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Recap

What are relaions?

What are different types of functions?
reflexive, transitive, symmetric, anti-symmetric

Equivalence relations and partial orders.
reflexive transitive symmetric anti-symmetric

Representation of partial orders by graphs
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Today

What are equivalence classes and properties of equivalence classes.

Recall chains and anti-chains and study properties of partial orders.
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Equivalence relations and equivalence classes

Definition

A relation R defined over a set A, denoted as R(A) or (A,R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x ] := {y | x , y ∈ A, and (x , y) ∈ R}.
[x ] is called the equivalence class of x .

Example: Consider (N,≡ (mod4)).

[0] = {0, 4, 8, 12, 16, . . .}
[1] = {1, 5, 9, 13, 17, . . .}
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Properties of equivalence relations

Let R be an equivalence relation of A. Let elements of A be x , y , z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x ] = [y ], (c) [x ] ∩ [y ] 6= ∅.
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Lemma

The following three are equivalent: (a) xRy, (b) [x ] = [y ], (c) [x ] ∩ [y ] 6= ∅.

Proof.

(a) ⇒ (b): Say z ∈ [x ]. But xRy . As xRy and R is symmetric, yRx .
Therefore, yRx , xRz . R is transitive. Therefore, yRz , i.e. z ∈ [y ]. This
proves that [x ] ⊆ [y ]. The proof of [y ] ⊆ [x ] is similar.

(b) ⇒ (c): Say [x ] = [y ]. The only way [x ] ∩ [y ] = ∅ is if [x ] = ∅.
However, as R is reflexive, x ∈ [x ] 6= ∅.
(c) ⇒ (a): Let z ∈ [x ] ∩ [y ]. Therefore, xRz and yRz . But as R is
symmetric, zRy . But R is also transitive. Therefore xRz and zRy imply
xRy .
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R. From the previous
lemma [x ] ∩ [y ] = ∅. Also, for each x ∈ A, x ∈ [x ].
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Sets X1,X2, . . . ,Xm are said to partition a set X if

∀i , j ∈ {1, 2, . . . ,m}, i 6= j : Xi ∩ Xj = ∅
∀x ∈ X , ∃i ∈ {1, 2, . . . ,m} : x ∈ Xi
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Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 7 / 14



Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Conversely, given a partition {Ai | i ∈ {1, 2, . . . , n}} of A, there is an
equivalence relation RA with equivalence classes A1,A2, . . . ,An.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R. From the previous
lemma [x ] ∩ [y ] = ∅. Also, for each x ∈ A, x ∈ [x ].

Let RA = {(x , y) | ∃i : x , y ∈ Ai}.
RA relates (x , y) if they belong to the same part in the partition of A.
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Conversely, given a partition {Ai | i ∈ {1, 2, . . . , n}} of A, there is an
equivalence relation RA with equivalence classes A1,A2, . . . ,An.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R. From the previous
lemma [x ] ∩ [y ] = ∅. Also, for each x ∈ A, x ∈ [x ].

Let RA = {(x , y) | ∃i : x , y ∈ Ai}.
RA is reflexive. If (x , y) ∈ RA then even (y , x) ∈ RA. Finally, if (x , y) ∈ RA

then ∃i : x , y ∈ Ai . Let that index be called i0. Now if (y , z) ∈ RA then
both y , z must be in the same part of the partition. But we know that
y ∈ Ai0 . Therefore, z ∈ Ai0 . Hence, x , z ∈ Ai0 and hence (x , z) ∈ RA. This
proves that RA is also transitive.
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Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A,R), is called a
partially ordered set or a poset if it is reflexive, transitive and
anti-symmetric.

Definition

If (S ,�) is a poset and A ⊆ S such that every pair of elements in A is
comparable as per �, then A is called a chain.

Definition

Let (S ,�) be a poset. A subset A ⊆ S is called an anti-chain if no two
elements of A are related to reach other under �.
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Example

Let S = {1, 2, 3}. Recall the poset (S ,⊆).

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}
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Chains and anti-chains

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m
anti-chains.

Proof.

Let the chain be denoted as a1 � a2 � . . . � am. Now observe that every
element of this chain, must go to different anti-chains. Therefore, there
are at least m anti-chains in (S ,�).

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 10 / 14



Chains and anti-chains

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m
anti-chains. The size of an anti-chain is the number of elements in the
chain.

Proof.

Let the chain be denoted as a1 � a2 � . . . � am. Now observe that every
element of this chain, must go to different anti-chains. Therefore, there
are at least m anti-chains in (S ,�).

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 10 / 14



Chains and anti-chains

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m
anti-chains.

Proof.

Let the chain be denoted as a1 � a2 � . . . � am. Now observe that every
element of this chain, must go to different anti-chains.

Therefore, there
are at least m anti-chains in (S ,�).

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 10 / 14



Chains and anti-chains

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m
anti-chains.

Proof.

Let the chain be denoted as a1 � a2 � . . . � am. Now observe that every
element of this chain, must go to different anti-chains. Therefore, there
are at least m anti-chains in (S ,�).

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 10 / 14



Chains and anti-chains

Theorem (Mirsky’s theorem, 1971)

If the largest chain in a poset (S ,�) is of size m then S can be partitioned
into m anti-chains.

Proof.

For each element s ∈ S , let Cs be the set of all chains that have s as the
maximum element. And define label(s) := maxc∈Cs {size(c)}.
Let us now define sets A1,A2, . . . ,Am such that Ai = {x | label(x) = i}.
It is easy to see that if i 6= j then Ai ∩ Aj = ∅. Also, it is easy to observe
that ∪mi=1Ai = S .
Now we prove that each Ai is an anti-chain. For x , y ∈ Ai for some
i ∈ [m]. ∴ label(x) = label(y) = i . Suppose x � y then
label(x) < label(y). Contradiction! Similarly, if x � y then we get a
contradiction. Hence, every Ai is an anti-chain.
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into m anti-chains.

Proof.

For each element s ∈ S , let Cs be the set of all chains that have s as the
maximum element. And define label(s) := maxc∈Cs {size(c)}.
Let us now define sets A1,A2, . . . ,Am such that Ai = {x | label(x) = i}.
It is easy to see that if i 6= j then Ai ∩ Aj = ∅. Also, it is easy to observe
that ∪mi=1Ai = S .
Now we prove that each Ai is an anti-chain. For x , y ∈ Ai for some
i ∈ [m]. ∴ label(x) = label(y) = i . Suppose x � y then
label(x) < label(y). Contradiction! Similarly, if x � y then we get a
contradiction. Hence, every Ai is an anti-chain.
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Subset Take-away problem

Removing supersets ≡ getting rid of some chains.

Do partial orders help?
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