CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Mathematical Reasoning and Mathematical Objects

Lecture 6: Relations Aug 09, 2012 Last few classes

• Proofs, proof methods.

- Proofs, proof methods.
- Sets and properties of sets

- Proofs, proof methods.
- Sets and properties of sets
- Functions, properties of functions

- Proofs, proof methods.
- Sets and properties of sets
- Functions, properties of functions
- Infinite sets and properties of infinite sets.

Today

• Relations: generalisations of functions

Today

- Relations: generalisations of functions
- Types and properties of relations

Today

- Relations: generalisations of functions
- Types and properties of relations
- Representation of functions directed graphs

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$.

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Examples:

A function is a special case of a relation.

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Examples:

- A function is a special case of a relation.
- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$. R is a relation on the set of integers under which aRb holds for two numbers $a,b \in \mathbb{Z}$ if and only if a < b.

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Examples:

- A function is a special case of a relation.
- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$. R is a relation on the set of integers under which aRb holds for two numbers $a,b \in \mathbb{Z}$ if and only if $a \leq b$.

We use aRb to denote a is related to b.

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Examples:

- A function is a special case of a relation.
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$. R is a relation on the set of integers under which aRb holds for two numbers $a, b \in \mathbb{Z}$ if and only if $a \leq b$.
- Let S be a set $R(\mathcal{P}(S)) = \{(A, B) \mid A, B \in \mathcal{P}(S) \text{ and } A \subseteq B\}.$

Relation are used to talk about elements of a set.

A relation R from set A to set B, R(A, B) is a subset of $A \times B$. If A = B for some relation, we denote the relation as R(A).

Examples:

- A function is a special case of a relation.
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$. R is a relation on the set of integers under which aRb holds for two numbers $a, b \in \mathbb{Z}$ if and only if $a \leq b$.
- Let S be a set $R(\mathcal{P}(S)) = \{(A, B) \mid A, B \in \mathcal{P}(S) \text{ and } A \subseteq B\}.$
- Relational databases: practical examples of relations.

Here we list a few definitions which define different types of relations. Let A be a set and let R(A) be a relation on A.

Reflexive:

Here we list a few definitions which define different types of relations. Let A be a set and let R(A) be a relation on A.

• Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$ reflexive?
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a < b\}$ reflexive?
 - ▶ Is $R(P(S)) = \{(A, B) \mid A, B \in P(S), A \subseteq B\}$?

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric:

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$ symmetric?
 - ▶ Is $R(YourClass) = \{(a, b) \mid a, b \in YourClass \text{ and } a \text{ friend of } b\}$ symmetric?
 - ▶ Is $R(\mathcal{P}(S)) = \{(A, B) \mid A \cap B = \emptyset\}$ symmetric?

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive:

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A$ aRb and bRc implies aRc.

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A$ aRb and bRc implies aRc.
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$ transitive?
 - ▶ Is $R(\mathbb{N}) = \{(a, b) \mid a \pmod{b} \neq 0\}$ transitive?
 - ▶ Is $R(\mathcal{P}(S)) = \{(A, B) \mid A \subseteq B\}$ transitive?

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A$ aRb and bRc implies aRc.
- Anti-symmetric:

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A$ aRb and bRc implies aRc.
- Anti-symmetric: R(A) is called anti-symmetric if $\forall a, b \in A \ aRb$ and bRa implies a = b.

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A \ aRb$ and bRc implies aRc.
- Anti-symmetric: R(A) is called anti-symmetric if $\forall a, b \in A$ aRb and bRa implies a = b.
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$ anti-symmetric?
 - ▶ Is $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a|b\}$ anti-symmetric?
 - ▶ Is $R(\mathcal{P}(S)) = \{(A, B) \mid A \subseteq B\}$ anti-symmetric?

- Reflexive: R(A) is called reflexive if $aRa \ \forall a \in A$.
- Symmetric: R(A) is called symmetric if $\forall a, b \in A \ aRb$ implies bRa.
- Transitive: R(A) is called transitive if $\forall a, b, c \in A$ aRb and bRc implies aRc.
- Anti-symmetric: R(A) is called anti-symmetric if $\forall a, b \in A \ aRb$ and bRa implies a = b.

We will study the following two types of relations:

- Equivalence relations
- Partial orders

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	\checkmark	\checkmark	
relation				

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	\checkmark	\checkmark	
relation				
partial order	✓	\checkmark		\checkmark

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	\checkmark	\checkmark	
relation				
partial order	✓	\checkmark		\checkmark

•
$$R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$$

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$
- $R(\Sigma^*) = \{(x, y) \mid x, y \in \Sigma^* \text{ and } x = \text{suff}(y)\}$

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	\checkmark	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$
- $R(\Sigma^*) = \{(x,y) \mid x,y \in \Sigma^* \text{ and } x = \text{suff}(y)\}$ Σ is a finite alphabet. Σ^* are strings of arbitrary length over Σ

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$
- $R(\Sigma^*) = \{(x, y) \mid x, y \in \Sigma^* \text{ and } x = \text{suff}(y)\}$
- $R(\mathbb{N}) = \{(a, b) \mid a \pmod{b} \neq 0\}$

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$
- $R(\Sigma^*) = \{(x, y) \mid x, y \in \Sigma^* \text{ and } x = \text{suff}(y)\}$
- $R(\mathbb{N}) = \{(a, b) \mid a \pmod{b} \neq 0\}$
- $R(\mathbb{R}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a^2 \leq b^2\}$

We will study the following two types of relations:

- Equivalence relations
- Partial orders

	reflexive	transitive	symmetric	anti-symmetric
equivalence	✓	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

- $R(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z} \text{ and } a \leq b\}$
- $R(\mathbb{Z}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}\}$
- $R(\Sigma^*) = \{(x, y) \mid x, y \in \Sigma^* \text{ and } x = \text{suff}(y)\}$
- $R(\mathbb{N}) = \{(a, b) \mid a \pmod{b} \neq 0\}$
- $R(\mathbb{R}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } a^2 \leq b^2\}$

Definition

A set S along with a relation \leq , (S, \leq) , is called a poset if \leq defines a partial order on S.

Definition

A set S along with a relation \leq , (S, \leq) , is called a poset if \leq defines a partial order on S.

Definition

If (S, \leq) is a poset and every pair of elements in S is comparable, then (S, \leq) is called a totally ordered set.

Definition

A set S along with a relation \leq , (S, \leq) , is called a poset if \leq defines a partial order on S.

Definition

If (S, \preceq) is a poset and every pair of elements in S is comparable, then (S, \preceq) is called a totally ordered set. A totally ordered set is called a *chain*.

Definition

A set S along with a relation \leq , (S, \leq) , is called a poset if \leq defines a partial order on S.

Definition

If (S, \preceq) is a poset and every pair of elements in S is comparable, then (S, \preceq) is called a totally ordered set. A totally ordered set is called a *chain*.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called an anti-chain if no two elements of A are related to reach other under \preceq .

What is a graph?

What is a graph?

Definition

A graph can be described by two sets: set V is called a set of vertices and set E is a subset of $V \times V$ and is called a set of edges, G = (V, E).

What is a graph?

Definition

A graph can be described by two sets: set V is called a set of vertices and set E is a subset of $V \times V$ and is called a set of edges, G = (V, E). Vertices $u, v \in V$ are said to be neighbours if $(u, v) \in E$.

What is a graph?

Definition

A graph can be described by two sets: set V is called a set of vertices and set E is a subset of $V \times V$ and is called a set of edges, G = (V, E). Vertices $u, v \in V$ are said to be neighbours if $(u, v) \in E$. The graph is called directed if E is a set of ordered pairs.

What are the examples of graphs you may have seen:

What is a graph?

Definition

A graph can be described by two sets: set V is called a set of vertices and set E is a subset of $V \times V$ and is called a set of edges, G = (V, E). Vertices $u, v \in V$ are said to be neighbours if $(u, v) \in E$. The graph is called directed if E is a set of ordered pairs.

What are the examples of graphs you may have seen:

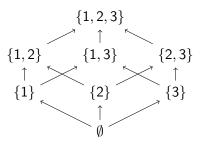
- Social network graphs
- Tum-tum route graphs
- ...

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$. [CW] Describe $(\mathcal{P}(S), \subseteq)$.

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$. [CW] Describe $(\mathcal{P}(S), \subseteq)$.

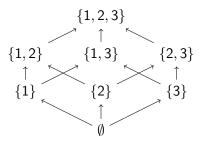
A graph representing the poset:



Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

[CW] Describe $(\mathcal{P}(S), \subseteq)$.

A graph representing the poset:

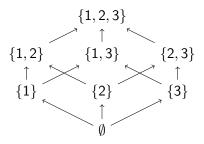


[CW] What are the chains in this poset?

Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

[CW] Describe $(\mathcal{P}(S), \subseteq)$.

A graph representing the poset:



[CW] What are the chains in this poset?

[CW] What are the anti-chains in this poset?