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Recap

@ What are relaions?
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@ What are different types of functions?
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Recap

@ What are relaions?

@ What are different types of functions?

reflexive, transitive, symmetric, anti-symmetric
@ Equivalence relations and partial orders.
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Recap

@ What are relaions?

@ What are different types of functions?

reflexive, transitive, symmetric, anti-symmetric
@ Equivalence relations and partial orders.

v v
relation

‘reflexive transitive symmetric anti-symmetric
equivalence | v
partial order

v v

v
@ Representation of partial orders by graphs
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Today

@ What are equivalence classes and properties of equivalence classes.
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Today

@ What are equivalence classes and properties of equivalence classes.

@ Recall chains and anti-chains and study properties of partial orders.
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Equivalence relations and equivalence classes
Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an
equivalence relation if it is reflexive, transitive and symmetric.
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Equivalence relations and equivalence classes

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x] :={y | x,y € A, and (x,y) € R}.
[x] is called the equivalence class of x.

Example: Consider (N, = (mod4)).
o [0]
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Equivalence relations and equivalence classes

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x] :={y | x,y € A, and (x,y) € R}.
[x] is called the equivalence class of x.

Example: Consider (N, = (mod4)).
o [0] = {0,4,8,12,16,...}
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Equivalence relations and equivalence classes
Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x] . ={y | x,y € A, and (x,y) € R}.
[x] is called the equivalence class of x.

Example: Consider (N, = (mod4)).
o [0] = {0,4,8,12,16,...}
o [1]
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Equivalence relations and equivalence classes
Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x] . ={y | x,y € A, and (x,y) € R}.
[x] is called the equivalence class of x.

Example: Consider (N, = (mod4)).
o [0] = {0,4,8,12,16,...}
o [1] = {1,5,9,13,17,...}
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Properties of equivalence relations

Let R be an equivalence relation of A. Let elements of A be x, y, z etc.
Lemma

The following three are equivalent: (a) xRy, (b) [x] = [y], (¢) [x] N [y] # 0. J
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Properties of equivalence relations
Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma
The following three are equivalent: (a) xRy, (b) [x] = [y], (¢) [x] N [y] # 0.

Proof.

(a) = (b): Say z € [x]. But xRy. As xRy and R is symmetric, yRx.
Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. z € [y]. This
proves that [x] C [y]. The proof of [y] C [x] is similar.
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Properties of equivalence relations
Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma
The following three are equivalent: (a) xRy, (b) [x] = [y], (¢) [x] N [y] # 0.

Proof.

(a) = (b): Say z € [x]. But xRy. As xRy and R is symmetric, yRx.
Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. z € [y]. This
proves that [x] C [y]. The proof of [y] C [x] is similar.

(b) = (c): Say [x] = [y]. The only way [x] N [y] = 0 is if [x] = 0.
However, as R is reflexive, x € [x] # 0.
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Properties of equivalence relations
Let R be an equivalence relation of A. Let elements of A be x, y, z etc.

Lemma
The following three are equivalent: (a) xRy, (b) [x] = [y], (¢) [x] N [y] # 0.

Proof.

(a) = (b): Say z € [x]. But xRy. As xRy and R is symmetric, yRx.
Therefore, yRx, xRz. R is transitive. Therefore, yRz, i.e. z € [y]. This
proves that [x] C [y]. The proof of [y] C [x] is similar.

(b) = (c): Say [x] = [y]. The only way [x] N [y] = 0 is if [x] = 0.
However, as R is reflexive, x € [x] # 0.

(c) = (a): Let z € [x] N [y]. Therefore, xRz and yRz. But as R is
symmetric, zRy. But R is also transitive. Therefore xRz and zRy imply
xRy. O
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Equivalence classes and partitions
Theorem

Let R be an equivalence relation defined on a set A.

@ The equivalence classes of R, partition the set A.
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

Sets X1, Xp, ..., X are said to partition a set X if

eVije{l,2,... ombi#j: XinX; =0
e Vxe X,Jie{l,2,...,m}: x € X;
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

@ The equivalence classes of R, partition the set A.
Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0.
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Equivalence classes and partitions

Theorem
Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

e Conversely, given a partition {A; | i € {1,2,...,n}} of A, there is an
equivalence relation Ry with equivalence classes A1, Az, ..., Ap.

Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0. Also, for each x € A, x € [x].
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Equivalence classes and partitions

Theorem
Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

e Conversely, given a partition {A; | i € {1,2,...,n}} of A, there is an
equivalence relation Ry with equivalence classes A1, Az, ..., Ap.

Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0. Also, for each x € A, x € [x].
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Equivalence classes and partitions

Theorem
Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

e Conversely, given a partition {A; | i € {1,2,...,n}} of A, there is an
equivalence relation Ry with equivalence classes A1, Az, ..., Ap.

Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0. Also, for each x € A, x € [x].

Let Ra ={(x,y) | Ji: x,y € A;}.
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Equivalence classes and partitions

Theorem
Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

e Conversely, given a partition {A; | i € {1,2,...,n}} of A, there is an
equivalence relation Ry with equivalence classes A1, Az, ..., Ap.

Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0. Also, for each x € A, x € [x].

Let Ra ={(x,y) | Ji: x,y € A;}.
Ra relates (x, y) if they belong to the same part in the partition of A.
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Equivalence classes and partitions

Theorem
Let R be an equivalence relation defined on a set A.
@ The equivalence classes of R, partition the set A.

e Conversely, given a partition {A; | i € {1,2,...,n}} of A, there is an
equivalence relation Ra with equivalence classes A1, Az, ..., Ap.

Proof.

Let [x] # [y] be two distinct equivalence classes of R. From the previous
lemma [x] N [y] = 0. Also, for each x € A, x € [x].

Let Ra = {(x,y) | 3i: x,y € Ai}.

Ra is reflexive. If (x,y) € Ra then even (y, x) € Ra. Finally, if (x,y) € Ra
then 3/ : x,y € A;. Let that index be called iy. Now if (y,z) € Ra then
both y, z must be in the same part of the partition. But we know that

y € Aj,. Therefore, z € Aj,. Hence, x,z € Aj, and hence (x,z) € Ra. This
proves that R, is also transitive. O
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Partial orders, chains, anti-chains
Definition
A relation R defined over a set A, denoted as R(A) or (A, R), is called a

partially ordered set or a poset if it is reflexive, transitive and
anti-symmetric.
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Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called a

partially ordered set or a poset if it is reflexive, transitive and
anti-symmetric.

Definition

If (S, =) is a poset and A C S such that every pair of elements in A is
comparable as per =<, then A is called a chain.
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Partial orders, chains, anti-chains

Definition

A relation R defined over a set A, denoted as R(A) or (A, R), is called a
partially ordered set or a poset if it is reflexive, transitive and
anti-symmetric.

Definition
If (S, =) is a poset and A C S such that every pair of elements in A is
comparable as per =<, then A is called a chain.

Definition
Let (S, <) be a poset. A subset A C S is called an anti-chain if no two
elements of A are related to reach other under <.
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Example

Let S = {1,2,3}. Recall the poset (S, C).
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Example
Let S = {1,2,3}. Recall the poset (S, C).

{1,2,3}

S N
L2y {13} {23}
=N
{1} {2} {3}

&\\\\\é/////”
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Chains and anti-chains

Theorem

If the largest chain in a poset (S, <) is of size m then S has at least m
anti-chains.
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Chains and anti-chains
Theorem

If the largest chain in a poset (S, <) is of size m then S has at least m
anti-chains.

The size of an anti-chain is the number of elements in the
chain.
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Chains and anti-chains

Theorem

If the largest chain in a poset (S, <) is of size m then S has at least m
anti-chains.

Proof.

Let the chain be denoted as a; < a» < ... < a,,,. Now observe that every
element of this chain, must go to different anti-chains.
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Chains and anti-chains

Theorem

If the largest chain in a poset (S, <) is of size m then S has at least m
anti-chains.

Proof.

Let the chain be denoted as a; < a» < ... < a,,,. Now observe that every
element of this chain, must go to different anti-chains. Therefore, there
are at least m anti-chains in (S, <). O

v
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

4

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let Cs be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.
[CW] For any s € S, how large can label(s) be?

v
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.
Let us now define sets Ay, Aa, ..., Am such that A; = {x | label(x) = i}.
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Aa, ..., Am such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Aa, ..., Am such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.

Now we prove that each A; is an anti-chain. For x,y € A; for some

i€ [m.
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Aa, ..., Am such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.

Now we prove that each A; is an anti-chain. For x,y € A; for some
i€[m]. [ml={1,2,...,m}

v

Nutan (1ITB) CS 207 Discrete Mathematics — 2012-2013 May 2011 11 /14



Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

v

Proof.

For each element s € S, let C; be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Aa, ..., Am such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.

Now we prove that each A; is an anti-chain. For x,y € A; for some

i €[m]. .. label(x) = label(y) = i. Suppose x < y then

label(x) < label(y). Contradiction!

v
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

Proof.

For each element s € S, let Cs be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Az, ..., Ap such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.

Now we prove that each A; is an anti-chain. For x,y € A; for some

i € [m]. .. label(x) = label(y) = i. Suppose x =<y then

label(x) < label(y). Contradiction! Similarly, if x > y then we get a
contradiction.

v
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Chains and anti-chains

Theorem (Mirsky's theorem, 1971)

If the largest chain in a poset (S, <) is of size m then S can be partitioned
into m anti-chains.

Proof.

For each element s € S, let Cs be the set of all chains that have s as the
maximum element. And define label(s) := max.cc, {size(c)}.

Let us now define sets Ay, Az, ..., Ap such that A; = {x | label(x) = i}.
It is easy to see that if i # j then A; N A; = (). Also, it is easy to observe
that U A; = S.

Now we prove that each A; is an anti-chain. For x,y € A; for some

i € [m]. .. label(x) = label(y) = i. Suppose x =<y then

label(x) < label(y). Contradiction! Similarly, if x > y then we get a
contradiction. Hence, every A; is an anti-chain.
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Subset Take-away problem

Removing supersets = getting rid of some chains.
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Subset Take-away problem

Removing supersets = getting rid of some chains.
Do partial orders help?
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