CS 207 Discrete Mathematics – 2012-2013

Nutan Limaye

Mathematical Reasoning and Mathematical Objects Lecture 7: Properties of equivalence relations and partial orders August 13, 2012

Last time

• What are relaions?

- What are relaions?
- What are different types of functions?

- What are relaions?
- What are different types of functions?
 reflexive, transitive, symmetric, anti-symmetric

- What are relaions?
- What are different types of functions?
 reflexive, transitive, symmetric, anti-symmetric
- Equivalence relations and partial orders.

- What are relaions?
- What are different types of functions?
 reflexive, transitive, symmetric, anti-symmetric
- Equivalence relations and partial orders.

	reflexive	transitive	symmetric	anti-symmetric
equivalence	√	√	✓	
relation				
partial order	✓	\checkmark		\checkmark

Representation of partial orders by graphs

Today

• What are equivalence classes and properties of equivalence classes.

Today

- What are equivalence classes and properties of equivalence classes.
- Recall chains and anti-chains and study properties of partial orders.

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an equivalence relation if it is reflexive, transitive and symmetric.

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let $[x] := \{y \mid x, y \in A, \text{ and } (x, y) \in R\}.$ [x] is called the equivalence class of x.

Example: Consider $(\mathbb{N}, \equiv (mod 4))$.

• [0]

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let $[x] := \{y \mid x, y \in A, \text{ and } (x, y) \in R\}.$ [x] is called the equivalence class of x.

Example: Consider $(\mathbb{N}, \equiv (mod 4))$.

• $[0] = \{0, 4, 8, 12, 16, \ldots\}$

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let $[x] := \{y \mid x, y \in A, \text{ and } (x, y) \in R\}.$ [x] is called the equivalence class of x.

Example: Consider $(\mathbb{N}, \equiv (mod 4))$.

- $[0] = \{0, 4, 8, 12, 16, \ldots\}$
- [1]

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let $[x] := \{y \mid x, y \in A, \text{ and } (x, y) \in R\}.$ [x] is called the equivalence class of x.

Example: Consider $(\mathbb{N}, \equiv (mod 4))$.

- $[0] = \{0, 4, 8, 12, 16, \ldots\}$
- $[1] = \{1, 5, 9, 13, 17, \ldots\}$

Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x] = [y], (c) $[x] \cap [y] \neq \emptyset$.

Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x] = [y], (c) $[x] \cap [y] \neq \emptyset$.

Proof.

(a) \Rightarrow (b): Say $z \in [x]$. But xRy. As xRy and R is symmetric, yRx. Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. $z \in [y]$. This proves that $[x] \subseteq [y]$. The proof of $[y] \subseteq [x]$ is similar.

Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x] = [y], (c) $[x] \cap [y] \neq \emptyset$.

Proof.

 $\underline{(a) \Rightarrow (b)}$: Say $z \in [x]$. But xRy. As xRy and R is symmetric, yRx. Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. $z \in [y]$. This

proves that $[x] \subseteq [y]$. The proof of $[y] \subseteq [x]$ is similar.

 $\underline{\text{(b)}}\Rightarrow \underline{\text{(c)}}$: Say [x]=[y]. The only way $[x]\cap [y]=\emptyset$ is if $[x]=\emptyset$.

However, as R is reflexive, $x \in [x] \neq \emptyset$.

Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x] = [y], (c) $[x] \cap [y] \neq \emptyset$.

Proof.

- (a) \Rightarrow (b): Say $z \in [x]$. But xRy. As xRy and R is symmetric, yRx.
- Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. $z \in [y]$. This proves that $[x] \subseteq [y]$. The proof of $[y] \subseteq [x]$ is similar.
- (b) \Rightarrow (c): Say [x] = [y]. The only way $[x] \cap [y] = \emptyset$ is if $[x] = \emptyset$.
- However, as R is reflexive, $x \in [x] \neq \emptyset$.
- $\underline{(c)} \Rightarrow \underline{(a)}$: Let $z \in [x] \cap [y]$. Therefore, xRz and yRz. But as R is symmetric, zRy. But R is also transitive. Therefore xRz and zRy imply xRy.

Theorem

Let R be an equivalence relation defined on a set A.

• The equivalence classes of R, partition the set A.

Theorem

Let R be an equivalence relation defined on a set A.

• The equivalence classes of R, partition the set A.

Sets X_1, X_2, \dots, X_m are said to partition a set X if

- $\bullet \ \forall i,j \in \{1,2,\ldots,m\}, i \neq j : X_i \cap X_j = \emptyset$
- $\bullet \ \forall x \in X, \exists i \in \{1, 2, \dots, m\} : x \in X_i$

Theorem

Let R be an equivalence relation defined on a set A.

• The equivalence classes of R, partition the set A.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$.

Theorem

Let R be an equivalence relation defined on a set A.

- The equivalence classes of R, partition the set A.
- Conversely, given a partition $\{A_i \mid i \in \{1, 2, ..., n\}\}$ of A, there is an equivalence relation R_A with equivalence classes $A_1, A_2, ..., A_n$.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$. Also, for each $x \in A, x \in [x]$.

Theorem

Let R be an equivalence relation defined on a set A.

- The equivalence classes of R, partition the set A.
- Conversely, given a partition $\{A_i \mid i \in \{1, 2, ..., n\}\}$ of A, there is an equivalence relation R_A with equivalence classes $A_1, A_2, ..., A_n$.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$. Also, for each $x \in A, x \in [x]$.

Theorem

Let R be an equivalence relation defined on a set A.

- The equivalence classes of R, partition the set A.
- Conversely, given a partition $\{A_i \mid i \in \{1, 2, ..., n\}\}$ of A, there is an equivalence relation R_A with equivalence classes $A_1, A_2, ..., A_n$.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$. Also, for each $x \in A, x \in [x]$.

Let
$$R_A = \{(x, y) \mid \exists i : x, y \in A_i\}.$$

Theorem

Let R be an equivalence relation defined on a set A.

- The equivalence classes of R, partition the set A.
- Conversely, given a partition $\{A_i \mid i \in \{1, 2, ..., n\}\}$ of A, there is an equivalence relation R_A with equivalence classes $A_1, A_2, ..., A_n$.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$. Also, for each $x \in A, x \in [x]$.

Let $R_A = \{(x, y) \mid \exists i : x, y \in A_i\}.$

 R_A relates (x, y) if they belong to the same part in the partition of A.

Theorem

Let R be an equivalence relation defined on a set A.

- The equivalence classes of R, partition the set A.
- Conversely, given a partition $\{A_i \mid i \in \{1, 2, ..., n\}\}$ of A, there is an equivalence relation R_A with equivalence classes $A_1, A_2, ..., A_n$.

Proof.

Let $[x] \neq [y]$ be two distinct equivalence classes of R. From the previous lemma $[x] \cap [y] = \emptyset$. Also, for each $x \in A, x \in [x]$.

Let
$$R_A = \{(x,y) \mid \exists i : x,y \in A_i\}.$$

 R_A is reflexive. If $(x,y) \in R_A$ then even $(y,x) \in R_A$. Finally, if $(x,y) \in R_A$ then $\exists i : x,y \in A_i$. Let that index be called i_0 . Now if $(y,z) \in R_A$ then both y,z must be in the same part of the partition. But we know that $y \in A_{i_0}$. Therefore, $z \in A_{i_0}$. Hence, $x,z \in A_{i_0}$ and hence $(x,z) \in R_A$. This proves that R_A is also transitive.

Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called a partially ordered set or a poset if it is reflexive, transitive and anti-symmetric.

Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called a partially ordered set or a poset if it is reflexive, transitive and anti-symmetric.

Definition

If (S, \preceq) is a poset and $A \subseteq S$ such that every pair of elements in A is comparable as per \preceq , then A is called a chain.

Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A,R), is called a partially ordered set or a poset if it is reflexive, transitive and anti-symmetric.

Definition

If (S, \preceq) is a poset and $A \subseteq S$ such that every pair of elements in A is comparable as per \preceq , then A is called a chain.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called an anti-chain if no two elements of A are related to reach other under \preceq .

Example

Let $S = \{1, 2, 3\}$. Recall the poset (S, \subseteq) .

Example

Let $S = \{1, 2, 3\}$. Recall the poset (S, \subseteq) .

Theorem

If the largest chain in a poset (S, \preceq) is of size m then S has at least m anti-chains.

Theorem

If the largest chain in a poset (S, \preceq) is of size m then S has at least m anti-chains. The size of an anti-chain is the number of elements in the chain.

Theorem

If the largest chain in a poset (S, \preceq) is of size m then S has at least m anti-chains.

Proof.

Let the chain be denoted as $a_1 \leq a_2 \leq \ldots \leq a_m$. Now observe that every element of this chain, must go to different anti-chains.

Theorem

If the largest chain in a poset (S, \leq) is of size m then S has at least m anti-chains.

Proof.

Let the chain be denoted as $a_1 \leq a_2 \leq \ldots \leq a_m$. Now observe that every element of this chain, must go to different anti-chains. Therefore, there are at least m anti-chains in (S, \leq) .

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \leq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

[CW] For any $s \in S$, how large can label(s) be?

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \dots, A_m such that $A_i = \{x \mid label(x) = i\}$.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$. Let us now define sets A_1, A_2, \ldots, A_m such that $A_i = \{ x \mid label(x) = i \}$. It is easy to see that if $i \neq j$ then $A_i \cap A_j = \emptyset$. Also, it is easy to observe that $\bigcup_{i=1}^m A_i = S$.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \dots, A_m such that $A_i = \{x \mid label(x) = i\}$. It is easy to see that if $i \neq j$ then $A_i \cap A_i = \emptyset$. Also, it is easy to observe

that $\bigcup_{i=1}^m A_i = S$.

Now we prove that each A_i is an anti-chain. For $x, y \in A_i$ for some $i \in [m]$.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \dots, A_m such that $A_i = \{x \mid label(x) = i\}$. It is easy to see that if $i \neq j$ then $A_i \cap A_i = \emptyset$. Also, it is easy to observe that $\bigcup_{i=1}^m A_i = S$.

Now we prove that each A_i is an anti-chain. For $x, y \in A_i$ for some $i \in [m]$. $[m] = \{1, 2, \dots, m\}$

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \dots, A_m such that $A_i = \{x \mid label(x) = i\}$. It is easy to see that if $i \neq j$ then $A_i \cap A_j = \emptyset$. Also, it is easy to observe

that $\bigcup_{i=1}^m A_i = S$.

Now we prove that each A_i is an anti-chain. For $x, y \in A_i$ for some $i \in [m]$. $\therefore label(x) = label(y) = i$. Suppose $x \leq y$ then label(x) < label(y). Contradiction!

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \preceq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \ldots, A_m such that $A_i = \{x \mid label(x) = i\}$. It is easy to see that if $i \neq j$ then $A_i \cap A_j = \emptyset$. Also, it is easy to observe that $A_i \cap A_j = \emptyset$.

that $\bigcup_{i=1}^m A_i = S$.

Now we prove that each A_i is an anti-chain. For $x, y \in A_i$ for some $i \in [m]$. $\therefore label(x) = label(y) = i$. Suppose $x \leq y$ then label(x) < label(y). Contradiction! Similarly, if $x \succeq y$ then we get a contradiction.

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \leq) is of size m then S can be partitioned into m anti-chains.

Proof.

For each element $s \in S$, let C_s be the set of all chains that have s as the maximum element. And define $label(s) := max_{c \in C_s} \{ size(c) \}$.

Let us now define sets A_1, A_2, \ldots, A_m such that $A_i = \{x \mid label(x) = i\}$. It is easy to see that if $i \neq j$ then $A_i \cap A_j = \emptyset$. Also, it is easy to observe

that $\bigcup_{i=1}^m A_i = S$.

Now we prove that each A_i is an anti-chain. For $x, y \in A_i$ for some $i \in [m]$. $\therefore label(x) = label(y) = i$. Suppose $x \leq y$ then label(x) < label(y). Contradiction! Similarly, if $x \succeq y$ then we get a contradiction. Hence, every A_i is an anti-chain.

Subset Take-away problem

Removing supersets \equiv getting rid of some chains.

Subset Take-away problem

Removing supersets \equiv getting rid of some chains.

Do partial orders help?