lemma

The map f defined above is a

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a').

nac

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 1** [g(a), g(a') are *h*-good:] then $f(a) = h^{-1}(a) = f(a') = h^{-1}(a')$. Say $h^{-1}(a) = b_0$. Then we have, $h(b_0) = a$ and $h(b_0) = a'$, i.e. *h* is not a well-defined functions. This is a contradiction.

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 2** [g(a), g(a') are not *h*-good:] then f(a) = g(a) = f(a') = g(a'). Then we have, g(a) = g(a'), i.e. *g* is not injective. This is a contradiction.

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 3**[only g(a) is *h*-good:] We have that f(a) = f(a'). As g(a) is *h*-good, $f(a) = h^{-1}(a)$. As g(a') is not *h*-good, f(a') = g(a').

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 3**[only g(a) is *h*-good:] We have that f(a) = f(a'). As g(a) is *h*-good, $f(a) = h^{-1}(a)$. As g(a') is not *h*-good, f(a') = g(a'). Therefore, $h^{-1}(a) = g(a')$. Call this element b^* .

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 3**[only g(a) is *h*-good:] We have that f(a) = f(a'). As g(a) is *h*-good, $f(a) = h^{-1}(a)$. As g(a') is not *h*-good, f(a') = g(a'). Therefore, $h^{-1}(a) = g(a')$. Call this element b^* . As $g(a') = b^*$, $b^* \notin B_1$. But as g(a) is *h*-good. Therefore, $(h \odot g)^{-i}(b^*) \in B_1$ for some $i \in \mathbb{N}$.

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 3**[only g(a) is h-good:] We have that f(a) = f(a'). As g(a) is h-good, $f(a) = h^{-1}(a)$. As g(a') is not h-good, f(a') = g(a'). Therefore, $h^{-1}(a) = g(a')$. Call this element b^* . As $g(a') = b^*$, $b^* \notin B_1$. But as g(a) is h-good. Therefore, $(h \odot g)^{-i}(b^*) \in B_1$ for some $i \in \mathbb{N}$. Assuming g(a') is not h-good, paths walked backwards from b^* lead to B_0 . But Assuming g(a) is h-good, paths walked backwards from b^* lead to B_1 .

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) $a \neq a'$ and f(a) = f(a'). **Case 3**[only g(a) is h-good:] We have that f(a) = f(a'). As g(a) is h-good, $f(a) = h^{-1}(a)$. As g(a') is not h-good, f(a') = g(a'). Therefore, $h^{-1}(a) = g(a')$. Call this element b^* . As $g(a') = b^*$, $b^* \notin B_1$. But as g(a) is h-good. Therefore, $(h \odot g)^{-i}(b^*) \in B_1$ for some $i \in \mathbb{N}$. Assuming g(a') is not h-good, paths walked backwards from b^* lead to B_0 . But Assuming g(a) is h-good, paths walked backwards from b^* lead to B_1 . Contradiction!

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is surjective from A to B

DQC

(a)

Lemma

Let
$$B_1 = \{b \in B \mid \forall a \in A \text{ s.t. } g(a) \neq b\}$$
, and
 $f(a) = \begin{cases} h^{-1}(a) & \text{if } g(a) \text{ is } h\text{-good} \\ g(a) & \text{otherwise} \end{cases}$
Then f is surjective from A to B

Proof.	
HW	

990

(a)

I am player 1 and you are player 2. We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:

- We do not choose the empty set
- 2 We do not choose the entire set A

• We do not choose any superset of a set chosen in any earlier round. First player unable to pick loses the game.

I am player 1 and you are player 2. We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:

- We do not choose the empty set
- 2 We do not choose the entire set A

 $\label{eq:weight} \textcircled{0}{3} \ \mbox{We do not choose any superset of a set chosen in any earlier round.} \\ \mbox{First player unable to pick loses the game.} \\ \mbox{If } |A| = 1 \ \mbox{then I lose.} \\ \end{matrix}$

I am player 1 and you are player 2. We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:

- We do not choose the empty set
- 2 We do not choose the entire set A
- We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.

If |A| = 1 then I lose. If |A| = 2 then you will always win.

I am player 1 and you are player 2. We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:

- We do not choose the empty set
- 2 We do not choose the entire set A
- We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.

If |A| = 1 then I lose. If |A| = 2 then you will always win. If |A| = 3 then again you can win. What happens when |A| = 4?

I am player 1 and you are player 2. We both have been given a set A. In each round, first I choose one subset of A and then you choose another subset of A. We stick to the following rules:

- We do not choose the empty set
- 2 We do not choose the entire set A
- We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.

If |A| = 1 then I lose. If |A| = 2 then you will always win. If |A| = 3 then again you can win. What happens when |A| = 4?

(Source - Mathematics for Computer Science, 2012, by Eric Lehman and F Thomson Leighton)