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Recap

Counting the same object in two different ways
I Basic counting
I k
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)
= n
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+
(

n
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)
I The number of people who shake hands odd number of times is even.
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Today

How large/small is n!? – approximating n! [Stirling’s approximation]

Counting the number of labelled trees – Cayley’s number.
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Estimating n!

Easy to see that n! ≤ nn

However, is this tight? Of course not!
Can we quantify how much more is nn as compared to n!?
Can we bound n! by a quantity, say Q, so that for some small enough
α, αQ ≤ n! ≤ Q?

Theorem (Stirling’s approximation)

e(n/e)n ≤ n! ≤ ne(n/e)n, i.e. Q = e(n/e)n, and α = 1/n
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Estimating n!

Theorem (Stirling’s approximation)

e(n/e)n ≤ n! ≤ ne(n/e)n

Proof.

Let S = log(n!) =
∑n

i=1 log i . We will bound S using the natural log.
∴ S ≤ n log n − n + 1 + log n
raising both sides to the power of e, we get

n! ≤ e(n+1) log n−(n−1)

= nn+1/en−1

= ne(n/e)n
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Estimating n!

Theorem (Stirling’s approximation)

e(n/e)n ≤ n! ≤ ne(n/e)n

Proof.

Let S = log(n!) =
∑n

i=1 log i . We will bound S using the natural log.
From the figure on the board:

n−1∑
i=1

i ≤
∫ n

1
log x dx

S ≤
∫ n

1
log x dx + log n

= (x log x − x)|n1 + log n

= n log n − n + 1 + log n

∴ S ≤ n log n − n + 1 + log n
raising both sides to the power of e, we get
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Counting labeled trees – Cayley’s number

Recall

What is a graph?

What are directed and undirected graphs?

What is a cycle in a graph?

What is a tree?

What is a labeled tree?
Example: Labeled trees on 3 vertices

1

2

3 2

1

3 1

3

2
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How many labeled trees on n vertices?

Theorem (Cayley)

There are nn−2 labeled tree on n vertices.

Proof (by Joyal).

Let an is the number of labeled tree. Then in terms of an
the number of doubly rooted trees = n2an
Suppose we prove that

the number of doubly = total number of functions
rooted labeled trees from {1, 2, . . . , n} to {1, 2, . . . , n}

= nn

then we are done.
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How many labeled trees on n vertices?

Theorem (Cayley)

There are nn−2 labeled tree on n vertices.

Count one quantity in order to count the other
What is this other quantity that we will count?
Doubly rooted trees: labelled trees with two special nodes (both may be
the same vertex)

Proof (by Joyal).

Let an is the number of labeled tree. Then in terms of an
the number of doubly rooted trees = n2an
Suppose we prove that
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How many labeled trees on n vertices?

Theorem (Cayley)

There are nn−2 labeled tree on n vertices.

Proof (by Joyal).

Let an is the number of labeled tree. Then in terms of an
the number of doubly rooted trees = [CW]

n2an
Suppose we prove that

the number of doubly = total number of functions
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How many doubly rooted labeled trees on n vertices?

Lemma

There is a bijection between

the number of doubly rooted labeled trees on n vertices

the number of functions from {1, 2, . . . , n} to {1, 2, . . . , n}

Proof.

u a b c v 2 1 7 9 4(
1 2 4 7 9
2 1 7 9 4

)
f (1) = 2, f (2) = 1, f (4) = 7, f (7) = 9, f (9) = 4
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Proof.

From each doubly rooted labeled tree T define a unique functions:
Let u, v be the two roots of T . [CW] How many paths between u, v in T?
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How many doubly rooted labeled trees on n vertices?

Lemma

There is a bijection between

the number of doubly rooted labeled trees on n vertices

the number of functions from {1, 2, . . . , n} to {1, 2, . . . , n}

Proof.

u a b c v 2 1 7 9 4 pos(x) :=
distance of x from u
ord(x,S) := order of x in set S .

(
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How many doubly rooted labeled trees on n vertices?

Lemma

There is a bijection between

the number of doubly rooted labeled trees on n vertices

the number of functions from {1, 2, . . . , n} to {1, 2, . . . , n}

Proof.

Each doubly rooted labelled tree gives rise to a function such that:
The skeleton abels are permutated among themselves and tree nodes are
mapped to their parent.

if u on skeleton S f (u) = j , where ord(u,S) = pos(j)

if u not on skeleton f (u) = parent(u)
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Proof.

Each doubly rooted labelled tree gives rise to a function such that:
The skeleton abels are permutated among themselves and tree nodes are
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