CS 207 Discrete Mathematics - 2012-2013

Nutan Limaye
Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in
\section*{Combinatorics}
Lecture 8: Double counting August 14, 2012

Course Outline

- Mathematical reasoning and mathematical objects
- Combinatorics

Course Outline

- Mathematical reasoning and mathematical objects
- What is a proof? Types of proof methods
- Induction
- Sets, relations, functions, partial orders, graphs
- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
- What is a proof? Types of proof methods
- Induction
- Sets, relations, functions, partial orders, graphs

Text: \quad Discrete Mathematics and its applictions, by Kenneth Rosen Chapter 2 : 2.1, 2.2, 2.3, Chapter $8: 8.1,8.5,8.6$
Class notes: uploaded on Moodle

- Combinatorics
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
- Combinatorics
- Double counting
- Approximating sums and products
- Pigeonhole principle
- Recurrence relations and generating functions
- Inclusion-exclusion principle
- Elements of discrete probability
- Elements of graph theory
- Elements of abstract algebra

Course Outline

- Mathematical reasoning and mathematical objects
- Combinatorics
- Double counting
- Approximating sums and products
- Pigeonhole principle
- Recurrence relations and generating functions
- Inclusion-exclusion principle
- Elements of discrete probability

Text: \quad Discrete Mathematics and its applictions, by Kenneth Rosen Chapter 5, Chapter 6 : 6.1, 6.4, Chapter 7
Class notes: uploaded on Moodle

- Elements of graph theory
- Elements of abstract algebra

Let us count

Warm up exercises:

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- There are n^{2} ordered pairs of elements if the set is of size n.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- There are n^{2} ordered pairs of elements if the set is of size n.
- We are required to put a pair of the form (x, x) in a reflexive relation for each $x \in A$.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- There are n^{2} ordered pairs of elements if the set is of size n.
- We are required to put a pair of the form (x, x) in a reflexive relation for each $x \in A$.
- The rest of pairs, $n^{2}-n$ of them, may or may not be put.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- There are n^{2} ordered pairs of elements if the set is of size n.
- We are required to put a pair of the form (x, x) in a reflexive relation for each $x \in A$.
- The rest of pairs, $n^{2}-n$ of them, may or may not be put.
- Therefore, there are $2^{n^{2}-n}$ different reflexive relations.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

- Of course, one could give an inductive proof. However, here is another proof.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

- Of course, one could give an inductive proof. However, here is another proof.
- On LHS, fix a k. Then $\binom{n}{k}$ is basically the number of ways of choosing k people from n people. By summing over k, we are essentially counting the total number of ways of forming a committee from a set of n people.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

- Of course, one could give an inductive proof. However, here is another proof.
- On LHS, fix a k. Then $\binom{n}{k}$ is basically the number of ways of choosing k people from n people. By summing over k, we are essentially counting the total number of ways of forming a committee from a set of n people.
- However, that is the same as counting all possible subsets of a set of size n, which we know is 2^{n}.

Let us count

Warm up exercises:

- How many reflexive relations are there on a set, say A, of size n ?
- Prove that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

- Of course, one could give an inductive proof. However, here is another proof.
- On LHS, fix a k. Then $\binom{n}{k}$ is basically the number of ways of choosing k people from n people. By summing over k, we are essentially counting the total number of ways of forming a committee from a set of n people.
- However, that is the same as counting all possible subsets of a set of size n, which we know is 2^{n}.
- As LHS and RHS are counting the same quantity they must be equal.

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=1}^{n} i$

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=1}^{n} i$

$S=1+$	$2+\ldots+$	n
$n+$	$(n-1)+\ldots+$	1
$2 S=(n+1)+$	$(n+1)+\ldots+$	$(n+1)$

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=1}^{n} i$

$S=1+$	$2+\ldots+$	n
$n+$	$(n-1)+\ldots+$	1
$2 S=(n+1)+$	$(n+1)+\ldots+$	$(n+1)$

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Therefore, $S=\frac{n(n+1)}{2}$.

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Prove that $1+x+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Prove that $1+x+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=0}^{n} x^{i}$

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Prove that $1+x+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=0}^{n} x^{i}$

$$
\begin{array}{rlrr}
S & =1+ & x+\ldots+ & x^{n} \\
x S & =x+ & x^{2}+\ldots+ & x^{n+1} \tag{2}
\end{array}
$$

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Prove that $1+x+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Let $S=\sum_{i=0}^{n} x^{i}$

$$
\begin{array}{rlrr}
S & =1+ & x+\ldots+ & x^{n} \\
x S & =x+ & x^{2}+\ldots+ & x^{n+1} \tag{2}
\end{array}
$$

(1)-(2) gives us: $(1-x) S=1-x^{n+1}$

- Therefore, $S=\frac{1-x^{n+1}}{1-x}$.

Let us count

Slightly hard exercises: (Gauss Pertubations)

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:
- Prove that $1+x+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$
- Of course, one could give an inductive proof. But here is a cool way to prove the same:

Let us count

Slightly harder exercises:

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is n !

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is n !
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is $n!$
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is n !
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:
- I will draw 6 points on the board.

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is $n!$
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:
- I will draw 6 points on the board.
- Each round: player 1 draws a line using a red pen and then player 2 draws a line using a blue pen.

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is $n!$
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:
- I will draw 6 points on the board.
- Each round: player 1 draws a line using a red pen and then player 2 draws a line using a blue pen.
- Who loses?: The first person to draw a triangle of his/her colour.

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is n !
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:
- I will draw 6 points on the board.
- Each round: player 1 draws a line using a red pen and then player 2 draws a line using a blue pen.
- Who loses?: The first person to draw a triangle of his/her colour.
- Can this game ever end in a draw?

Let us count

Slightly harder exercises:

- Given n envelopes with addresses and n letters, how many are there to arrange them so that no letter goes to its correct address?
- The total number of ways of putting n distinct letters into n distinct envelopes is n !
- We will see that the fraction of n ! which is addressed wrongly is almost $1 / e$, where e is the base of the natural logarithm.
- A two-player game. I need any two of you to come to the board:
- I will draw 6 points on the board.
- Each round: player 1 draws a line using a red pen and then player 2 draws a line using a blue pen.
- Who loses?: The first person to draw a triangle of his/her colour.
- Can this game ever end in a draw?
- Ramsey proved that a draw is impossible!

Why and how to count?

On various occasions different quantities may become interesting. Some may be easy to count directly. Some may require more thought.
[CW] Count the number of arrangements of wrongly addresses letters for $n=4$.

Why and how to count?

On various occasions different quantities may become interesting. Some may be easy to count directly. Some may require more thought.
[CW] Count the number of arrangements of wrongly addresses letters for $n=4$.

In this module, we will build some technqiues that will help in counting some quantities which are hard to count.

Today

We will spend this lecture to learn counting one object in two different ways.

Today

We will spend this lecture to learn counting one object in two different ways.
Often to count a certain object, we will count some totally different object!

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$
Proof.
Recall $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first and then pick one among them as a leader

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader in k ways

An example of double counting

Lemma

$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader in k ways to get $k\binom{n}{k}$
- Or you can first choose a leader and then choose the rest of the $k-1$ team members from the remaining $n-1$ players

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader in k ways to get $k\binom{n}{k}$
- Or you can first choose a leader in n ways and then choose the rest of the $k-1$ team members from the remaining $n-1$ players

An example of double counting

Lemma
$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader in k ways to get $k\binom{n}{k}$
- Or you can first choose a leader in n ways and then choose the rest of the $k-1$ team members from the remaining $n-1$ players in $\binom{n-1}{k-1}$ ways

An example of double counting

Lemma

$k\binom{n}{k}=n\binom{n-1}{k-1}$

Proof.

Given n players, how many ways are there to pick a team of size k and one leader among them?

- Either you can choose k members of a team first in $\binom{n}{k}$ ways and then pick one among them as a leader in k ways to get $k\binom{n}{k}$
- Or you can first choose a leader in n ways and then choose the rest of the $k-1$ team members from the remaining $n-1$ players in $\binom{n-1}{k-1}$ ways to get $n\binom{n-1}{k-1}$

Another example of double counting

Lemma
[CW] $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

Another example of double counting

Lemma
[CW] $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

Proof.

Quantity to double count: Given a collection of n apples and 1 mango, the number of ways of choosing a basket of k fruit.
Note that, LHS equals this quantity.

Another example of double counting

Lemma

[CW] $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

Proof.

Quantity to double count: Given a collection of n apples and 1 mango, the number of ways of choosing a basket of k fruit.
Note that, LHS equals this quantity.
For the RHS, note that

- Either choose the mango in the basket and select $k-1$ apples from n apples in $\binom{n}{k-1}$ ways.
- Or leave out the mango from the basket and select k apples from n apples in $\binom{n}{k}$ ways.

The number of handshakes

Lemma (The handshake lemma)
At a party with n people, the number of people who shake hands an odd number of times is even.

The number of handshakes

Lemma (The handshake lemma)
At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
[CW] Check that what we want to prove is the same as:

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
[CW] Check that what we want to prove is the same as: the number of vertices with odd degree is even.

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
[CW] Check that what we want to prove is the same as:
the number of vertices with odd degree is even.
Degree $(v):=|\{u \mid(u, v) \in E\}|$

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.

- On the one hand this number is $\sum_{i=1}^{n} m_{i}$.

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.

- On the one hand this number is $\sum_{i=1}^{n} m_{i}$.
- On the other hand each handshake gives rise to two edges. So if X is the number of handshakes, then the number of edges is $2 X$.

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.
$\therefore 2 X=\sum_{i=1}^{n} m_{i}$.

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.
$\therefore 2 X=\sum_{i=1}^{n} m_{i}$.
This tells us that the sum of n numbers is even. Therefore, only even many of them can have odd value!

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.
$\therefore 2 X=\sum_{i=1}^{n} m_{i}$.
This tells us that the sum of n numbers is even. Therefore, only even many of them can have odd value!

The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed edges (u, v) and (v, u) if u and v shake hands.
Let m_{i} be the number of times person i shakes hands. We will count the number of directed edges in the graph.
$\therefore 2 X=\sum_{i=1}^{n} m_{i}$.
This tells us that the sum of n numbers is even. Therefore, only even many of them can have odd value!

Take back message: Counting the same quantity the number of directed edges in two different ways can be helpful!

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are there?

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are there?
Let P be the total number of distinct pairs of students.

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are there?
Let P be the total number of distinct pairs of students.
$\therefore P=\binom{m}{2}$.

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are there?
Let P be the total number of distinct pairs of students.
$\therefore P=\binom{m}{2}$.
On the other hand, each day 3 pairs of students stay back together. As there are n days, $P=3 n$.

Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back to clean the classes. At the end of the course, they realise that each pair of students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are there?
Let P be the total number of distinct pairs of students.
$\therefore P=\binom{m}{2}$.
On the other hand, each day 3 pairs of students stay back together. As there are n days, $P=3 n$.
$\therefore n=\frac{m(m-1)}{6}$.

