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Preface

Elementary Number Theory in Nine Chapters is primarily intended for a

one-semester course for upper-level students of mathematics, in particular,

for prospective secondary school teachers. The basic concepts illustrated in

the text can be readily grasped if the reader has a good background in high

school mathematics and an inquiring mind. Earlier versions of the text

have been used in undergraduate classes at Providence College and at the

United States Military Academy at West Point.

The exercises contain a number of elementary as well as challenging

problems. It is intended that the book should be read with pencil in hand

and an honest attempt made to solve the exercises. The exercises are not

just there to assure readers that they have mastered the material, but to

make them think and grow in mathematical maturity.

While this is not intended to be a history of number theory text, a

genuine attempt is made to give the reader some insight into the origin and

evolution of many of the results mentioned in the text. A number of

historical vignettes are included to humanize the mathematics involved.

An algorithm devised by Nicholas Saunderson the blind Cambridge

mathematician is highlighted. The exercises are intended to complement

the historical component of the course.

Using the integers as the primary universe of discourse, the goals of the

text are to introduce the student to:

the basics of pattern recognition,

the rigor of proving theorems,

the applications of number theory,

the basic results of elementary number theory.

Students are encouraged to use the material, in particular the exercises,

to generate conjectures, research the literature, and derive results either

vii



individually or in small groups. In many instances, knowledge of a pro-

gramming language can be an effective tool enabling readers to see

patterns and generate conjectures.

The basic concepts of elementary number theory are included in the ®rst

six chapters: ®nite differences, mathematical induction, the Euclidean

Algorithm, factoring, and congruence. It is in these chapters that the

number theory rendered by the masters such as Euclid, Fermat, Euler,

Lagrange, Legendre, and Gauss is presented. In the last three chapters we

discuss various applications of number theory. Some of the results in

Chapter 7 and Chapter 8 rely on mathematical machinery developed in the

®rst six chapters. Chapter 7 contains an overview of cryptography from the

Greeks to exponential ciphers. Chapter 8 deals with the problem of

representing positive integers as sums of powers, as continued fractions,

and p-adically. Chapter 9 discusses the theory of partitions, that is, various

ways to represent a positive integer as a sum of positive integers.

A note of acknowledgment is in order to my students for their persis-

tence, inquisitiveness, enthusiasm, and for their genuine interest in the

subject. The idea for this book originated when they suggested that I

organize my class notes into a more structured form. To the many excellent

teachers I was fortunate to have had in and out of the classroom, in

particular, Mary Emma Stine, Irby Cauthen, Esayas Kundert, and David C.

Kay, I owe a special debt of gratitude. I am indebted to Bela Bollobas, Jim

McGovern, Mark Rerick, Carol Hartley, Chris Arney and Shawnee

McMurran for their encouragement and advice. I wish to thank Barbara

Meyer, Liam Donohoe, Gary Krahn, Jeff Hoag, Mike Jones, and Peter

Jackson who read and made valuable suggestions to earlier versions of the

text. Thanks to Richard Connelly, Frank Ford, Mary Russell, Richard

Lavoie, and Dick Jardine for their help solving numerous computer soft-

ware and hardware problems that I encountered. Thanks to Mike Spiegler,

Matthew Carreiro, and Lynn Briganti at Providence College for their

assistance. Thanks to Roger Astley and the staff at Cambridge University

Press for their ®rst class support. I owe an enormous debt of gratitude to

my wife, Terry, and daughters Virginia and Alexandra, for their in®nite

patience, support, and understanding without which this project would

never have been completed.
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1

The intriguing natural numbers

`The time has come,' the Walrus said, `To talk of many things.'

Lewis Carroll

1.1 Polygonal numbers

We begin the study of elementary number theory by considering a few

basic properties of the set of natural or counting numbers, f1, 2, 3, . . .g.
The natural numbers are closed under the binary operations of addition and

multiplication. That is, the sum and product of two natural numbers are

also natural numbers. In addition, the natural numbers are commutative,

associative, and distributive under addition and multiplication. That is, for

any natural numbers, a, b, c:

a� (b� c) � (a� b)� c, a(bc) � (ab)c (associativity);

a� b � b� a, ab � ba (commutativity);

a(b� c) � ab� ac, (a� b)c � ac� bc (distributivity):

We use juxtaposition, xy, a convention introduced by the English mathema-

tician Thomas Harriot in the early seventeenth century, to denote the

product of the two numbers x and y. Harriot was also the ®rst to employ

the symbols `.' and `,' to represent, respectively, `is greater than' and `is

less than'. He is one of the more interesting characters in the history of

mathematics. Harriot traveled with Sir Walter Raleigh to North Carolina in

1585 and was imprisoned in 1605 with Raleigh in the Tower of London

after the Gunpowder Plot. In 1609, he made telescopic observations and

drawings of the Moon a month before Galileo sketched the lunar image in

its various phases.

One of the earliest subsets of natural numbers recognized by ancient

mathematicians was the set of polygonal numbers. Such numbers represent

an ancient link between geometry and number theory. Their origin can be

traced back to the Greeks, where properties of oblong, triangular, and

square numbers were investigated and discussed by the sixth century BC,

pre-Socratic philosopher Pythagoras of Samos and his followers. The
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Greeks established the deductive method of reasoning whereby conclusions

are derived using previously established results.

At age 18, Pythagoras won a prize for wrestling at the Olympic games.

He studied with Thales, father of Greek mathematics, traveled extensively

in Egypt and was well acquainted with Babylonian mathematics. At age

40, after teaching in Elis and Sparta, he migrated to Magna Graecia, where

the Pythagorean School ¯ourished at Croton in what is now Southern Italy.

The Pythagoreans are best known for their theory of the transmigration of

souls and their belief that numbers constitute the nature of all things. The

Pythagoreans occupied much of their time with mysticism and numerology

and were among the ®rst to depict polygonal numbers as arrangements of

points in regular geometric patterns. In practice, they probably used

pebbles to illustrate the patterns and in doing so derived several funda-

mental properties of polygonal numbers. Unfortunately, it was their obses-

sion with the dei®cation of numbers and collusion with astrologers that

later prompted Saint Augustine to equate mathematicans with those full of

empty prophecies who would willfully sell their souls to the Devil to gain

the advantage.

The most elementary class of polygonal numbers described by the early

Pythagoreans was that of the oblong numbers. The nth oblong number,

denoted by on, is given by n(n� 1) and represents the number of points in

a rectangular array having n columns and n� 1 rows. Since 2� 4 � � � �
� 2n � 2(1� 2 � � � � �n) � 2 . n(n� 1)=2 � n(n� 1) � on, the sum of

the ®rst n even numbers equals the nth oblong number. Diagrams for the

®rst four oblong numbers, 2, 6, 12, and 20, are illustrated in Figure 1.1.

The triangular numbers, 1, 3, 6, 10, 15, . . . , tn, . . . , where tn denotes

the nth triangular number, represent the numbers of points used to portray

equilateral triangular patterns as shown in Figure 1.2. In general, from the

sequence of dots in the rows of the triangles in Figure 1.2, it follows that

tn, for n > 1, represents successive partial sums of the ®rst n natural

numbers. For example, t4 � 1� 2� 3� 4 � 10. Since the natural num-

bers are commutative and associative,

tn � 1� 2 � � � � � (nÿ 1)� n

…

Figure 1.1
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and

tn � n� (nÿ 1) � � � � � 2� 1;

adding columnwise, it follows that 2tn � (n� 1)� (n� 1) � � � �
(n� 1) � n(n� 1). Hence, tn � n(n� 1)=2. Multiplying both sides of the

latter equation by 2, we ®nd that twice a triangular number is an oblong

number. That is, 2tn � on, for any positive integer n. This result is

illustrated in Figure 1.3 for the case when n � 6.

The square numbers, 1, 4, 9, 16, . . . , were represented geometrically by

the Pythagoreans as square arrays of points, as shown in Figure 1.4. In

1225, Leonardo of Pisa, more commonly known as Fibonacci, remarked,

in Liber quadratorum (The Book of Squares) that the nth square number,

denoted by sn, exceeded its predecessor, snÿ1, by the sum of the two roots.

That is sn � snÿ1 � ����
sn
p � ���������

snÿ1
p

or, equivalently, n2 � (nÿ 1)2 � n �
(nÿ 1). Fibonacci, later associated with the court of Frederick II, Emperor

of the Holy Roman Empire, learned to calculate with Hindu±Arabic

numerals while in Bougie, Algeria, where his father was a customs of®cer.

…

Figure 1.2

Figure 1.3

…

Figure 1.4
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He was a direct successor to the Arabic mathematical school and his work

helped popularize the Hindu±Arabic numeral system in Europe. The origin

of Leonardo of Pisa's sobriquet is a mystery, but according to some

sources, Leonardo was ®glio de (son of) Bonacci and thus known to us

patronymically as Fibonacci.

The Pythagoreans realized that the nth square number is the sum of the

®rst n odd numbers. That is, n2 � 1� 3� 5 � � � � � (2nÿ 1), for any

positive integer n. This property of the natural numbers ®rst appears in

Europe in Fibonacci's Liber quadratorum and is illustrated in Figure 1.5,

for the case when n � 6.

Another interesting property, known to the early Pythagoreans, appears

in Plutarch's Platonic Questions. Plutarch, a second century Greek biogra-

pher of noble Greeks and Romans, states that eight times any triangular

number plus one is square. Using modern notation, we have 8tn � 1 �
8[n(n� 1)=2]� 1 � (2n� 1)2 � s2n�1. In Figure 1.6, the result is illu-

strated for the case n � 3. It is in Plutarch's biography of Marcellus that we

®nd one of the few accounts of the death of Archimedes during the siege of

Syracuse, in 212 BC.

Around the second century BC, Hypsicles [HIP sih cleez], author of

Book XIV, a supplement to Book XIII of Euclid's Elements on regular

Figure 1.5

Figure 1.6
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polyhedra, introduced the term polygonal number to denote those natural

numbers that were oblong, triangular, square, and so forth. Earlier, the

fourth century BC philosopher Plato, continuing the Pythagorean tradition,

founded a school of philosophy near Athens in an area that had been

dedicated to the mythical hero Academus. Plato's Academy was not

primarily a place for instruction or research, but a center for inquiry,

dialogue, and the pursuit of intellectual pleasure. Plato's writings contain

numerous mathematical references and classi®cation schemes for numbers.

He ®rmly believed that a country's leaders should be well-grounded in

Greek arithmetic, that is, in the abstract properties of numbers rather than

in numerical calculations. Prominently displayed at the Academy was a

maxim to the effect that none should enter (and presumably leave) the

school ignorant of mathematics. The epigram appears on the logo of the

American Mathematical Society. Plato's Academy lasted for nine centuries

until, along with other pagan schools, it was closed by the Byzantine

Emperor Justinian in 529.

Two signi®cant number theoretic works survive from the early second

century, On Mathematical Matters Useful for Reading Plato by Theon of

Smyrna and Introduction to Arithmetic by Nicomachus [nih COM uh kus]

of Gerasa. Smyrna in Asia Minor, now Izmir in Turkey, is located about 75

kilometers northeast of Samos. Gerasa, now Jerash in Jordan, is situated

about 25 kilometers north of Amman. Both works are philosophical in

nature and were written chie¯y to clarify the mathematical principles found

in Plato's works. In the process, both authors attempt to summarize the

accumulated knowledge of Greek arithmetic and, as a consequence, neither

work is very original. Both treatises contain numerous observations

concerning polygonal numbers; however, each is devoid of any form of

rigorous proofs as found in Euclid. Theon's goal was to describe the beauty

of the interrelationships between mathematics, music, and astronomy.

Theon's work contains more topics and was a far superior work mathema-

tically than the Introduction, but it was not as popular. Both authors note

that any square number is the sum of two consecutive triangular numbers,

that is, in modern notation, sn � tn � t nÿ1, for any natural number n . 1.

Theon demonstrates the result geometrically by drawing a line just above

and parallel to the main diagonal of a square array. For example, the case

where n � 5 is illustrated in Figure 1.7. Nicomachus notes that if the

square and oblong numbers are written alternately, as shown in Figure 1.8,

and combined in pairs, the triangular numbers are produced. That is, using

modern notation, t2n � sn � on and t2n�1 � sn�1 � on, for any natural

number n. From a standard multiplication table of the ®rst ten natural

1.1 Polygonal numbers 5



numbers, shown in Table 1.1, Nicomachus notices that the major diagonal

is composed of the square numbers and the successive squares sn and sn�1

are ¯anked by the oblong numbers on. From this, he deduces two properties

that we express in modern notation as sn � sn�1 � 2on � s2n�1 and

onÿ1 � on � 2sn � s2n.

Nicomachus extends his discussion of square numbers to the higher

dimensional cubic numbers, 1, 8, 27, 64, . . . , and notes, but does not

establish, a remarkable property of the odd natural numbers and the cubic

numbers illustrated in the triangular array shown in Figure 1.9, namely, that

the sum of the nth row of the array is n3. It may well have been

Nicomachus's only original contribution to mathematics.

Figure 1.7

s1

1

o1

2

s2

4

o2

6

s3

9

o3

12

s4

16

o4

20

s5

25

o5

30

3

t2

6

t3

10

t4

15

t5

21

t6

28

t7

36

t8

45

t9

55

t10

Figure 1.8

Table 1.1.

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100
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In the Introduction, Nicomachus discusses properties of arithmetic,

geometric, and harmonic progressions. With respect to the arithmetic

progression of three natural numbers, he observes that the product of the

extremes differs from the square of the mean by the square of the common

difference. According to this property, known as the Regula Nicomachi, if

the three terms in the progression are given by aÿ k, a, a� k, then

(aÿ k)(a� k)� k2 � a2. In the Middle Ages, rules for multiplying two

numbers were rather complex. The Rule of Nicomachus was useful in

squaring numbers. For example, applying the rule for the case when

a � 98, we obtain 982 � (98ÿ 2)(98� 2)� 22 � 96 . 100� 4 � 9604.

After listing several properties of oblong, triangular, and square num-

bers, Nicomachus and Theon discuss properties of pentagonal and hexago-

nal numbers. Pentagonal numbers, 1, 5, 12, 22, . . . , p5
n, . . . , where p5

n

denotes the nth pentagonal number, represent the number of points used to

construct the regular geometric patterns shown in Figure 1.10. Nicomachus

generalizes to heptagonal and octagonal numbers, and remarks on the

patterns that arise from taking differences of successive triangular, square,

pentagonal, heptagonal, and octagonal numbers. From this knowledge, a

general formula for polygonal numbers can be derived. A practical tech-

nique for accomplishing this involving successive differences appeared in

a late thirteenth century Chinese text Works and Days Calendar by Wang

Xun and Guo Shoujing. The method was mentioned in greater detail in

1302 in Precious Mirror of the Four Elements by Zhu Shijie, a wandering

1
3 5

7 9 11
13 15 17 19

21 23 25 27 29
.............................................

1
8
27
64
125

Figure 1.9

…

Figure 1.10
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scholar who earned his living teaching mathematics. The method of ®nite

differences was rediscovered independently in the seventeenth century by

the British mathematicians Thomas Harriot, James Gregory, and Isaac

Newton.

Given a sequence, ak , ak�1, ak�2, . . . , of natural numbers whose r th

differences are constant, the method yields a polynomial of degree r ÿ 1

representing the general term of the given sequence. Consider the binomial

coef®cients

(n
k) � n!

k!(nÿ k)!
, for 0 < k < n, (n

0 ) � 1, and otherwise (n
k) � 0,

where for any natural number n, n factorial, written n!, represents the

product n(nÿ 1)(nÿ 2) � � � 3 . 2 . 1 and, for consistency, 0! � 1. The ex-

clamation point used to represent factorials was introduced by Christian

Kramp in 1802. The numbers, (n
k), are called the binomial coef®cients

because of the role they play in the expansion of (a� b)n �Pn
k�0(n

k)anÿk bk . For example,

(a� b)3 � (3
0)a3b0 � (3

1)a2b1 � (3
2)a1b2 � (3

3)a0b3

� a3 � 3a2b� 3ab2 � b3:

Denote the ith differences, Äi, of the sequence ak , ak�1, ak�2, . . . by

di1, di2, di3, . . . , and generate the following ®nite difference array:

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

an ak ak�1 ak�2 ak�3 ak�4 ak�5 ak�6

Ä1 d11 d12 d13 d14 d15 d16

Ä2 d21 d22 d23 d24 d25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Är d r1 d r2 d r3 d r4

If the r th differences d r1, d r2, d r3, . . . are equal, then working backwards

and using terms in the leading diagonal each term of the sequence ak ,

ak�1, ak�2, . . . can be determined. More precisely, the ®nite difference

array for the sequence bn � (nÿk
m ), for m � 0, 1, 2, 3, . . . , r,

n � k, k � 1, k � 2, . . . , and a ®xed value of k, has the property that the

mth differences, Äm, consist of all ones and, except for d m1 � 1 for

1 < m < r, the leading diagonal is all zeros. For example, if m � 0, the

®nite difference array for an � (nÿk
0 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 1 1 1 1 1 1 1

Ä1 0 0 0 0 0 0

8 The intriguing natural numbers



If m � 1, the ®nite difference array for an � (nÿk
1 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 0 1 2 3 4 5 6

Ä1 1 1 1 1 1 1

Ä2 0 0 0 0 0 0

If m � 2, the ®nite difference array for an � (nÿk
2 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 0 0 1 3 6 10 15

Ä1 0 1 2 3 4 5

Ä2 1 1 1 1 1 1

Ä3 0 0 0 0 0

The leading diagonals of the ®nite difference array for the sequence ak ,

ak�1, ak�2, . . . , and the array de®ned by

ak(nÿk
0 )� d11(nÿk

1 )� d21(nÿk
2 ) � � � � � d r1(nÿk

r )

are identical. Therefore,

an � ak(nÿk
0 )� d11(nÿk

1 )� d21(nÿk
2 ) � � � � � d r1(nÿk

r ),

for n � k, k � 1, k � 2, . . . :

Example 1.1 The ®nite difference array for the pentagonal numbers, 1, 5,

12, 22, 35, . . . , p5
n, . . . is given by

n 1 2 3 4 5 6 . . .

p5
n 1 5 12 22 35 51 . . .

Ä1 4 7 10 13 16 . . .

Ä2 3 3 3 3 . . .

Our indexing begins with k � 1. Therefore

p5
n � 1 . (nÿ1

0 )� 4 . (nÿ1
1 )� 3 . (nÿ1

2 ) � 1� 4(nÿ 1)� 3
(nÿ 1)(nÿ 2)

2

� 3n2 ÿ n

2
:

From Table 1.2, Nicomachus infers that the sum of the nth square and

the (nÿ 1)st triangular number equals the nth pentagonal number, that is,

for any positive integer n, p5
n � sn � t nÿ1. For example, if n � 6,

s6 � t5 � 36� 15 � 51 � p5
6. He also deduces from Table 1.2 that three

times the (nÿ 1)st triangular number plus n equals the nth pentagonal

number. For example, for n � 9, 3 . t8 � 9 � 3 . 36� 9 � 117 � p5
9.

In general, the m-gonal numbers, for m � 3, 4, 5, . . . , where m refers

to the number of sides or angles of the polygon in question, are given by

1.1 Polygonal numbers 9



the sequence of numbers whose ®rst two terms are 1 and m and whose

second common differences equal mÿ 2. Using the ®nite difference

method outlined previously we ®nd that pm
n � (mÿ 2)n2=2ÿ (m ÿ

4)n=2, where pm
n denotes the nth m-gonal number. Triangular numbers

correspond to 3-gonal numbers, squares to 4-gonal numbers, and so forth.

Using Table 1.2, Nicomachus generalizes one of his previous observations

and claims that pm
n � p3

nÿ1 � pm�1
n, where p3

n represents the nth

triangular number.

The ®rst translation of the Introduction into Latin was done by Apuleius

of Madaura shortly after Nicomachus's death, but it did not survive.

However, there were a number of commentaries written on the Introduc-

tion. The most in¯uential, On Nicomachus's Introduction to Arithmetic,

was written by the fourth century mystic philosopher Iamblichus of Chalcis

in Syria. The Islamic world learned of Nicomachus through Thabit ibn

Qurra's Extracts from the Two Books of Nicomachus. Thabit, a ninth

century mathematician, physician, and philosopher, worked at the House

of Wisdom in Baghdad and devised an ingenious method to ®nd amicable

numbers that we discuss in Chapter 4. A version of the Introduction was

written by Boethius [beau EE thee us], a Roman philosopher and statesman

who was imprisoned by Theodoric King of the Ostrogoths on a charge of

conspiracy and put to death in 524. It would be hard to overestimate the

in¯uence of Boethius on the cultured and scienti®c medieval mind. His De

institutione arithmetica libri duo was the chief source of elementary

mathematics taught in schools and universities for over a thousand years.

He coined the term quadrivium referring to the disciplines of arithmetic,

geometry, music, and astronomy. These subjects together with the trivium

of rhetoric, grammar, and logic formed the seven liberal arts popularized in

the ®fth century in Martianus Capella's book The Marriage of Mercury

Table 1.2.

n 1 2 3 4 5 6 7 8 9 10

Triangular 1 3 6 10 15 21 28 36 45 55
Square 1 4 9 16 25 36 49 64 81 100
Pentagonal 1 5 12 22 35 51 70 92 117 145
Hexagonal 1 6 15 28 45 66 91 120 153 190
Heptagonal 1 7 18 34 55 81 112 148 189 235
Octagonal 1 8 21 40 65 96 133 176 225 280
Enneagonal 1 9 24 46 75 111 154 204 261 325
Decagonal 1 10 27 52 85 126 175 232 297 370
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and Philology. Boethius's edition of Nicomachus's Introduction was the

main medium through which the Romans and people of the Middle Ages

learned of formal Greek arithmetic, as opposed to the computational

arithmetic popularized in the thirteenth and fourteenth centuries with the

introduction of Hindu±Arabic numerals. Boethius wrote The Consolation

of Philosophy while in prison where he re¯ected on the past and on his

outlook on life in general. The Consolation was translated from Latin into

Anglo-Saxon by Alfred the Great and into English by Chaucer and

Elizabeth I.

In the fourth century BC Philip of Opus and Speusippus wrote treatises

on polygonal numbers that did not survive. They were, however, among the

®rst to extend polygonal numbers to pyramidal numbers. Speusippus [spew

SIP us], a nephew of Plato, succeeded his uncle as head of the Academy.

Philip, a mathematician±astronomer, investigated the connection between

the rainbow and refraction. His native home Opus, the modern town of

Atalandi, on the Euboean Gulf, was a capital of one of the regions of

Locris in Ancient Greece.

Each class of pyramidal number is formed from successive partial sums

of a speci®c type of polygonal number. For example, the nth tetrahedral

number, P3
n, can be obtained from successive partial sums of triangular

numbers, that is, P3
n � p3

1 � p3
2 � � � � � p3

n. For example, P3
4 � 1 �

3� 6� 10 � 20. Accordingly, the ®rst four tetrahedral numbers are 1, 4,

10, and 20. An Egyptian papyrus written about 300 BC gives 1
2
(n2 � n) as

the sum of the ®rst n natural numbers and 1
3
(n� 2)1

2
(n2 � n) as the sum of

the ®rst n triangular numbers. That is, tn � p3
n � n(n� 1)=2 and

P3
n � n(n� 1)(n� 2)=6. The formula for P3

n was derived by the sixth

century Indian mathematician±astronomer Aryabhata who calculated one

of the earliest tables of trigonometric sines using 3.146 as an estimate for

ð.

Example 1.2 Each triangle on the left hand side of the equality in Figure

1.11 gives a different representation of the ®rst four triangular numbers, 1,

3 (1� 2), 6 (1� 2� 3), and 10 (1� 2� 3� 4). Hence, 3 . (1� 3 �
6� 10) � 1 . 6� 2 . 6� 3 . 6� 4 . 6 � (1� 2� 3� 4) . 6 � t4(4� 2). In

6
6 6

6 6 6
6 6 6 6

4
3 3

2 2 2
1 1 1 1

1
2 1

3 2 1
4 3 2 1

1
1 2

1 2 3
1 2 3 4

1 1 5

Figure 1.11

1.1 Polygonal numbers 11



general, 3(t1 � t2 � t3 � � � � � tn) � tn(n� 2) � n(n� 1)(n� 2)=2.

Therefore, P3
n � n(n� 1)(n� 2)=6.

In Figure 1.11, the sum of the numbers in the third triangle is the fourth

tetrahedral number. That is, 1 . 4� 2 . 3� 3 . 2� 4 . 1 � 20. Thus, in gen-

eral, 1 . n� 2 . (nÿ 1) � � � � � (nÿ 1) . 2� n . 1 � P3
n. Hence, we can

generate the tetrahedral numbers by summing the terms in the SW±NE

diagonals of a standard multiplication table as shown in Table 1.3. For

example, P3
6 � 6� 10� 12� 12� 10� 6 � 56.

Pyramidal numbers with a square base are generated by successive

partial sums of square numbers. Hence, the nth pyramidal number, denoted

by P4
n, is given by 12 � 22 � 32 � � � � � n2 � n(n� 1)(2n� 1)=6. For

example, P4
4 � 1� 4� 9� 16 � 30. The total number of cannonballs in

a natural stacking with a square base is a pyramidal number.

Slicing a pyramid through a vertex and the diagonal of the opposite base

results in two tetrahedrons. Hence, it should be no surprise to ®nd that the

sum of two consecutive tetrahedral numbers is a pyramidal number, that is,

P4
n � P3

nÿ1 � P3
n.

In the tenth century, Gerbert of Aurillac in Auvergne included a number

of identities concerning polygonal and pyramidal numbers in his corre-

spondence with his pupil Adalbold, Bishop of Utrecht. Much of Gerbert's

Geometry was gleaned from the work of Boethius. One of the more

dif®cult problems in the book asks the reader to ®nd the legs of a right

triangle given the length of its hypotenuse and its area. Gerbert was one of

the ®rst to teach the use of Hindu±Arabic numerals and promoted the

utilization of zero as a digit. He was elected Pope Sylvester II in 999, but

his reign was short.

Table 1.3.

p3
9

165
p3

8
120

p3
7

84
p3

6
56

p3
5

35
p3

4
20

p3
3

10
p3

2
4

p3
1

1

1
2
3
4
5
6
7
8
9

2
4
6
8

10
12
14
16

3
6
9

12
15
18
21

4
8

12
16
20
24

5
10
15
20
25

6
12
18
24

7
14
21

8
16

9
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Triangular and tetrahedral numbers form a subclass of the ®gurate

numbers. In the 1544 edition of Arithmetica Integra, Michael Stifel de®ned

the nth mth-order ®gurate number, denoted by f m
n, as follows:

f m
n � f m

nÿ1 � f mÿ1
n, f m

1 � f 0
n � f 0

1 � 1, for n � 2, 3, . . . , and

m � 1, 2, 3, . . . : An array of ®gurate numbers is illustrated in Table 1.4,

where the nth triangular number corresponds to f 2
n and the nth tetrahe-

dral number to f 3
n. In 1656, John Wallis, the English mathematician who

served as a cryptanalyst for several Kings and Queens of England, and

introduced the symbol 1 to represent in®nity, showed that, for positive

integers n and r, f r
n�1 � f 0

n � f 1
n � f 2

n � � � � � f r
n.

Stifel was the ®rst to realize a connection existed between ®gurate

numbers and binomial coef®cients, namely that f m
n � (n�mÿ1

m ). In particu-

lar, f 2
n � tn � (n�1

2 ) and f 3
n � P3

n � (n�2
3 ). Stifel earned a Master's

degree at Wittenberg University. He was an avid follower of Martin Luther,

an ardent biblical scholar, and a millenarian. Stifel must have thought he

was standing in the foothills of immortality when, through his reading, he

inferred that the world was going to end at 8 o'clock on the morning of

October 18, 1533. He led a band of followers to the top of a nearby hill to

witness the event, a nonoccurrence that did little to enhance his credibility.

Nicomachus's Introduction to Arithmetic was one of the most signi®cant

ancient works on number theory. However, besides Books VII±IX of

Euclid's Elements, whose contents we will discuss in the next chapter, the

most in¯uential number theoretic work of ancient times was the Arith-

metica of Diophantus, one of the oldest algebra treatises in existence.

Diophantus, a mathematician who made good use of Babylonian and Greek

sources, discussed properties of polygonal numbers and included a rule to

determine the nth m-gonal number which he attributed to Hypsicles.

Unfortunately, a complete copy of the Arithmetica was lost when the

Library of Alexandria was vandalized in 391 by Christians acting under the

Table 1.4.

n 1 2 3 4 5 6 7 8 9 10

f 0
n 1 1 1 1 1 1 1 1 1 1

f 1
n 1 2 3 4 5 6 7 8 9 10

f 2
n 1 3 6 10 15 21 28 36 45 55

f 3
n 1 4 10 20 35 56 84 120 165 220

f 4
n 1 5 15 35 70 126 210 330 495 715

f 5
n 1 6 21 56 126 252 462 792 1287 2002

f 6
n 1 7 28 84 210 462 924 1716 3003 5005
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aegis of Theophilus, Bishop of Alexandria, and a decree by Emperor

Theodosius concerning pagan monuments. Portions of the treatise were

rediscovered in the ®fteenth century. As a consequence, the Arithmetica

was one of the last Greek mathematical works to be translated into Latin.

There were a number of women who were Pythagoreans, but Hypatia,

the daughter of the mathematician Theon of Alexandria, was the only

notable female scholar in the ancient scienti®c world. She was one of the

last representatives of the Neo-platonic School at Alexandria, where she

taught science, art, philosophy, and mathematics in the early ®fth century.

She wrote a commentary, now lost, on the ®rst six books of the Arithmetica

and may very well have been responsible for editing the version of

Ptolemy's Almagest that has survived. Some knowledge of her can be

gleaned from the correspondence between her and her student Synesius,

Bishop of Cyrene. As a result of her friendship with Alexandria's pagan

Prefect, Orestes, she incurred the wrath of Cyril, Theophilus's nephew who

succeeded him in 412 as Bishop of Alexandria. In 415, Hypatia was

murdered by a mob of Cyril's followers. During the millennium following

her death no woman distinguished herself in science or mathematics.

In the introduction to the Arithmetica, Diophantus refers to his work as

consisting of thirteen books, where a book consisted of a single scroll

representing material covered in approximately twenty to ®fty pages of

ordinary type. The ®rst six books of the Arithmetica survived in Greek and

four books, which may have a Hypatian rather than a Diophantine origin,

survived in Arabic. In addition, a fragment on polygonal numbers by

Diophantus survives in Greek. The Arithmetica was not a textbook, but an

innovative handbook involving computations necessary to solve practical

problems. The Arithmetica was the ®rst book to introduce consistent

algebraic notation and systematically use algebraic procedures to solve

equations. Diophantus employed symbols for squares and cubes but limited

himself to expressing each unknown quantity in terms of a single variable.

Diophantus is one the most intriguing and least known characters in the

history of mathematics.

Much of the Arithmetica consists of cleverly constructed positive

rational solutions to more than 185 problems in indeterminate analysis.

Negative solutions were not acceptable in Diophantus's time or for the next

1500 years. By a rational solution, we mean a number of the form p=q,

where p and q are integers and q 6� 0. In one example, Diophantus

constructed three rational numbers with the property that the product of

any two of the numbers added to their sum or added to the remaining

number is square. That is, in modern notation, he determined numbers x, y,
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z such that xy� x� y, xz� x� z, yz� y� z, xy� z, xz� y, and yz� x

are all square. In another problem, Diophantus found right triangles with

sides of rational length such that the length of the hypotenuse minus the

length of either side is a cube. In the eleventh century, in Baghdad, the

Islamic mathematician al-Karaji and his followers expanded on the meth-

ods of Diophantus and in doing so undertook a systematic study of the

algebra of exponents.

Problems similar to those found in the Arithmetica ®rst appear in Europe

in 1202 in Fibonacci's Liber abaci (Book of Calculations). The book

introduced Hindu±Arabic numerals to European readers. It was revised by

the author in 1228 and ®rst printed in 1857. However, the ®rst reference to

Diophantus's works in Europe is found in a work by Johannes MuÈller who,

in his day, was called Joannes de Regio monte (John of KoÈnigsberg).

However, MuÈller is perhaps best known today by his Latinized name

Regiomontanus, which was popularized long after his death. Regiomonta-

nus, the ®rst publisher of mathematical and astronomical literature, studied

under the astronomer Georges Peurbach at the University of Vienna. He

wrote a book on triangles and ®nished Peurbach's translation of Ptolemy's

Almagest. Both Christopher Columbus and Amerigo Vespucci used his

Ephemerides on their voyages. Columbus, facing starvation in Jamaica,

used a total eclipse of the Moon on February 29, 1504, predicted in the

Ephemerides, to encourage the natives to supply him and his men with

food. A similar idea, albeit using a total solar eclipse, was incorporated by

Samuel Clemens (Mark Twain) in A Connecticut Yankee in King Arthur's

Court. Regiomontanus built a mechanical ¯y and a `¯ying' eagle, regarded

as the marvel of the age, which could ¯ap its wings and saluted when

Emperor Maximilian I visited Nuremberg. Domenico Novarra, Coperni-

cus's teacher at Bologna, regarded himself as a pupil of Regiomontanus

who, for a short period, lectured at Padua.

Regiomontanus wrote to the Italian mathematician Giovanni Bianchini

in February 1464 that while in Venice he had discovered Greek manu-

scripts containing the ®rst six books of Arithmetica. In 1471, Regiomonta-

nus was summoned to Rome by Pope Sixtus IV to reform the ecclesiastical

calendar. However, in 1476, before he could complete his mission, he died

either a victim of the plague or poisoned for his harsh criticism of a

mediocre translation of the Almagest.

In 1572, an Italian engineer and architect, Rafael Bombelli, published

Algebra, a book containing the ®rst description and use of complex

numbers. The book included 271 problems in indeterminate analysis, 147

of which were borrowed from the ®rst four books of Diophantus's
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Arithmetica. Gottfried Leibniz used Bombelli's text as a guide in his study

of cubic equations. In 1573, based on manuscripts found in the Vatican

Library, Wilhelm Holtzman, who wrote under the name Xylander, pub-

lished the ®rst complete Latin translation of the ®rst six books of the

Arithmetica. The Dutch mathematician, Simon Stevin, who introduced a

decimal notation to European readers, published a French translation of the

®rst four books of the Arithmetica, based on Xylander's work.

In 1593, FrancËois VieÁte, a lawyer and cryptanalyst at the Court of Henry

IV, published Introduction to the Analytic Art, one of the ®rst texts to

champion the use of Latin letters to represent numbers to solve problems

algebraically. In an effort to show the power of algebra, VieÁte included

algebraic solutions to a number of interesting problems that were men-

tioned but not solved by Diophantus in the Arithmetica.

A ®rst-rate translation, Diophanti Alexandrini arithmeticorum libri sex,

by Claude-Gaspard Bachet de MeÂziriac, appeared in 1621. Bachet, a

French mathematician, theologian, and mythologist of independent means,

included a detailed commentary with his work. Among the number

theoretic results Bachet established were

(a) pm
n�r � pm

n � pm
r � nr(mÿ 2),

(b) pm
n � p3

n � (mÿ 3) p3
nÿ1, and

(c) 13 � 23 � 33 � � � � � n3 � ( p3
n)2,

where pm
n denotes the nth m-gonal number. The third result is usually

expressed as 13 � 23 � 33 � � � � � n3 � (1� 2� 3 � � � � � n)2 and re-

ferred to as Lagrange's identity.

In the fourth book of the Arithmetica Diophantus found three rational

numbers, 153
81

, 6400
81

, and 8
81

, which if multiplied in turn by their sum yield a

triangular number, a square number, and a cube, respectively. Bachet

extended the problem to one of ®nding ®ve numbers which if multiplied in

turn by their sum yield a triangular number, a square, a cube, a pentagonal

number, and a fourth power, respectively.

Bachet was an early contributor to the ®eld of recreational mathematics.

His ProbleÁmes plaisants et deÂlectables qui se font par les nombres, ®rst

published in 1612, is replete with intriguing problems including a precursor

to the cannibals and missionaries problem, the Christians and Turks

problem, and a discussion on how to create magic squares. At age 40,

Bachet married, retired to his country estate, sired seven children, and gave

up his mathematical activity forever. Except for recurring bouts with gout

and rheumatism, he lived happily ever after.

The rediscovery of Diophantus's work, in particular through Bachet's
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edition which relied heavily on Bombelli's and Xylander's work, greatly

aided the renaissance of mathematics in Western Europe. One of the

greatest contributors to that renaissance was Pierre de Fermat [fair MAH],

a lawyer by profession who served as a royal councillor at the Chamber of

Petitions at the Parlement of Toulouse. Fermat was an outstanding amateur

mathematician. He had a ®rst-class mathematical mind and, before Newton

was born, discovered a method for ®nding maxima and minima and general

power rules for integration and differentiation of polynomial functions of

one variable. He rarely, however, published any of his results. In 1636, he

wrote, in a burst of enthusiasm, that he had just discovered the very

beautiful theorem that every positive integer is the sum of at most three

triangular numbers, every positive integer is the sum of at most four

squares, every positive integer is the sum of at most ®ve pentagonal

numbers, and so on ad in®nitum, but added, however, that he could not give

the proof, since it depended on `numerous and abstruse mysteries of

numbers'. Fermat planned to devote an entire book to these mysteries and

to `effect in this part of arithmetic astonishing advances over the previously

known limits'. Unfortunately, he never published such a book.

In 1798, in TheÂorie des nombres, the Italian mathematician and astron-

omer, Joseph-Louis Lagrange, used an identity discovered by the Swiss

mathematician Leonhard Euler to prove Fermat's claim for the case of

square numbers. Karl Friedrich Gauss proved the result for triangular

numbers when he was nineteen and wrote in his mathematical diary for 10

July 1796: `åõrçká! num � m�m�m:' Two years later, Gauss's result

was proved independently by the French mathematician, Adrien Marie

Legendre. In the introduction to Disquisitiones arithmeticae (Arithmetical

Investigations) Gauss explains his indebtedness to Diophantus's Arith-

metica. In Chapters 5, 6, and 8, we discuss the contents of Gauss's

Disquisitiones. In 1808, Legendre included a number of quite remarkable

number theoretic results in his TheÂorie des nombres; in particular, the

property that every odd number not of the form 8k � 7, where k is a

positive integer, can be expressed as the sum of three or fewer square

numbers. In 1815, Augustin-Louis Cauchy proved that every positive

integer is the sum of m m-gonal numbers of which all but four are equal to

0 or 1. Cauchy's Cours d'analyse, published in 1821, advocated a rigorous

approach to mathematical analysis, in particular to the calculus. Unfortu-

nately, Cauchy was very careless with his correspondence. Evariste Galois

and Niels Henrik Abel sent brilliant manuscripts to Cauchy for his

examination and evaluation, but they were lost.

One of the ®rst results Fermat established was that nine times any
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triangular number plus one always yielded another triangular number.

Fermat later showed that no triangular number greater than 1 could be a

cube or a fourth power. Fermat, always the avid number theorist, once

challenged Lord Brouncker, ®rst President of the Royal Society, and John

Wallis, the best mathematician in England at the time, to prove there is no

triangular number other than unity that is a cube or a fourth power. Neither

was able to answer his query.

Fermat often used the margins of texts to record his latest discoveries. In

1670, Fermat's son, CleÂment-Samuel, published a reprint of Bachet's

Diophantus together with his father's marginal notes and an essay by the

Jesuit, Jacques de Billy, on Fermat's methods for solving certain types of

Diophantine-type equations. His most famous marginal note, the statement

of his `last' theorem, appears in his copy of Bachet's edition of the

Arithmetica. Fermat wrote to the effect that it was impossible to separate a

cube into two cubes, or a biquadratic into two biquadratics, or generally

any power except a square into two powers with the same exponent. Fermat

added that he had discovered a truly marvelous proof of this result;

however, the margin was not large enough to contain it. Fermat's Last

Theorem was `last' in the sense that it was the last major conjecture by

Fermat that remained unproven. Fermat's Last Theorem has proven to be a

veritable fountainhead of mathematical research and until recently its proof

eluded the greatest mathematicians. In `The Devil and Simon Flagg'

Arthur Porges relates a delightful tale in which the Devil attempts to prove

Fermat's Last Theorem.

The Swiss mathematician, Leonhard Euler [oiler], perused a copy of

Bachet's Diophantus with Fermat's notes and was intrigued by Fermat's

emphasis on integer, rather than rational, solutions. At the University of

Basel, Euler was a student of Johann Bernoulli. Bernoulli won the

mathematical prize offered by the Paris Academy twice. His son Daniel

Bernoulli won it ten times. Euler, who won the prize twelve times, began a

lifelong study of number theory at age 18. Euler's papers are remarkably

readable. He has a good historical sense and often informs the reader of

things that have impressed him and of ideas that led him to his discoveries.

Even though over half of Euler's 866 publications were written when he

was blind, he laid the foundation of the theory of numbers as a valid branch

of mathematics. His works were still appearing in the Memoirs of the St

Petersburg Academy ®fty years after his death. It is estimated that he was

responsible for one-third of all the mathematical work published in Europe

from 1726 to 1800. He had a phenomenal memory and knew Vergil's

Aeneid by heart. At age 70, given any page number from the edition he
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owned as a youth, he could recall the top and bottom lines. In addition, he

kept a table of the ®rst six powers of the ®rst hundred positive integers in

his head.

Before proceeding further, it is important in what follows for the reader

to be able to distinguish between a conjecture and an open question. By a

conjecture we mean a statement which is thought to be true by many, but

has not been proven yet. By an open question we mean a statement for

which the evidence is not very convincing one way or the other. For

example, it was conjectured for many years that Fermat's Last Theorem

was true. It is an open question, however, whether 4!� 1 � 52,

5!� 1 � 112, and 7!� 1 � 712 are the only squares of the form n!� 1.

Exercises 1.1

1. An even number can be expressed as 2n and an odd number as 2n� 1,

where n is a natural number. Two natural numbers are said to be of the

same parity if they are either both even or both odd, otherwise they are

said to be of opposite parity. Given any two natural numbers of the

same parity, show that their sum and difference are even. Given two

numbers of opposite parity, show that their sum and difference are

odd.

2. Nicomachus generalized oblong numbers to rectangular numbers,

which are numbers of the form n(n� k), denoted by rn,k, where k > 1

and n . 1. Determine the ®rst ten rectangular numbers that are not

oblong.

3. Prove algebraically that the sum of two consecutive triangular numbers

is always a square number.

4. Show that 9tn � 1 [Fermat], 25tn � 3 [Euler], and 49tn � 6 [Euler] are

triangular.

5. Show that the difference between the squares of any two consecutive

triangular numbers is always a cube.

6. In 1991, S.P. Mohanty showed that there are exactly six triangular

numbers that are the product of three consecutive integers. For

example, t20 � 210 � 5 . 6 . 7. Show that t608 is the product of three

consecutive positive integers.

7. Show that the product of any four consecutive natural numbers plus

one is square. That is, show that for any natural number n,

n(n� 1)(n� 2)(n� 3)� 1 � k2, for some natural number k.

8. The nth star number, denoted by �n, represents the sum of the nth

square number and four times the (nÿ 1)st triangular number, where
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�1 � 1. One geometric interpretation of star numbers is as points

arranged in a square with equilateral triangles on each side. For

example �2 is illustrated in Figure 1.12. Derive a general formula for

the nth star number.

9. Show that Gauss's discovery that every number is the sum of three or

fewer triangular numbers implies that every number of the form

8k � 3 can be expressed as the sum of three odd squares.

10. Verify Nicomachus's claim that the sum of the odd numbers on any

row in Figure 1.9 is a cube.

11. For any natural number n prove that

(a) s2n�1 � sn � sn�1 � 2on. [Nicomachus]

(b) s2n � onÿ1 � on � 2sn. [Nicomachus]

12. Show that sn � t nÿ1 � p5
n, for any natural number n. [Nicomachus]

13. Prove that p5
n � 3t nÿ1 � n, for any natural number n. [Nicomachus]

14. Show that every pentagonal number is one-third of a triangular num-

ber.

15. Find a positive integer n . 1 such that 12 � 22 � 32 � � � � � n2 is a

square number. [Ladies' Diary, 1792] This problem was posed by

Edouard Lucas in 1875 in Annales de MatheÂmatique Nouvelles. In

1918, G. N. Watson proved that the problem has a unique solution.

16. Prove the square of an odd multiple of 3 is the difference of two

triangular numbers, in particular show that for any natural number n,

[3(2n� 1)]2 � t9n�4 ÿ t3n�1.

17. Show that there are an in®nite number of triangular numbers that are

the sum of two triangular numbers by establishing the identity

t[n(n�3)�1]=2 � t n�1 � t n(n�3)=2.

18. Prove that t2mn�m � 4m2 tn � tm � mn, for any positive integers m

and n.

19. Paul Haggard and Bonnie Sadler de®ne the nth m-triangular number,

T m
n, by T m

n � n(n� 1) � � � (n� m� 1)=(m� 2). When m � 0, we

obtain the triangular numbers. Generate the ®rst ten T 1
n numbers.

Figure 1.12
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20. Derive a formula for the nth hexagonal number. The ®rst four hexago-

nal numbers 1, 6, 15, 28 are illustrated geometrically in Figure 1.13.

21. Show that 40 755 is triangular, pentagonal, and hexagonal. [Ladies'

Diary, 1828]

22. Use the method of ®nite differences to derive a formula for the nth m-

gonal number pm
n. [Diophantus]

23. Prove that for any natural numbers m and n, pm�1
n � pm

n � p3
nÿ1.

[Nicomachus]

24. Prove that pm
n�r � pm

n � pm
r � nr(mÿ 2), where n, m, and r, are

natural numbers and m . 2. [Bachet]

25. Prove that pm
n � p3

n � (mÿ 3) p3
nÿ1. [Bachet]

26. In 1897, G. Wertheim devised a method to determine in how many

ways a number r appears as a polygonal number. He used the fact that

pm
n � 1

2
n(2� (mÿ 2)(nÿ 1)), let 2r � n(2� (mÿ 2)(nÿ 1)) �

n . s, and concentrated on such factorizations of 2r where 2 , n , s

and nÿ 1 divides sÿ 2. For example, 72 � 3 . 24 � 6 . 12 � 8 . 9 �
n . s. Hence, 36 � p13

3 � p4
6 � p3

8. Using Wertheim's method deter-

mine how many ways 120 appears as a polygonal number.

27. In the 1803 edition of Recreations in Mathematics and Natural Philo-

sophy, a revision of a text ®rst published by Ozanam in 1692 and

revised by Jean Etienne Montucla in 1778, it is stated that a number n

is m-gonal if 8n(mÿ 2)� (mÿ 4)2 is a square number. Use Ozanam's

rule to show that 225 is octagonal.

28. Derive Ozanam's rule.

29. Use the method of ®nite differences to show that the nth tetrahedral

number, P3
n, is given by n(n� 1)(n� 2)=6. [Aryabhata]

30. There are only ®ve numbers less than 109 which are both triangular

and tetrahedral, namely, 1, 10, 120, 1540, and 7140. Show that 1540

and 7140 are both triangular and tetrahedral.

Figure 1.13
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31. Show that P4
n � P3

nÿ1 � P3
n, for any natural number n.

32. Show that P5
n � 1

3
n(2n2 � 1), for any natural number n.

33. Show

Pm
n � n� 1

6
(2 pm

n � n),

for any natural numbers m and n, where m > 3. The relation between

pyramidal and polygonal numbers appears in a ®fth century Roman

codex.

34. The nth octahedral number, denoted by On, is de®ned as the sum of the

nth and (nÿ 1)st pyramidal numbers. Determine the ®rst 10 octahedral

numbers.

35. Use the binomial representation of ®gurate numbers to show that f 2
n

represents the nth triangular number and f 3
n represents the nth

tetrahedral number.

36. Justify the formula, f 3
nÿ1 � f 3

n � n(n� 1)(2n� 1)=6, found in an

ancient Hindu manuscript.

37. In the fall of 1636, Fermat wrote to Marin Mersenne and Gilles

Persone de Roberval that he had discovered that n . f r
n�1 �

(n� r) . f r�1
n, where n and r are natural numbers. Justify Fermat's

formula.

38. Show that a general solution to Problem 17 in Book III of Diophanus's

Arithmetica, ®nd x, y, z such that xy� x� y, yz� y� z, zx� z� x,

xy� z, xz� y, and yz� x are square, is given by x � n2,

y � (n� 1)2, and z � 4(n2 � n� 1).

39. Use algebra to solve Gerbert's problem: given the area and length of

the hypotenuse of a right triangle, ®nd the lengths of the sides of the

triangle.

40. The nth central trinomial coef®cient, denoted by an, is de®ned as the

coef®cient of xn in (1� x� x2)n. Determine an for 0 < n < 10.

1.2 Sequences of natural numbers

A sequence is a ®nite or in®nite ordered linear array of numbers. For

example, 2, 4, 6, 8, . . . represents the in®nite sequence of even positive

integers. Analytically, an in®nite sequence can be thought of as the range

of a function whose domain is the set of natural numbers. For example,

polygonal, oblong, pyramidal, and ®gurate numbers are examples of

in®nite sequences of natural numbers. In this section, we investigate a

number of patterns that arise from imposing various conditions on the
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terms of a sequence. The construction of some sequences can seem to be

almost diabolical. For example, each successive term in the sequence 1, 5,

9, 31, 53, 75, 97, . . . is obtained by adding 4 to the previous term and

reversing the digits. Properties of look and say sequences were developed

by John H. Conway at Cambridge University. For example, each successive

term in the look and say sequence 1, 11, 21, 1 211, 111 221, 312 211, . . . is

generated from the previous term as follows: the ®rst term is 1, the second

term indicates that the ®rst term consists of one one, the third term

indicates that the second term consists of two ones, the fourth term

indicates that the third term consists of one two and one one, the ®fth term

indicates that the fourth term consists of one one, one two, and two ones,

and so forth. A look and say sequence will never contain a digit greater

than 3 unless that digit appears in the ®rst or second term.

In 1615, Galileo remarked that

1

3
� 1� 3

5� 7
� 1� 3� 5

7� 9� 11
� � � � :

Hence, we call a sequence a1, a2, a3, . . . a Galileo sequence with ratio k,

for k a positive integer, if it has the property that S2n=Sn � k � 1 or,

equivalently, S2n ÿ Sn � kSn, where Sn denotes the nth partial sum,

a1 � a2 � a3 � � � � � an. Thus, the increasing sequence of odd positive

natural numbers is a Galileo sequence with ratio 3. If a1, a2, a3, . . . is a

Galileo sequence with ratio k, then, for r a positive integer, ra1, ra2, ra3,

. . . is also a Galileo sequence with ratio k. A strictly increasing Galileo

sequence a1, a2, a3, . . . , with ratio k > 3, can be generated by the

recursive formulas

a2nÿ1 �
��

(k � 1)an ÿ 1

2

��
and

a2n �
��

(k � 1)an

2

��
� 1,

for n > 2, where a1 � 1, a2 � k, for k > 2, and ��x�� denotes the greatest

integer not greater than x. For example, when k � 3, the formula generates

the sequence of odd natural numbers. For k � 4, the Galileo sequence

generated is 1, 4, 9, 11, 22, 23, 54, 56, . . . :

One of the most intriguing sequences historically is generated by Bode's

law. The relation was discovered in 1766 by Johann Titus, a mathematician

at Wittenberg University, and was popularized by Johann Bode [BO duh],

director of the Berlin Observatory. According to Bode's law, the distances

from the Sun to the planets in the solar system in astronomical units, where
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one astronomical unit equals the Earth±Sun distance or approximately 93

million miles, can be obtained by taking the sequence which begins with 0,

then 3, then each succeeding term is twice the previous term. Then 4 is

added to each term and the result is divided by 10, as shown in Table 1.5.

Initially, Bode's law is a fairly accurate predictor of the distances to the

planets from the Sun in astronomical units. The penultimate row in Table

1.5 gives the actual average distance from the planets to the Sun in

astronomical units. Bode became an astronomical evangelist for the law

and formed a group called the celestial police to search for a missing

planet 2.8 AU from the Sun. On January 1, 1801, the ®rst day of the

nineteenth century, Father Giuseppe Piazzi at the Palermo Observatory

found what he thought was a new star in the constellation Taurus and

informed Bode of his discovery. Bode asked the 23-year-old Gauss to

calculate the object's orbit. It took Gauss two months to devise a technique,

the method of least squares, that would take an observer a few hours to

calculate the orbit of a body in 3-space. The previous method, due to Euler,

took numerous observations and several weeks of calculation. Using

Gauss's method the object was rediscovered December 7, 1801 and named

Ceres, the Roman goddess of vegetation and protector of Sicily. Three

years later another minor planet was discovered. A few years later another

sun object was discovered, then another. Today the orbits of about 3400

minor planets are known. Almost all minor planets ply orbits between

those of Mars and Jupiter, called the asteroid belt. Their average distance

from the Sun is amazingly close to 2.8 AU.

Superincreasing sequences have the property that each term is greater

than the sum of all the preceding terms. For example, 2, 4, 8, 16, 32, . . . ,

2n, . . . is an in®nite superincreasing sequence and 3, 9, 14, 30, 58, 120,

250, 701 is a ®nite superincreasing sequence with eight terms. We use

superincreasing sequences in Chapter 7 to create knapsack ciphers.

Consider the sequence of natural numbers where each succeeding term

is the sum of the squares of the digits of the previous term. In particular, if

the ®rst term is 12, then, since 12 � 22 � 5, 52 � 25, 22 � 52 � 29,

22 � 92 � 85, and so forth, the sequence generated is 12, 5, 25, 29, 85, 89,

145, 42, 20, 4, 16, 37, 58, 89, 145, . . . : Numbers whose sequences

eventually reach the cycle 4, 16, 37, 58, 89, 145, 42, 20, of period 8, as 12

does, are called sad numbers. If the ®rst term is 31 the associated sequence

is given by 31, 10, 1, 1, . . . : Natural numbers that lead to a repeated pattern

of ones, as does 31, are called happy numbers. For any positive integer n,

10n is happy and 2(10)n is sad, hence there are an in®nite number of both

happy and sad numbers. In addition, there exist arbitrarily long sequences
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of consecutive happy and sad numbers. In 1945, Arthur Porges of the

Western Military Academy in Southern California proved that every

natural number is either happy or sad.

A natural generalization of happy and sad numbers is to sequences of

natural numbers formed where each succeeding term is the sum of the nth

powers of the digits of the previous term, for any positive integer n. For

example, when n � 3, eight distinct cycles arise. In particular,

33 � 73 � 13 � 371. Hence, 371 selfreplicates. In 1965, Y. Matsuoka

proved that all multiples of 3 eventually reach, the selfreplicating 153.

Sidney sequences, a1, a2, . . . , an, named for their 15-year-old disco-

verer Sidney Larison of Ceres, California, are de®ned as follows: given any

m-digit natural number a1a2 � � � am, let the ®rst m terms of the Sidney

sequence be a1, a2, . . . , am; then, for k . m, ak is de®ned to be the units

digit of akÿm � � � � � akÿ2 � akÿ1, the sum of the previous m terms of the

sequence. A Sidney sequence terminates when the last m terms of the

sequence match the ®rst m terms of the sequence. For example, with m � 2

the Sidney sequence for 76 is given by 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6.

For the case when m � 2, Larison showed there are six different

repeating patterns generated by Sidney sequences. One of the cycles has

period 60, a property noted by Lagrange in 1744 when he discovered that

the units digits of the Fibonacci numbers form a sequence with period 60.

When m � 3, there are 20 patterns, and 11 exist if m � 4. Similar results

occur if we are given an m-digit natural number and proceed to construct a

product instead of a sum.

Undoubtedly, the most famous sequence of natural numbers is the

Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . , un . . . , where

u1 � 1, u2 � 1, and un�1 � un � unÿ1. The sequence ®rst appeared in

Europe in 1202 in Liber abaci by Leonardo of Piza, more commonly

known as Fibonacci. Albert Girand, a Dutch mathematician and disciple of

VieÁte, ®rst de®ned the sequence recursively in 1634. Fibonacci numbers

were used prior to the eighth century to describe meters in Sanskrit poetry.

Fibonacci ®rst mentions the sequence in connection with the number of

pairs of rabbits produced in n months, beginning with a single pair,

assuming that each pair, from the second month on, begets a new pair, and

no rabbits die. The number of pairs of rabbits after n months is the sum of

the number of pairs which existed in the previous month and the number of

pairs which existed two months earlier, because the latter pairs are now

mature and each of them now produces another pair. In Figure 1.14, An

represents the nth pair of rabbits in their ®rst month and Bn the nth pair of

rabbits in succeeding months.
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The sequence never gained much notoriety until the late nineteenth

century when Edouard Lucas popularized the sequence in TheÂorie des

nombres and attached the name Fibonacci to it. Lucas was a French

artillery of®cer during the Franco-Prussian War and later taught at the

LyceÂe Saint-Louis and at the LyceÂe Charlemagne in Paris. In Mathematical

Recreations, he introduced the Tower of Hanoi puzzle where, according to

Lucas, three monks of Benares in northeastern India (not Vietnam) main-

tained a device consisting of three pegs onto which 64 different sized disks

were placed. Initially, all the disks were on one peg and formed a pyramid.

The monks' task was to move the pyramid from one peg to another peg.

The rules were simple. Only one disk could be moved at a time from one

peg to another peg, and no larger disk could be placed on a smaller disk.

According to legend, when the monks ®nished their task the world would

end. Lucas explained how it would take at least 264 ÿ 1 moves to complete

the task. At the rate of one move a second, the monks would take almost

6 3 109 centuries to complete their task. Unfortunately, Lucas died of

erysipelas in a freak accident in a French restaurant when a waiter dropped

a tray of dishes and a shard gashed his cheek.

Lucas numbers, denoted by vn, are de®ned recursively as follows:

vn�1 � vn � vnÿ1, v1 � 1, and v2 � 3. Lucas originally de®ned vn to be

u2n=un. He derived many relationships between Fibonacci and Lucas

numbers. For example, unÿ1 � un�1 � vn, un � vn � 2un�1, and vnÿ1 �
vnÿ1 � 5un. The sequence of Lucas numbers is an example of a Fibonacci-

type sequence, that is, a sequence a1, a2, . . . , with a1 � a, a2 � b, and

an�2 � an�1 � an, for n > 2.

Fibonacci numbers seem to be ubiquitous in nature. There are abundant

B4 B2 A7 B3 B5 A8

A4 B2 B3

A6

A5
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B1
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A1

Figure 1.14
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references to Fibonacci numbers in phyllotaxis, the botanical study of the

arrangement or distribution of leaves, branches, and seeds. The numbers of

petals on many ¯owers are Fibonacci numbers. For example, lilies have 3,

buttercups 5, delphiniums 8, marigolds 13, asters 21, daisies 21 and 34. In

addition, poison ivy is trifoliate and Virginia creeper is quinquefoliate.

The fraction 10000=9899 has an interesting connection with Fibonacci

numbers for its decimal representation equals 1:010 203 050 813 213 455

. . . : There are only four positive integers which are both Fibonacci

numbers and triangular numbers, namely, 1, 3, 21, and 55. There are only

three number which are Lucas and triangular numbers, namely, 1, 3, and

5778. In 1963, J. H. E. Cohn showed that except for unity, the only square

Fibonacci number is 144.

Geometrically, we say that a point C divides a line segment AB, whose

length we denote by jABj, in the golden ratio when jABj=jACj �
jACj=jCBj, as shown in Figure 1.15. Algebraically, let jACj � a and

jABj � b; then b=a � a=(bÿ a), hence, b2 ÿ ab � a2. Dividing both sides

of the equation by a2 and setting x � b=a, we obtain x2 � x� 1, whose

roots are ô � (1� ���
5
p

)=2, the golden ratio, and ó � (1ÿ ���
5
p

)=2, its

reciprocal. It is thought by many who search for human perfection that the

height of a human body of divine proportion divided by the height of its

navel is the golden ratio. One of the most remarkable connections between

the Fibonacci sequence and the golden ratio, ®rst discovered by Johannes

Kepler the quintessential number cruncher, is that as n approaches in®nity

the limit of the sequence of ratios of consecutive Fibonacci numbers,

un�1=un, approaches ô, the golden ratio.

Using only Euclidean tools, compasses and straightedge, a line segment

AB may be divided in the golden ratio. We construct DB perpendicular to

AB, where jDBj � 1
2
jABj, as shown in Figure 1.16. Using compasses, mark

off E on AD such that jDEj � jDBj. Finally, use the compasses to mark off

C on AB so that jACj � jAEj. From the construction, it follows that

jABj=jACj � ô.

Golden right triangles have their sides in the proportion 1:
���
ô
p

: ô. In

1992, DeTemple showed that there is a golden right triangle associated

with the isosceles triangle of smallest perimeter circumscribing a given

A C B
a

b

Figure 1.15
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semicircle. Rectangles whose sides are of length a and b, with b=a � ô,

are called golden rectangles. In the late nineteenth century, a series of

psychological experiments performed by Gustav Fechner and Wilhelm

Wundt indicated that golden rectangles were the quadrilaterals which were,

aesthetically, most pleasing to the eye. Such rectangles can be found in

3 3 5 ®le cards, 5 3 8 photographs, and in Greek architecture, in particu-

lar, in the design of the Parthenon. A golden rectangle can be constructed

from a square. In particular, given a square ABCD, let E be the midpoint of

side DC, as shown in Figure 1.17. Use compasses to mark off F on DC

extended such that jEFj � jEBj. Mark off G on AB such that

jAGj � jDFj, and join GF, CF, and BG. From the construction, it follows

that jAGj=jADj � ô. Hence, the quadrilateral AGFD is a golden rectangle.

In 1718, Abraham de Moivre, a French mathematician who migrated to

England when Louis XIV revoked the Edict of Nantes in 1685, claimed

that un � (ôn ÿ ó n)=(ôÿ ó ), where ô � (1� ���
5
p

)=2 and ó � (1ÿ ���
5
p

)=2.

The ®rst proof was given in 1728 by Johann Bernoulli's nephew Nicolas.

Independently, the formula was established by Jacques-Philippe-Marie

Binet in 1843 and by Gabriel LameÂ a year later. It is better known today as

Binet's or LameÂ's formula.

A C B

E

D

Figure 1.16

A

C

B

ED F

G

Figure 1.17
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Since ô� ó � 1, ôÿ ó � ���
5
p

, multiplying both sides of the identity

ô2 � ô� 1 by ôn, where n is any positive integer, we obtain ôn�2 �
ôn�1 � ôn. Similarly, ó n�2 � ó n�1 � ó n. Thus, ôn�2 ÿ ó n�2 �
(ôn�1 � ôn)ÿ (ó n�1 � ó n) � (ôn�1 ÿ ó n�1)� (ôn ÿ ó n). Dividing both

sides by ôÿ ó and letting an � (ôn ÿ ó n)=(ôÿ ó ), we ®nd that

an�2 � ôn�2 ÿ ó n�2

ôÿ ó
� ôn�1 ÿ ó n�1

ôÿ ó
� ôn ÿ ó n

ôÿ ó
� an�1 � an,

with a1 � a2 � 1. Hence,

an � ôn ÿ ó n

ôÿ ó
� un,

the nth term in the Fibonacci sequence.

Another intriguing array of natural numbers appears in Blaise Pascal's

Treatise on the Arithmetic Triangle. The tract, written in 1653, was

published posthumously in 1665. Pascal was a geometer and one of the

founders of probability theory. He has been credited with the invention of

the syringe, the hydraulic press, the wheelbarrow, and a calculating

machine. Pascal left mathematics to become a religious fanatic, but

returned when a severe toothache convinced him that God wanted him to

resume the study of mathematics.

Pascal exhibited the triangular pattern of natural numbers, known as

Pascal's triangle, in order to solve a problem posed by a noted gamester,

Chevalier de MeÂreÂ. The problem was how to divide the stakes of a dice

game if the players were interrupted in the midst of their game. For further

details, see [Katz]. Each row of the triangle begins and ends with the

number 1, and every other term is the sum of the two terms immediately

above it, as shown in Figure 1.18. Pascal remarked that the nth row of the

triangle yields the binomial coef®cients found in the expansion of

(x� y)n.

The triangular array, however, did not originate with Pascal. It was

known in India around 200 BC and appears in several medieval Islamic

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
................................

Figure 1.18
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mathematical texts. The frontispiece of Zhu Shijie's Precious Mirror of the

Four Elements contains a diagram of the triangle (Figure 1.19). In 1261,

the triangular array appeared in Yang Hui's A Detailed Analysis of the

Mathematical Methods in the `Nine Chapters'. Yang Hui noted that his

Figure 1.19
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source for the diagram was The Key to Mathematics by Jia Xian, an

eleventh century work which has been lost. Yang Hui's method of extract-

ing square roots uses the formula (a� b)2 � a2 � (2a� b)b, with a as an

initial value. Cubic roots were extracted using the formula (a� b)3 �
a3 � (3a2 � 3ab� b2)b. Higher roots can be extracted by generalizing the

formula using higher-order binomial coef®cients. Prior to the introduction

of the hand calculator such methods were sometimes taught in schools.

Similar arrangements of numbers can be found in the works of Persian

mathematicians Al-Karaji and Omar Khayyam. Pascal's triangle ®rst

appeared in Europe in 1225 in Jordanus de Nemore's On Arithmetic and

was conspicuously displayed on the title page of the 1527 edition of Peter

Apian's Arithmetic. In 1524 Apian published a popular but very laborious

method to calculate longitude using the Moon. In the eighteenth century,

John Harrison constructed a reliable chronometer that enabled navigators

to determine their longitude more accurately and with fewer calculations.

In 1544, the triangle used as a tool in root extraction played a prominent

role in Stifel's Complete Arithmetic. In 1556, the array appeared in NiccoloÂ

of Brescia's General Treatise. NiccoloÂ was commonly known as Tartaglia,

the stammerer, owing to an injury received as a boy. In Italy, the triangular

array is known as Tartaglia's triangle.

The ®gurate-binomial relationship ®rst observed by Stifel was rediscov-

ered in 1631 by Henry Briggs, inventor of common logarithms, and

William Oughtred, inventor of the slide rule. Oughtred worked at mathe-

matics at a country vicarage in Albury, Surrey, where he served as rector

and gave mathematical instruction to any who came to him provided they

could write clearly. Oughtred believed that mathematics improved reason-

ing power and was a pathway to the understanding of God. Oughtred

complained that many a good notion was lost and many a problem went

unsolved because his wife took away his candles right after dinner. He was

ecstatic when one of his pupils, perhaps John Wallis, brought him a box of

candles.

Pascal's name was ®rst attached to the array in 1708 by Pierre ReÂmond

de Montmort. Pascal's original arrangement, shown in Table 1.6, is

fundamentally a table of ®gurate numbers. Even though the array did not

originate with Pascal, the conclusions that he drew from it with respect to

solving problems in probability went far beyond any of his predecessors.

In the seventeenth century, ReneÂ FrancËois de Sluse remarked that the

sums of the slant ENE±WSW diagonals of Pascal's triangle in Figure 1.20

yield the Fibonacci numbers, a result rediscovered by Edouard Lucas in

1896.

32 The intriguing natural numbers



In this text, you will encounter a number of mechanical computational

procedures or algorithms. An algorithm is a speci®c set of rules used to

obtain a given result from a speci®c input. The word is a Latin corruption

of al-Khwarizmi, a ninth century mathematician±astronomer, member of

the House of Wisdom in Baghdad, and author of a very in¯uential work,

al-Kitab al-muhtasar ® hisab al-jabar wa-l-muqabala (The Condensed

Book on Comparing and Restoring), the text from which our word

`algebra'derives. One must wonder if students would be even more reticent

about high school mathematics if they were required to take two years of

`muqabala'. In many cases, as we shall see, algorithms can generate very

interesting sequences of natural numbers. For example, the Collatz algo-

rithm, named for Lothar O. Collatz of the University of Hamburg who

devised it in the 1930s, is as follows: given any positive integer a1, let

Table 1.6. f m
n

n

m 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9 10 . . .
2 1 3 6 10 15 21 28 36 45 . . .
3 1 4 10 20 35 56 84 120 . . .
4 1 5 15 35 70 126 210 . . .
5 1 6 21 56 126 252 . . .
6 1 7 28 84 210 . . .
7 1 8 36 120 . . .
8 1 9 45 . . .

10 1 . . .

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
................................

1
1
2
3
5
8

13

Figure 1.20
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an�1 �
an

2
if an is even, and

3an � 1 if an is odd:

(
Collatz conjectured that for any natural number the sequence generated

eventually reached unity. John Selfridge, of Northern Illinois University,

has shown this to be the case for all natural numbers less than 7 3 1011.

The conjecture is one of the more well-known unsolved problems in

number theory, as is the question of whether there is an upper limit to the

number of iterations in the Collatz algorithm necessary to reach unity. Any

slight adjustment of the algorithm may change the outcome. For example,

if 3an � 1 is replaced by 3an ÿ 1, when an is odd, three distinct cycles are

generated.

An interesting procedure, albeit not as intriguing as the Collatz algo-

rithm, is the Kaprekar algorithm devised in 1949 by the Indian mathemati-

cian D.R. Kaprekar. Kaprekar's sort±reverse±subtract routine goes as

follows: given a four-digit natural number larger than 1000 for which not

all digits are equal, arrange the digits in descending order, subtract the

result from its reverse (the number with the digits in ascending order).

Successive applications of this algorithm result in the four-digit Kaprekar

constant, the self-replicating number 6174. For example, for 1979, we have

ÿ1799
9971

8172
ÿ1278

8721

7443
ÿ3447

7443

3996
ÿ3699

9963

6264
ÿ2466

6642

4176
ÿ1467

7641

6174

Given any m-digit number n, with not all digits the same and m . 2, let

Mn and mn denote the largest and smallest positive integers obtainable

from permuting the digits of n and let K(n) � Mn ÿ mn. The m-digit

Kaprekar constant, denoted by km, is the integer such that successive

iterations of K on any m-digit positive integer generate km and

K(km) � km. For four-digit numbers the Kaprekar constant is 6174.

The digital root of a positive integer n, denoted by r(n), is the single

digit obtained by adding the digits of a number. If the sum obtained has

more than one digit, then the process is repeated until a single digit is

obtained. For example, since 7� 4� 3� 2� 8 � 24 and 2� 4 � 6, the

digital root of 74 328 is 6, that is, r(74 328) � 6. For natural numbers m

and n, r(r(n)) � r(n), r(n� 9) � r(n), and the pairs r(mn) and

r(m)r(n), and r(n� m) and r(n)� r(m), have the same remainder when

divided by 9. For any positive integer k we may construct the auxiliary

sequence a1, a2, . . . , an, . . . , where a1 � k and an�1 � an � r(an). From

this sequence, the digital root sequence r(a1), r(a2), . . . can be generated.

For example, the auxiliary sequence for 12 is given by 12, 15, 21, 24, 30,
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33, 39. Hence, the digital root sequence for 12 is given by 3, 6, 3, 6, 3, 6, 3,

. . . : In 1979, V. Sasi Kumar showed that there are only three basic digital

root sequences.

We end this section with two sequences generated by the digits of a

number, one constructed additively, the other multiplicatively. The digital

sum sequence is de®ned as follows: let a1 be any natural number. For

k > 2, de®ne ak � akÿ1 � sd(akÿ1), where sd(n) denotes the sum of the

digits of n. In 1906, A. GeÂrardin showed that the 19th term of the digital

sum sequence whose 1st term is 220 and the 10th term of the digital sum

sequence whose 1st term is 284 both equal 418.

In 1973, Neil Sloane of AT&T Bell Labs, author of A Handbook of

Integer Sequences, devised a sequence of natural numbers by de®ning each

successive term in the sequence as the product of the digits of the

preceding term. Sloane de®ned the persistence of a natural number as the

number of steps required to obtain a single digit number. For example, the

persistence of 74 is 3 since its persistence sequence is 74, 28, 16, 6. The

smallest number with persistence 2 is 25. The smallest number with

persistence 1 is 10. Sloane showed that no number less than 1050 has a

persistence greater than 11. He conjectured that there is a natural number

N such that every natural number has persistence less than N.

Exercises 1.2

1. Determine the next three terms in the look and say sequence 1, 11, 21,

1 211, 111 221, 312 211, . . . :

2. Explain why a look and say sequence cannot contain a digit greater

than 3 unless that digit appears in the ®rst or second term.

3. Generate the ®rst ten terms of a Galileo sequence with ratio 5 and ®rst

term 1.

4. Which of the following are superincreasing sequences?

(a) 2, 3, 6, 12, 25, 50, 99, 199, 397,

(b) 3, 5, 9, 18, 35, 72, 190, 1009,

(c) 4, 7, 12, 24, 48, 96, 192, 384, 766.

5. Determine the next three terms of the sequence 1, 5, 9, 31, 53, 75, 97,

. . . , and the rule that generates the sequence.

6. Determine the next three terms of the sequence 5, 8, 21, 62, 86, 39, 74,

38, . . . , and the rule that generates the sequence.

7. Are the following natural numbers happy or sad?

(a) 392, (b) 193, (c) 269, (d) 285, (e) 521.

8. Determine the nine cycles that occur in sequences of natural numbers
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where each succeeding term is the sum of the cubes of the digits of the

previous number.

9. Determine the four cycles that occur if succeeding terms of a sequence

are the sum of the fourth powers of the digits of the previous term.

10. Determine the six different cycles that result from applying Sidney's

algorithm to two-digit numbers. What is the sum of the periods of the

six cycles?

11. Given any m-digit natural number a1a2 � � � am, let the ®rst m terms of

the sequence be a1, a2, . . . , am; then, for k . m, ak�1 is de®ned to be

the units digit of the product of the previous nonzero m terms of the

sequence. The sequence terminates when a repeating pattern of digits

occurs. What repeating patterns result from this Sidney product

sequence algorithm for m � 2? (for m � 3?)

12. For what values of n is un, the nth Fibonacci number, even.

13. Show that the sum of any 10 consecutive Fibonacci-type numbers is

always equal to 11 times the seventh term in the sequence.

14. Show that ô � (1� (1� (1� � � �)1=2)1=2)1=2 (hint: square both sides of

the equation).

15. In Figure 1.16, show that jABj=jACj � ô.

16. In Figure 1.17, show that jAGj=jADj � ô.

17. A golden box is a parallelepiped whose height, width, and length are

in the geometric proportion ó:1:ô. Show that a golden box may also be

de®ned as a parallelepiped whose height, width, and length are in the

geometric proportion 1:ô:ô2.

18. Determine the ®rst ten Lucas numbers.

19. Show that 5778 is a triangular±Lucas number.

20. If ô � (1� ���
5
p

)=2 and ó � (1ÿ ���
5
p

)=2, show that vn � ôn � ó n.

21. The tribonacci numbers an are de®ned recursively as follows: a1 �
a2 � 1, a3 � 2, and an � anÿ1 � anÿ2 � anÿ3, for n > 4. Generate the

®rst 20 tribonacci numbers.

22. The tetranacci numbers bn are de®ned as follows: b1 � b2 � 1,

b3 � 2, b4 � 4, and bn � bnÿ1 � bnÿ2 � bnÿ3 � bnÿ4, for n > 5. Gen-

erate the ®rst 20 tetranacci numbers.

23. Verify the Collatz conjecture for the following numbers:

(a) 9, (b) 50, (c) 121.

24. Determine the three cycles that occur when 3an ÿ 1 is substituted for

3an � 1 in the Collatz algorithm.

25. Perform the Kaprekar routine on the following natural numbers until

you obtain the Kaprekar constant:

(a) 3996, (b) 1492, (c) your birth year, (d) the current calendar year.
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26. Use the Kaprekar algorithm to determine the three-digit Kaprekar

constant for three-digit numbers.

27. The reverse±subtract±reverse±add algorithm is stated as follows:

given a three-digit natural number with the outer two digits differing

by at least 2, reverse the digits of the number and subtract the smaller

from the larger of the two numbers to obtain the number A, take A,

reverse its digits to obtain the number B, add A and B. The sum,

A� B, will always be 1089. Verify this algorithm for the following

numbers: (a) 639, (b) 199, (c) 468.

28. Given a four-digit number n for which not all the digits are equal, let

abcd represent the largest integer possible from permuting the digits a,

b, c, d of n, that is, so a > b > c > d. The Trigg operator, T(n), is

de®ned such that T (n) � badcÿ cdab. The Trigg constant is the

integer m such that iterations of T always lead to m and T (m) � m.

Determine the Trigg constant.

29. Determine the three basic digital root sequences.

30. For any natural number n prove that r(n� 9) � r(n), where r(n)

denotes the digital root of n.

31. Show that the 19th term of the digital sum sequence whose 1st term is

220 and the 10th term of the digital sum sequence whose 1st term is

284 both equal 418.

32. Determine the sum of the digits of the ®rst million positive integers.

33. The sequence a1, a2, . . . is called a Kaprekar sequence, denoted by

Ka1
, if a1 is a positive integer and ak�1 � ak � sd(ak), for k . 1,

where sd(n) denotes the sum of the digits of n. For example, if a1 � 1,

we obtain the Kaprekar sequence K1 � 1, 2, 4, 8, 16, 23, 28, . . . : In

1959, Kaprekar showed that there are three types of Kaprekar

sequence: (I) each term is not divisible by 3, (II) each term is divisible

by 3 but not by 9, and (III) each term is divisible by 9. For example,

K1 is type I. Determine the Kaprekar type for Ka1
, when a1 � k, for

2 < k < 10.

34. Kaprekar called a positive integer a self number if it does not appear

in a Kaprekar sequence except as the ®rst term. That is, a natural

number n is called a self number if it cannot be written as m� sd(m),

where m is a natural number less than n. For example, 1 and 3 are self

numbers. Determine all the self numbers less that 100.

35. In The Educational Times for 1884, Margaret Meyer of Girton

College, Cambridge, discovered a set of conditions under which a

number n is such that sd(n) � 10 and sd(2n) � 11. Find such a set of

conditions.
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36. Determine the persistence of the following natural numbers:

(a) 543, (b) 6989, (c) 86 898, (d) 68 889 789, (e) 3 778 888 999.

37. Determine the smallest natural numbers with persistence 3, with

persistence 4, with persistence 5.

1.3 The principle of mathematical induction

Most students of mathematics realize that a theorem is a statement for

which a proof exists, a lemma is a subordinate theorem useful in proving

other theorems, and a corollary is a result whose validity follows directly

from a theorem. Proofs of theorems and lemmas may be constructive or

nonconstructive, that is, in general, practical or elegant. It should also be

evident that in mathematical problems, `establish', `show' and `prove' are

the same commands.

One of the most important techniques in establishing number theoretic

results is the principle of mathematical induction. The method was ®rst

employed by Pascal in 1665 and named as such by Augustus De Morgan in

1838. It is a technique that is not very satisfying to students since it is

usually nonconstructive and does not give any clue as to the origin of the

formula that it veri®es. Induction is not an instrument for discovery.

Nevertheless, it is a very important and powerful tool. The principle of

mathematical induction follows from the well-ordering principle which

states that every nonempty set of natural numbers has a least element.

Theorem 1.1 (Principle of mathematical induction) Any set of natural

numbers that contains the natural number m, and contains the natural

number n� 1 whenever it contains the natural number n, where n > m,

contains all the natural numbers greater than m.

Proof Let S be a set containing the natural number m and the natural

number n� 1 whenever it contains the natural number n, where n > m.

Denote by T the set of all natural numbers greater than m that are not in S.

Suppose that T is not empty. By the well-ordering principle T has a least

element, say r. Now, r ÿ 1 is a natural number greater than or equal to m

and must lie in S. By the induction assumption, (r ÿ 1)� 1 � r must also

lie in S, a contradiction. Hence, the assumption that T is not empty must be

false. We conclude that T is empty. Therefore, S contains all the natural

numbers greater than m. j

In most applications of the principle of mathematical induction, we are
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interested in establishing results that hold for all natural numbers, that is,

when m � 1. There is an alternate principle of mathematical induction,

equivalent to the principle of mathematical induction stated in Theorem

1.1, in which, for a given natural number m, we require the set in question

to contain the natural number n� 1 whenever it contains all the natural

numbers between m and n, where n > m. The alternate principle of

mathematical induction is very useful and is stated in Theorem 1.2 without

proof.

Theorem 1.2 (Alternate principle of mathematical induction) Any set of

natural numbers that contains the natural number m, and contains n� 1

whenever it contains all the natural numbers between m and n, where

n > m, contains all the natural numbers greater than m.

The alternate principle of mathematical induction implies the well-ordering

principle. In order to see this, let S be a nonempty set of natural numbers

with no least element. For n . 1, suppose 1, 2, . . . , n are elements S, the

complement of S. A contradiction arises if n� 1 is in S for it would then

be the least positive natural number in S. Hence, n� 1 must be in S. From

the alternate principle of mathematical induction, with m � 1, S must

contain all natural numbers. Hence, S is empty, a contradiction.

Establishing results using induction is not as dif®cult as it seems and it

should be in every mathematician's repertoire of proof techniques. In

Example 1.3, we use induction to establish a result known to the early

Pythagoreans.

Example 1.3 The sum of consecutive odd natural numbers beginning with

1 is always a square. This result ®rst appeared in Europe in 1225 in

Fibonacci's Liber quadratorum. The statement of the problem can be

expressed in the form of a variable proposition P(n), a statement whose

truth or falsity varies with the natural number n, namely P(n): 1� 3 �
5 � � � � � (2nÿ 1) � n2. In order to establish the truth of P(n), for all

natural numbers n, using induction, we ®rst show that P(1) is true. This

follows since 1 � 12. We now assume that proposition P(n) holds for an

arbitrary value of n, say k, and show that P(k � 1) follows from P(k).

Since we are assuming that P(n) holds true for n � k, our assumption is

P(k): 1� 3� 5� 7 � � � � � (2k ÿ 1) � k2:

Adding 2k � 1 to both sides yields

1� 3� 5� 7 � � � � � (2k ÿ 1)� (2k � 1) � k2 � (2k � 1),
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or

1� 3� 5� 7 � � � � � (2k ÿ 1)� (2k � 1) � (k � 1)2,

establishing the truth of P(k � 1). Hence, by the principle of mathematical

induction, P(n) is true for all natural numbers n.

Example 1.4 We show that u1 � u2 � � � � � un � un�2 ÿ 1, where n is

any natural number and un represents the nth Fibonacci number. We have

u1 � 1 � 2ÿ 1 � u3 ÿ 1, hence P(1) is true. Assume that P(n) is true for

an arbitrary natural number k, hence, we assume that u1 � u2 � u3 �
� � � � uk � uk�2 ÿ 1. Adding uk�1 to both sides of the equation we obtain

u1 � u2 � u3 � ´ ´ ´ � uk � uk�1 � (uk�2 ÿ 1) � uk�1 � (uk�1 � uk�2) ÿ
1 � uk�3 ÿ 1. Thus, P(k � 1) follows from P(k), and the result is estab-

lished for all natural numbers by the principle of mathematical induction.

It is important to note that verifying both conditions of the principle of

mathematical induction is crucial. For example, the proposition

P(n): 1� 3� 5 � � � � � (2nÿ 1) � n3 ÿ 5n2 � 11nÿ 6 is only true

when n � 1, 2, or 3. Further, P(n): 1� 3� 5 � � � � � (2nÿ 1) �
n2 � n(nÿ 1)(nÿ 2) � � � (nÿ 1000) is true for n � 1, 2, 3, . . . , 1000

and only those natural numbers. Algebraically, the proposition

P(n): 1� 3� 5 � � � � � (2nÿ 1) � n2 � 5 implies the proposition

P(n� 1): 1� 3� 5 � � � � � (2nÿ 1)� (2n� 1) � (n� 1)2 � 5. How-

ever, P(n) is not true for any value of n.

In the exercises the reader is asked to establish formulas for the natural

numbers, many of which were known to the ancient mathematicians.

Exercises 1.3

Establish the following identities for all natural numbers n, unless other-

wise noted, where un and vn represent the general terms of the Fibonacci

and Lucas sequences, respectively.

1. 12 � 22 � 32 � � � � � n2 � n(n� 1)(2n� 1)

6
:

2. 12 � 32 � 52 � � � � � (2nÿ 1)2 � n(4n2 ÿ 1)

3
: [Fibonacci]

3.
1

1 . 2
� 1

2 . 3
� 1

3 . 4
� � � � � 1

n(n� 1)
� n

n� 1
:

4. t1 � t2 � � � � � tn � n(n� 1)(n� 2)

6
: [Aryabhata]
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5. 13 � 23 � 33 � � � � � n3 � n(n� 1)

2

� �2

. [Aryabhata Bachet]

6. (1� a)n > 1� na, where a is any real number greater than ÿ1.

[Jokob Bernoulli]

7. n! . n2 for all natural numbers n . 3.

8. u1 � u3 � u5 � � � � � u2nÿ1 � u2n.

9. u2
1 � u2

2 � u2
3 � � � � � u2

n � unun�1:

10. u2 � u4 � u6 � � � � � u2n � u2n�1 ÿ 1. [Lucas]

11. un > ônÿ2:

12. u2
n�1 ÿ u2

n � unÿ1un�2, if n > 1. [Lucas]

13. un � vn � 2un�1. [Lucas]

14. vnÿ1 � vn�1 � 5un, for n > 2. [Lucas]

15. vn � unÿ1 � un�1 if n > 2. [Lucas]

16. u2n � unvn. [Lucas]

17. u2
n�2 ÿ u2

n � u2n�2. [Lucas]

18. In 1753 Robert Simson proved that un�1unÿ1 � (ÿ1)n�1 � u2
n, for

n . 1. Use induction to establish the formula.

19. If S � fa1, a2, a3, . . .g is a set of natural numbers with a1 .

a2 . a3 . . . . , then show S is ®nite.

20. Show that there are no natural numbers between 0 and 1.

21. Prove Wallis's result concerning ®gurate numbers, namely for natural

numbers n and r, f r
n�1 � f 1

n � f 2
n � � � � � f r

n.

1.4 Miscellaneous exercises

1. Show that 1 533 776 805 is a triangular, pentagonal, and hexagonal

number.

2. A natural number is called palindromic if it reads the same backwards

as forwards. For example, 3 245 423 is palindromic. Determine all

two- and three-digit palindromic triangular numbers.

3. Show that the squares of 1 270 869 and 798 644 are palindromic.

4. Show that the squares of the numbers 54 918 and 84 648 are pandigital,

that is they contain all the digits.

5. In 1727, John Hill, of Staffordshire, England, claimed that the smallest

pandigital square was (11 826)2. Was he correct?

6. The number 16 583 742 contains all the digits except 9 and 0. Show

that 90 . 16 583 742 is pandigital.

7. A positive integer n is called k-transposable if, when its leftmost digit

is moved to the unit's place, the result is k . n. For example, 285 714 is
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3-transposable since 857 142 � 3 . 285 714. Show that 142 857 is 3-

transposable.

8. A number n is called automorphic if its square ends in n. For example,

25 is automorphic since 252 � 625. Show that 76 and 625 are

automorphic.

9. A number is called trimorphic if it is the nth triangular number and its

last digits match n. For example, 15 is trimorphic since it is the ®fth

triangular number and it ends in 5. Show that 325, 195 625, and

43 959 376 are trimorphic.

10. A number is called a Kaprekar number if its square can be partitioned

in `half' such that the sum of the ®rst half and the second half equals

the given number. For example, 45 is a Kaprekar number since

452 � 2025 and 20� 25 � 45. Show that 297, 142 857 and

1 111 111 111 are Kaprekar numbers.

11. A number is called an Armstrong number if it can be expressed as a

sum of a power of its digits. For example 407 is Armstrong since

407 � 43 � 03 � 73. Show that 153 and 371 are Armstrong numbers.

12. A number is called narcissistic if its digits can be partitioned in

sequence so that it can be expressed as a power of the partitions. For

example, 101 is narcissistic since 101 � 102 � 12. All Armstrong

numbers are narcissistic. Show that 165 033 is narcissistic.

13. A number a1a2 . . . an is called powerful if there exist natural numbers

x1, x2, . . . , xn such that a1a2 . . . an � ax1

1 � ax2

2 � � � � � axn
n . For ex-

ample 24 is powerful since 24 � 23 � 42. Show that 43, 63, 89 and

132 are powerful.

14. A number abcd is called extraordinary if abcd � abcd . Show that

2592 is extraordinary.

15. A number is called curious if it can be expressed as the sum of the

factorials of its digits. For example 1, 2, and 145 are curious since

1 � 1!, 2 � 2!, 145 � 1!� 4!� 5! Show that 40 585 is curious.

16. Multiplying 142 857 by 2, 3, 4, 5 or 6 permutes the digits of 142 857

cyclically. In addition, 4 times 2178 reverses the digits of 2178. Show

that multiplying by 4 reverses the digits of 21 978 and 219 978 and

multiplying by 9 reverses the digits of 10 989.

17. Determine how long it will take to return all the gifts mentioned in the

song `The twelve days of Christmas' if the gifts are returned at the rate

of one gift per day.

18. Take the month that you were born, January � 1, December � 12, etc.,

multiply by 5, and add 6. Then multiply the result by 4 and add 9.

Then take that result, multiply by 5, and add the day of the month that
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you were born. Now from the last result subtract 165. What does the

answer represent?

19. Given any integer between 1 and 999, multiply it by 143. Take the

number represented by the last three digits of the result and multiply it

by 7. The number represented by the last three digits of this result is

the original number. Explain why.

20. Note that 2666
6665
� 266

665
� 26

65
� 2

5
, and 16

64
� 1

4
. Find all pairs of two-digit

numbers ab and bc with the property that ab=bc � a=c.

21. The following puzzle was devised by William Whewell [YOU ell],

Master of Trinity College, Cambridge. Represent each of the ®rst 25

natural numbers using exactly four nines, any of the four basic

operations (addition, subtraction, multiplication, and division), par-

entheses and, if absolutely necessary, allowing
���
9
p � 3 and :9 � 1.

Whewell was a philosopher of science and historian who, in his

correspondence with Michael Faraday, coined the terms anode, cath-

ode, and ion. He also introduced the terms physicist and scientist.

Obtain a solution to Whewell's puzzle.

22. Exhibit 25 representations for zero using Whewell's method.

23. Solve Whewell's puzzle using four fours, the four basic operations and,

if necessary,
���
4
p

and/or 4!

24. Prove that

ô � lim
n!1

un�1

un

:

25. Consider integer solutions to the equation x1 � x2 � � � � � xn �
x1

. x2 � � � xn, where x1 < x2 < � � � < xn. For example, when n � 2,

we have 2� 2 � 2 . 2, hence, x1 � x2 � 2 is a solution. Find a general

solution to the equation.

26. Gottfried Leibniz and Pietro Mengoli determined the sum of the

reciprocals of the triangular numbers,X1
n�1

1

tn

� 1� 1
3
� 1

6
� 1

10
� � � � :

What does the sum equal?

27. A lone reference to Diophantus in the form of an epitaph appears in

the Greek Anthology of Metrodorus, a sixth century grammarian.

According to the translation by W.R. Paton, `This tomb holds Dio-

phantus. Ah, how great a marvel! the tomb tells scienti®cally the

measure of his life. God granted him to be a boy for the sixth part of

his life, and adding a twelfth part to this, he clothed his cheeks with

down; he lit him the light of wedlock after a seventh part, and ®ve
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years after his marriage he granted him a son. Alas! late-born wretched

child; after attaining the measure of half his father's life, chill Fate

took him. After consoling his grief by this science of numbers for four

years he ended his life.' How old was Diophantus when he died? (Hint:

if n denotes his age at his death then, according to the epitaph,

n=6� n=12� n=7� n=2� 9 � n.)

28. De Morgan and Whewell once challenged each other to see who could

come the closest to constructing sentences using each letter in the

alphabet exactly once, precursors to `the quick brown fox jumps over

the lazy dog' and `pack my box with ®ve dozen liquor jugs'. It was

decided that De Morgan's `I, quartz pyx, who ¯ung muck beds' just

edged out Whewell's `phiz, styx, wrong, buck, ¯ame, quid'. Try your

hand at the equally hard puzzle of trying to come up with a 26-word

abecedarian phrase such that each word begins with a different letter

of the alphabet in lexicographical order.

29. Table 1.7 is based on the Gregorian calendar that began replacing the

Julian calendar in 1582. The table may be used to ®nd the day of the

week, given the date, by adding the ®gures at the top of each column

and noting what column contains the sum. Asterisks denote leap years.

For example, consider December 7, 1941.

Century 19 0

Year 41 2

Month December 5

Day 7 0

SUM 7

Therefore, from Table 1.7, we ®nd that December 7, 1941 was a

Sunday. What day of the week was July 4, 1776?

30. On what day of the week were you born?

31. What was the date of the fourth Tuesday in June 1963?

32. What was the date of the ®rst Tuesday of October 1917?

33. What day of the week was August 31, 1943?

34. Even though weekday names were not common until the fourth

century, use the fact that in most Catholic countries Thursday October

4, 1582 in the Julian calendar was followed by Friday October 15,

1582 in the Gregorian and that all century years, prior to 1700, were

leap years to determine the day of the week that each of these events

occurred:

(a) the Battle of Hastings (October 14, 1066),

(b) the signing of Magna Carta (June 15, 1215), and

(c) the marriage of Henry VIII and Ann Boleyn (January 25, 1533).
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35. At a square dance each of the 18 dancers on the ¯oor is identi®ed with

a distinct natural number from 1 to 18 prominently displayed on their

back. Suppose the sum of the numbers on the back of each of the 9

couples is a square number. Who is dancing with number 6?

36. An even natural number n is called a square dance number if the

numbers from 1 to n can be paired in such a way that the sum of each

pair is square. Show that 48 is a square dance number.

37. Determine all the square dance numbers.

38. John H. Conway and Richard K. Guy have de®ned an nth order zigzag

number to be an arrangement of the numbers 1, 2, 3, . . . , n in such a

manner that the numbers alternately rise and fall. For example, the

only ®rst and second order zigzag numbers are 1 and 12, respectively.

There are two third order zigzag numbers, namely, 231 and 132. There

are ®ve fourth order zigzag numbers, namely, 3412, 1423, 2413, 1324,

and 2314. Determine all ®fth order zigzag numbers.

39. In 1631, Johann Faulhaber of Ulm discovered that

1kÿ1 � 2kÿ1 � � � � � nkÿ1 �
1

k
nk � (k

1 )nkÿ1 .
ÿ1

2
� (k

2 )nkÿ2 .
1

6

�
� (k

3 )nkÿ3 . 0� (k
4 )nkÿ4 .

ÿ1

30
� � � �

�
:

The coef®cients, 1, ÿ1
2
, 1

6
, 0, ÿ 1

30
, 0, . . . , are called Bernoulli numbers

and appear in the 1713 edition of Jakob Bernoulli's Ars conjectandi. In

general,

(n�1
1 )Bn � (n�1

2 )Bnÿ1 � � � � � (n�1
n )B1 � B0 � 0:

Hence, B0 � 1, B1 � ÿ1
2
, B2 � 1

6
, B3 � 0, B4 � ÿ 1

30
, B5 � 0, and so

forth. For example, 5B4 � 10B3 � 10B2 � 5B1 � B0 � 0. Hence,

B4 � ÿ 1
30

. In addition, if n . 1, then B2n�1 � 0. Find the Bernoulli

numbers B6, B8, and B10.

40. Lucas de®ned the general term of a sequence to be wn � u3n=un.

Determine the ®rst six terms of the sequence. Is the sequence gener-

ated a Fibonacci-type sequence?

41. Given the 2 3 2 matrix

A � 1 1

1 0

� �
,

use induction to show that, for n > 1,
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An � un�1 un

un unÿ1

� �
,

where un represents the nth Fibonacci number with the convention

that u0 � 0.

42. If

A � 1 1

1 0

� �
,

®nd a numerical value for the determinant of An.

43. Evaluate

32 � 42 � 52 � 62 � 72 � 82 � 92

12 � 22 � 32 � 42 � 52 � 62 � 72
:

44. Establish the following algebraic identity attributed to the Indian

mathematician Srinivasa Ramanujan:

(a� 1)(b� 1)(c� 1)� (aÿ 1)(bÿ 1)(cÿ 1) � 2(a� b� c� abc):

45. Ramanujan stated a number of formulas for fourth power sums. Estab-

lish his assertion that a4 � b4 � c4 � 2(ab� bc� ca)2 provided

a� b� c � 0.

46. Prove or disprove that 3an ÿ an�1 � unÿ1(unÿ1 � 1), for n > 1, where

an denotes the coef®cient of xn in (1� x� x2)n, for n � 0, 1, 2, . . . ,

and un represents the nth Fibonacci number.

47. The curriculum of universities in the Middle Ages consisted of the seven

liberal arts, seven ¯ags ¯ew over Texas, Rome and Providence, Rhode

Island, were built on seven hills. Determine the following septets:

(a) the seven wonders of the ancient world;

(b) the seven sages of antiquity;

(c) the seven wise women of antiquity.

48. In 1939, Dov Juzuk established the following extension to Nicoma-

chus's method of generating the cubes from an arithmetic triangle.

Show that if the even rows of the arithmetic triangle shown below are

deleted, the sum of the natural numbers on the ®rst n remaining rows

is given by n4. For example, 1� (4� 5� 6)� (11� 12� 13 �
14� 15) � 81 � 34.

1
2 3

4 5 6
7 8 9 10

11 12 13 14 15
16 17 18 19 20 21

22 23 24 25 26 27 28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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49. In 1998, Ed Barbeau of the University of Toronto generalized Nicoma-

chus's cubic result to hexagonal numbers. Show that if the even rows

of the arithmetic triangle shown below are deleted, the sum of the

natural numbers on the ®rst n remaining rows is given by ( p6
n)2. For

example, 1� (5� 6� 7� 8� 9)� (17� 18 � � � � � 25) � 225 �
( p6

3)2.

1
2 3 4

5 6 7 8 9
10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50. If every other row in the following triangle is deleted, beginning with

the second row, identify the partial sums of the ®rst n remaining rows.

Hint: there are 3nÿ 2 numbers in the nth row.

1
2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22

48 The intriguing natural numbers



2

Divisibility

If you are going to play the game, you'd better know all the

rules.

Barbara Jordan

2.1 The division algorithm

We extend our universe of discourse from the set of natural numbers to the

set of integers, . . . , ÿ3, ÿ2, ÿ1, 0, 1, 2, 3, . . . , by adjoining zero and the

negatives of the natural numbers. The integers are closed under addition,

subtraction, and multiplication. We use the additive inverse to de®ne

subtraction. That is, by the expression aÿ b, we mean a� (ÿb). From

now on, unless otherwise noted, we restrict ourselves to the set of integers.

In order to work with integers ef®ciently we rely heavily on the following

basic properties of addition and multiplication of integers.

Properties of the integers

Associativity a� (b� c) � (a� b)� c a(bc) � (ab)c

Commutativity a� b � b� a ab � ba

Distributivity a(b� c) � ab� ac (a� b)c � ac� bc

Identity a� 0 � 0� a � a a . 1 � 1 . a � a

Inverse a� (ÿa) � (ÿa)� a � 0

Transitivity a . b and b . c implies a . c

Trichotomy Either a . b, a , b, or a � b

Cancellation law If a . c � b . c and c 6� 0, then a � b:

The set of rational numbers, a superset of the integers, consists of

numbers of the form m=n, where m and n are integers and n 6� 0. We

employ multiplicative inverses to de®ne division on the rationals, that is by

r � s we mean r(1=s). Since

a

b
� c

d
� ad � bc

bd
,

a

b
.

c

d
� ac

bd
,
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and

a

b
� c

d
� ad

bc
,

the rationals are closed under the binary operations of addition, subtraction,

multiplication, and division (except by zero). Furthermore, every rational

number can be expressed as a repeating decimal and vice versa. For

example, if n � 0:63, then 100n � 63:63. Thus, 99n � 100nÿ n � 63.

Therefore, n � 63
99
� 7

11
. Conversely, since there are only n possible remain-

ders when dividing by the integer n, every rational number can be ex-

pressed as a repeating decimal.

The rationals are not closed under the unary operation of taking the

square root of a positive number. However, if we adjoin nonrepeating

decimal expansions, called irrational numbers, to the rationals we obtain

the real numbers. The reals are closed under the four basic binary

operations (except division by zero) and the unary operation of taking the

square root of a positive number. By extending the reals to the complex

numbers, numbers of the form a� bi, where a and b are real and i2 � ÿ1,

we obtain a set closed under the four basic binary operations (except

division by zero) and the unary operation of taking the square root.

A function is a rule or correspondence between two sets that assigns to

each element of the ®rst set a unique element of the second set. For

example, the absolute value function, denoted by j . j, is de®ned such that

jxj equals x when x is nonnegative and ÿx when x is negative. It follows

immediately from the de®nition that if jxj, k, then ÿk , x , k, and if

jxj. k, then x . k or x ,ÿk. Two vertical bars, the notation used for the

absolute value, were introduced by Karl Weierstrass in 1841. Weierstrass, a

German mathematician, who taught at the University of Berlin, was

advocate for mathematical rigor. He devised an example of a continuous

function that was nowhere differentiable. An important property of the

absolute value function is expressed in the following result.

Theorem 2.1 (Triangle inequality) For any two real numbers a and b,

jaj � jbj > ja� bj.
Proof Since ÿjaj < a < jaj and ÿjbj < b < jbj it follows that ÿjaj ÿ
jbj < a� b < jaj � jbj. Therefore, ja� bj < jaj � jbj. j

We de®ne the binary relation `divides' on the integers as follows: if a

and b are integers, with a 6� 0, and c is an integer such that ac � b, then

we say that a divides b and write ajb. It should be noted that there can be
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but one integer c such that ac � b. If a divides b, then a is called a divisor

of b, and b is called a multiple of a. We write a 6 jb if a does not divide b. If

a divides b with 1 < a , b, then we say that a is a proper divisor of b. The

basic properties of division are listed below, where a, b and c represent

integers.

Properties of division

(1) If a 6� 0, then aja and aj0.

(2) For any a, 1ja.

(3) If ajb and ajc then for any integers x and y, aj(bx� cy).

(4) If ajb and bjc, then ajc.

(5) If a . 0, b . 0, ajb and bja, then a � b.

(6) If a . 0, b . 0, and ajb, then a < b.

The ®rst two properties follow from the fact that a . 1 � a and a . 0 � 0. In

order to establish the third property, suppose that a divides b and c. There

exist integers r and s such that ar � b and as � c. Hence, bx� cy �
arx� asy � a(rx� sy). Since bx� cy is a mulitple of a, a divides

bx� cy. Proofs of the other properties are as straightforward and are left as

exercises for the reader. From the third property, it follows that if ajb and

ajc, then aj(b� c), aj(bÿ c), and aj(cÿ b). From the de®nition of

division and the fact that divisions pair up, it follows that, for any positive

integer n, there is a one-to-one correspondence between the divisors of n

that are less than
���
n
p

and those which are greater than
���
n
p

.

Example 2.1 Using induction, we show that 6 divides 7n ÿ 1, for any

positive integer n. Let P(n) represent the variable proposition 6 divides

7n ÿ 1. P(1) is true since 6 divides 7ÿ 1. Suppose for some positive

integer k, P(k) is true, that is, 6 divides 7k ÿ 1 or, equivalently, there is an

integer x such that 7k ÿ 1 � 6x. We have 7k�1 ÿ 1 � 7 . 7k ÿ 1 �
7(6x� 1)ÿ 1 � 6(7x� 1) � 6y. Thus, 7k�1 ÿ 1 is a multiple of 6. There-

fore, P(k) implies P(k � 1) and the result follows from the principle of

mathematical induction.

Example 2.2 We determine three distinct positive integers a, b, c such

that the sum of any two is divisible by the third. Without loss of generality,

suppose that a , b , c. Since cj(a� b) and a� b , 2c, a� b must equal

c. In addition, since 2a� b � a� c and bj(a� c), bj2a. Since 2a , 2b, b

must equal 2a. Hence, c � a� b � 3a. Therefore, n, 2n and 3n, for any
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positive integer n, are three distinct integers with the property that the sum

of any two is divisible by the third.

Many positive integers have interesting divisibility properties. For exam-

ple, 24 is the largest integer divisible by all the positive integers less than

its square root. It is also the only integer greater than unity such that the

sum of the squares from 1 to itself is a square. One of the most basic tools

for establishing divisibility properties is the division algorithm found in

Book VII of Euclid's Elements. According to Euclid, given two line

segments the shorter one can always be marked off a ®nite number of times

on the longer length either evenly or until a length shorter than its own

length remains and the process cannot continue. A more algebraic version

of the division algorithm, one more appropriate for our use, is stated in the

next theorem.

Theorem 2.2 (The division algorithm) For any integer a and positive

integer b there exist unique integers q and r with the property that

a � bq� r with 0 < r , b.

Proof Consider the set S � faÿ sb: s is an integer and aÿ sb > 0g. S

consists of the nonnegative elements of the set f. . . , aÿ 2b, aÿ b, a,

a� b, a� 2b, . . .g. If a , 0, then aÿ ab � a(1ÿ b) > 0, hence, aÿ ab

is in S. If a > 0, then aÿ (0 . b) � a > 0, hence a is in S. In either case, S

is a nonempty set of positive integers. By the well-ordering principle S

contains a least element that we denote by r � aÿ bq > 0. In addition,

r ÿ b � (aÿ bq)ÿ b � aÿ (q� 1)b , 0, hence, 0 < r , b. In order to

show that q and r are unique, suppose that there are two other integers u, v
such that a � bu� v, with 0 < v , b. If u , q, then since u and q are

integers, we have u� 1 < q. Thus, r � aÿ bq < aÿ b(u� 1) �
(aÿ ub)ÿ b � vÿ b , 0, contradicting the fact that r is nonnegative. A

similar contradiction arises if we assume u . q. Hence, from the law of

trichotomy, u � q. Thus, a � bq� r � bq� v implying that v � r, and

the uniqueness of q and r is established. j

Corollary For an integer a and positive integer b, there exist unique

integers q and r such that a � bq� r, with ÿjbj=2 , r < jbj=2.

One of the most important consequences of the division algorithm is the

fact that for any positive integer n . 1 every integer can be expressed in

the form nk, nk � 1, nk � 2, . . . , or nk � (nÿ 1), for some integer k.

52 Divisibility



Equivalently, every integer either is divisible by n or leaves a remainder 1,

2, . . . , or nÿ 1 when divided by n. This fact is extremely useful in

establishing results that hold for all integers.

If we restrict our attention to division by the integer 2, the division

algorithm implies that every integer is even or odd, that is, can be written

in the form 2k or 2k � 1. Since (2k)2 � 4k2 and (2k � 1)2 �
4k2 � 4k � 1 � 4(k2 � k)� 1, we have established the following result.

Theorem 2.3 Every square integer is of the form 4k or 4k � 1, where k is

an integer.

Since x2 and y2 must be of the form 4k or 4k � 1, x2 � y2, the sum of two

squares, can only be of the form 4k, 4k � 1, or 4k � 2 and we have

established the next result.

Theorem 2.4 No integer of the form 4k � 3 can be expressed as the sum

of two squares.

If we restrict ourselves to division by the integer 3, the division algorithm

implies that every integer is of the form 3k, 3k � 1, or 3k � 2. That is,

division by 3 either goes evenly or leaves a remainder of 1 or 2. Using this

fact, Theon of Smyrna claimed that every square is divisible by 3 or

becomes so when 1 is subtracted from it.

Similarly, every integer is of the form 7k, 7k � 1, 7k � 2, 7k � 3,

7k � 4, 7k � 5, or 7k � 6. That is, according to the division algorithm, the

only remainders possible when dividing by 7 are 0, 1, 2, 3, 4, 5, and 6.

From Table 2.1, it follows that any integer that is both a square and a cube

must be of the form 7k or 7k � 1. For example, (7k � 2)2 �
49k2 � 28k � 4 � 7k(7k � 4)� 4 � 7r � 4, and (7k � 2)3 � 343k3 �

Table 2.1.

n n2 n3

7k 7r 7s
7k � 1 7r � 1 7s� 1
7k � 2 7r � 4 7s� 1
7k � 3 7r � 2 7s� 6
7k � 4 7r � 2 7s� 1
7k � 5 7r � 4 7s� 6
7k � 6 7r � 1 7s� 6

2.1 The division algorithm 53



294k2 � 8k � 8 � 7(49k3 � 42k2 � 12k � 1)� 1 � 7s� 1. Therefore,

any integer that is both a square and a cube cannot be of the form 7k � 2.

In Theaetetus, Plato remarks that his teacher, Theodorus of Cyrene,

proved the irrationality of
���
3
p

,
���
5
p

,
���
7
p

,
�����
11
p

,
�����
13
p

, and
�����
17
p

, but he gives

no indication of Theodorus's method of proof. A number of proofs of the

irrationality of
���
2
p

were known to ancient mathematicians. (Euclid in-

cluded a generalization of the result in Book X of the Elements.) A proof

that appears in Aristotle's Prior Analytics using the fact that integers are

either even or odd, is demonstrated in the next example.

Example 2.3 We use the indirect method to show that
���
2
p

is irrational.

Suppose that it is rational. Thus, there exist positive integers p and q, with

no common factors, such that
���
2
p � p=q. Since p2 � 2q2, p2 is even and,

hence, p is even. Let p � 2m; then p2 � 4m2, hence, q2 � 2m2. Since q2

is even, q must be even, contradicting the assumption that p and q have no

common factors. Therefore,
���
2
p

is irrational.

In 1737, the irrationality of e, the base of the natural logarithm, was

established by Euler. The irrationality of ð was established by Johann

Lambert in 1767. Lambert was self-educated and made signi®cant con-

tributions to physics, mathematics, and cartography. He developed the

transverse Mercator projection by projecting onto a cylinder tangent to a

meridian. In physics, the lambert is a unit of brightness. In non-Euclidean

geometry, a Lambert quadrilateral is a four-sided ®gure having three right

angles. A short proof of the irrationality of e is demonstrated in the next

example.

Example 2.4 By de®nition,

e � 1� 1

1!
� 1

2!
� 1

3!
� � � � :

Suppose that e is rational, that is, e � p=q, where p and q are integers with

no common factors. Let e � a� b, where

a � 1� 1

1!
� 1

2!
� � � � � 1

q!

and

b � 1

(q� 1)!
� 1

(q� 2)!
� � � � :

Multiplying both sides of the ®rst equation in the last sentence by q!, we

obtain q! . e � q! . a� q! . b. Since q! . a is an integer and q! . e is an

54 Divisibility



integer, it follows that q! . b, the difference of two integers, is an integer.

However,

q! . b � 1

(q� 1)
� 1

(q� 1)(q� 2)
� 1

(q� 1)(q� 2)(q� 3)

� � � � , 1
2
� 1

4
� 1

8
� � � � � 1,

implying that 0 , q! . b , 1, a contradiction. Therefore, e is irrational.

Most of our work in this book will be done in base 10. However, there are

occasions when it is useful to consider other bases, in particular base 2.

When b 6� 10, we use the notation nb to denote the integer n written in

base b. For example, 101 1012 � 45, since 1 . 25 � 0 . 24 � 1 . 23 � 1 .

22 � 0 . 2� 1 � 45. Representing integers in bases other than base 10 is

useful if such representations are unique, which we establish with the next

result.

Theorem 2.5 If a and b are positive integers with b . 1, then a can be

uniquely represented in the form a � ckbk � ckÿ1bkÿ1 � � � � � c1b� c0,

with integers ci such that 0 < ci , b, for i � 0, 1, 2, . . . , k and ck 6� 0.

Proof From the division algorithm, we have that a � bq1 � c0, with

0 < c0 , b and q1 , a. If q1 > b, we employ the division algorithm again

to obtain q1 � bq2 � c1, with 0 < c1 , b and q2 , q1. If q2 > b, we

continue the process, obtaining a decreasing sequence of positive integers

q1 . q2 . . . .. Eventually, we obtain a positive number, say qk, such that

qk , b. Set qk � ck . Eliminating qk , qkÿ1, . . . , q1 from the system

a � bq1 � c0,

q1 � bq2 � c1,

. . .

qkÿ2 � bqkÿ1 � ckÿ2,

qkÿ1 � bqk � ckÿ1,

qk � ck ,

we obtain a � ckbk � � � � � c1b� c0, with 0 < ci , b, for i � 0, 1, 2,

. . . , k ÿ 1 and ck 6� 0. The uniqueness of this expansion follows from the

fact that if a � dkbk � d kÿ1bkÿ1 � � � � � d1b� d0, then d0 is the remain-

der when a is divided by b, hence, d0 � c0. Similarly, d1 is the remainder

when q1 � (aÿ d0)=b is divided by b, hence, d1 � c1, and so forth.

Therefore, it follows that di � ci, for i � 0, 1, 2, . . . , k, and the proof is

complete. j
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For example, Theorem 2.5 implies that every nonzero integer can be

expressed uniquely in base 3, in the form ck3k � ckÿ13kÿ1 � � � � �
c13� c0, when ci � 0, 1, or 2, for i � 0, 1, 2, . . . , k, and ck 6� 0, or

equivalently, with ci � ÿ1, 0, or 1.

An elementary version of the game of nim consists of two players and

a single pile of matches. Players move alternately, each player is allowed

to take up to half the number of matches in the pile, and the player who

takes the last match loses. A player can force a win by leaving 2n ÿ 1

matches in the pile, where n is a positive integer. For example, if there

were 73 matches in the pile a player attempting to force a win would

remove 10 matches leaving 73ÿ 10 � 63 � (26 ÿ 1) matches in the pile.

In 1901, using properties of binary representations, Charles Bouton of

Harvard developed several winning strategies for a more advanced version

of nim where several piles of matches were involved and where players

who moved alternately were allowed to remove matches from but a single

pile on each move. His techniques were generalized by E. H. Moore in

1910.

Exercises 2.1

1. If a � b� c, and d divides both a and b, show that d divides c.

2. If ajb and bjc, then show that ajc.

3. If a . 0, b . 0, ajb, and bja, then show that a � b.

4. If a . 0, b . 0, and ajb, then show that a < b.

5. Use the de®nition of division to prove that if a� b � c and ajb, then

ajc.

6. Prove that if ajb and cjd, then acjbd.

7. True or false (if false give a counterexample):

(a) if ajbc, then either ajb or ajc,

(b) if aj(b� c), then either ajb or ajc,

(c) if a2jb3, then ajb,

(d) if a2jc and b2jc and a2 < b2, then ajb,

(e) if b is the largest square divisor of c and a2jc, then ajb?

8. Prove that every rational number can be represented by a repeating

decimal.

9. Determine the fractional representation for 0.123.

10. Use the fact that every integer is of the form 3k, 3k � 1, or 3k � 2 to

show that
���
3
p

is irrational. (Hint: Assume it is rational and get a

contradiction.)
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11. For any integer n, show that

(a) 2 divides n(n � 1),

(b) 3 divides n(n � 1)(n � 2).

12. Prove that 6 divides n(n� 1)(2n� 1) for any positive integer n.

13. Show that the sum of the squares of two odd integers cannot be a

perfect square.

14. Prove that the difference of two consecutive cubes is never divisible

by 2.

15. Show that if n is any odd integer then 8 divides n2 ÿ 1.

16. Show that if 3 does not divide the odd integer n then 24 divides

n2 ÿ 1.

17. Use induction to prove that 3 divides n(2n2 � 7), for any positive

integer n.

18. Show that 8 divides 52n � 7, for any positive integer n.

19. Show that 7 divides 32n�1 � 2n�2, for any positive integer n.

20. Show that 5 divides 33n�1 � 2n�1, for any positive integer n.

21. Show that 4 does not divide n2 � 2, for any integer n.

22. Show that the number of positive divisors of a positive integer is odd if

and only if the integer is a square.

23. Show that any integer of the form 6k � 5 is also of the form 3m� 2,

but not conversely.

24. Show that the square of any integer must be of the form 3k or 3k � 1.

[Theon of Smyrna]

25. Show that the cube of any integer is of the form 9k, 9k � 1, or

9k ÿ 1.

26. Show that the fourth power of any integer is of the form either 5k or

5k � 1.

27. Prove that no integer of the form 8k � 7 can be represented as the sum

of three squares.

28. In an 1883 edition of The Educational Times, Emma Essennell of

Coventry, England, showed for any integer n, n5 ÿ n is divisible by 30,

and by 240 if n is odd. Prove it.

29. Prove that 3n2 ÿ 1 is never a square, for any integer n.

30. Show that no number in the sequence 11, 111, 1111, 11 111, . . . is a

square.

31. Prove that if a is a positive proper divisor of the positive integer b,

then a < b=2.

32. If a and b are positive integers and ab � n, then show that either

a <
���
n
p

or b <
���
n
p

.

33. For any positive integer n, show that there is a one-to-one correspon-

2.1 The division algorithm 57



dence between the divisors of n which are greater than or equal to
���
n
p

and the ways n may be expressed as the difference of two squares.

34. If n� 1 is a cube show that 504 divides n(n� 1)(n� 2).

35. Determine the binary and ternary representations for 40, 173, and

5437.

36. Represent 101 0112 and 201 1023 in base 10.

37. Show that any integer of the form 111 1. . .19 is triangular.

38. Given a scale with a single pan, determine the least number of weights

and precisely the values of the weights necessary in order to weigh all

integral weights in kilograms from 1 kilogram to 40 kilograms.

[Bachet]

39. A number n is called a Niven number, named for Ivan Niven, a

number theorist at the University of Oregon, if it is divisible by the

sum of its digits. For example 24 is a Niven number since 2� 4 � 6

and 6 divides 24. In 1993, C. Cooper and R. E. Kennedy showed that it

is not possible to have more than 20 consecutive Niven numbers.

Determine the ®rst 25 Niven numbers.

40. Let sd(n, b) denote the digital sum of the integer n expressed in base

b > 2. That is, if n � ckbk � ckÿ1bkÿ1 � � � � � c1b� c0, with inte-

gers ci such that 0 < ci , b, for i � 0, 1, 2, . . . , k, and ck 6� 0, then

sd(n, b) �Pk
i�1ci. For example, since 9 � 10012, sd(9, 2) � 2. For

convenience, we denote sd(n, 10) by sd(n). Let Sd(n, b), the extended

digital sum of the integer n expressed in base b > 2, represent sd(n, b)

summed over the digits of n. For example, since 3 � 112, 6 � 1102

and 7 � 1112, Sd(367, 2) � sd(3, 2) � sd(6, 2) � sd(7, 2) � 2� 2 �
3 � 7. Determine Sd(n, 2) for n � 7, 13, and 15.

41. For which values of n does Sd(n, 2) divide n?

2.2 The greatest common divisor

If a and b are integers and d is a positive integer such that dja and djb,

then d is called a common divisor of a and b. If both a and b are zero

then they have in®nitely many common divisors. However, if one of them

is nonzero, the number of common divisors of a and b is ®nite. Hence,

there must be a largest common divisor. We denote the largest common

divisor of a and b by gcd(a, b) and, following standard convention, call it

the greatest common divisor of a and b. It follows straightforwardly from

the de®nition that d is the greatest common divisor of a and b if and only

if
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(1) d . 0,

(2) dja and djb,

(3) if eja and ejb then ejd.

As pointed out in [Schroeder], physiological studies have shown that,

with few exceptions, the brain, upon being presented with two harmoni-

cally related frequencies, will often perceive the greatest common divisor

of the two frequencies as the pitch. For example, if presented with

frequencies of 320 hertz and 560 hertz the brain will perceive a pitch of

80 Hz. One of the most important properties of the greatest common

divisor of two numbers is that it is the smallest positive integer that can be

expressed as a linear combination of the two numbers. We establish this

result in the next theorem.

Theorem 2.6 If a and b are not both zero and d � gcd(a, b), then d is the

least element in the set of all positive linear combinations of a and b.

Proof Let T represent the set of all linear combinations of a and b that are

positive, that is, T � fax� by: x and y are integers and ax� by . 0g.
Without loss of generality, suppose that a 6� 0. If a . 0, then a . 1 �
b . 0 � a is in T. If a , 0, then a(ÿ1)� b . 0 � ÿa is in T. Thus, in either

case, T is a nonempty set of positive integers. By the well-ordering

principle T contains a least element which we denote by e � au� bv. By

the division algorithm, there exist integers q and r such that a � eq� r

with 0 < r , e. Hence, r � aÿ eq � aÿ (au� bv)q � a(1ÿ uq) �
b(ÿvq). If r 6� 0 we have a contradiction since r is in T and r , e, the least

element in T. Thus, r � 0 implying that e divides a. A similar argument

shows that e divides b. Since e divides both a and b and d is the greatest

common divisor of a and b, it follows that e < d. However, since

e � au� bv and d divides both a and b, it follows that d divides e, hence,

d < e. Therefore, e � d and the proof is complete. j

Corollary If d is the greatest common divisor of a and b, then there exist

integers x and y such that d � ax� by.

Example 2.5 Table 2.2 exhibits values for the linear combination

56x� 35y, where ÿ4 < x < 4 and ÿ4 < y < 4. Note that all entries are

multiples of 7 and the least positive linear combination is 7. From Theorem

2.6, the greatest common divisor of 56 and 35 is 7.

Suppose d is the greatest common divisor and a and b, x and y are integers
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such that d � ax� by and A and B are integers such that a � Ad and

b � Bd. It follows that d � aX � bY , where X � xÿ Bt and Y � y� At,

for any integer t. There are, therefore, an in®nite number of ways to

represent the greatest common divisor of two integers as a linear combina-

tion of the two given integers.

In Chapter 5, we show that the linear equation ax� by � c, where a, b

and c are integers, has integer solutions if and only if the greatest common

divisor of a and b divides c. Other properties of the greatest common

divisor include the following, where a, b, c are positive integers.

(a) gcd(ca, cd) � c . gcd(a, b).

(b) If dja and djb then gcd
a

d
,

b

d

� �
� gcd(a, b)

d
.

(c) gcd
a

gcd(a, b)
,

b

gcd(a, b)

� �
� 1:

(d) If gcd(a, b) � 1 then gcd(c, ab) � gcd(c, a) . gcd(c, b).

(e) If ax� by � m, then gcd(a, b) divides m.

(f) If gcd(a, b) � 1 and a . b � nk, then there exist integers r and s such

that a � rk and b � sk .

One of the most useful results in number theory is that if a linear

combination of two integers is unity then the greatest common divisor of

the two integers is unity. This result appears in Book VII of Euclid's

Elements. We call two integers coprime (or relatively prime) if their

greatest common divisor is unity.

Table 2.2.

x

y ÿ4 ÿ3 ÿ2 ÿ1 0 1 2 3 4

ÿ4 ÿ364 ÿ308 ÿ252 ÿ196 ÿ140 ÿ84 ÿ28 28 84
ÿ3 ÿ329 ÿ273 ÿ217 ÿ161 ÿ105 ÿ49 7 63 119
ÿ2 ÿ294 ÿ238 ÿ182 ÿ126 ÿ70 ÿ14 42 98 154
ÿ1 ÿ259 ÿ203 ÿ147 ÿ91 ÿ35 21 77 133 189

0 ÿ224 ÿ168 ÿ112 ÿ56 0 56 112 168 224
1 ÿ189 ÿ133 ÿ77 ÿ21 35 91 147 203 259
2 ÿ154 ÿ98 ÿ42 14 70 126 182 238 294
3 ÿ119 ÿ63 ÿ7 49 105 161 217 273 329
4 ÿ84 ÿ28 28 84 140 196 252 308 364
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Theorem 2.7 Two integers a and b are coprime if and only if there exist

integers x and y such that ax� by � 1.

Proof This follows from Theorem 2.6. Suf®ciency follows from the fact

that no positive integer is less than 1. j

For example, for any positive integer k, 6 . (7k � 6)� (ÿ7) . (6k � 5) � 1.

Hence, from Theorem 2.7, gcd(7k � 6, 6k � 5) � 1, for any positive

integer k. In addition, suppose that gcd(n!� 1, (n� 1)!� 1) � d, for some

positive integer n. Since d divides n!� 1, d divides (n� 1)!� 1, and

n � (n� 1)[n!� 1]ÿ [(n� 1)!� 1], d must divide n. However, if djn
and dj[n!� 1] then d � 1, since 1 � 1 . (n!� 1)� (ÿn) . (nÿ 1)!. There-

fore, gcd(n!� 1, (n� 1)!� 1) � 1, for any positive integer n.

Theorem 2.8 For integers a, b, and c, if ajc and bjc and a and b are

coprime, then abjc.

Proof Since a and b divide c, there exist integers x and y such that

ax � by � c. It follows from Theorem 2.7 that there exist integers u and

v such that au� bv � 1. Multiplying both sides of the equation by c

we obtain c � auc � bvc � au(by) � bv(ax) � ab(uy) � ab(vx) �
(ab)(uy� vx). Hence, abjc. j

Corollary If mijc, for 1 < i , n, gcd(mi, mj) � 1, for i 6� j, and m �Qn
i�1 mi, then mjc.

Example 2.6 Suppose gcd(a, b) � 1 and d � gcd(2a� b, a� 2b). Since

d must divide any linear combination of 2a� b and a� 2b, d divides

[2(2a� b)� (ÿ1)(a� 2b)] and d divides [(ÿ1)(2a� b)� 2(a� 2b)].

Hence, dj3a and dj3b. Since gcd(a, b) � 1, d divides 3. Therefore, if

gcd(a, b) � 1, then gcd(2a� b, a� 2b) � 1 or 3.

If a and b are integers such that both a and b divide m then m is called a

common multiple of a and b. If a and b are nonzero then ab and ÿab are

both common multiples of a and b and one of them must be positive.

Hence, by the well-ordering principle, there exists a least positive common

multiple of a and b. If m is the smallest positive common multiple of a and

b, we call it the least common multiple of a and b, and denote it by

lcm(a, b). Thus, m � lcm(a, b) if and only if
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(1) m . 0,

(2) both a and b divide m,

(3) if both a and b divide n, then m divides n.

Theorem 2.9 If either a or b is nonzero, then lcm(a, b) � ja . b �
gcd(a, b)j, where jxj denotes the absolute value of x.

Proof Let d � gcd(a, b), a � Ad, b � Bd, and m � jab=dj. It follows

that m . 0, m � jAbj � Ab and m � jaBj � aB. Hence, both a and b

divide m. Suppose n is any other multiple of a and b. That is, there exist

integers C and D such that n � aC � bD. We have n � AdC � BdD so

AC � BD. Hence, A divides BD. However, since gcd(A, B) � 1, A must

divide D. That is, there exists an integer E such that AE � D. Thus,

n � bD � bAE � mE implying that n is a multiple of m. Therefore, any

multiple of both a and b is also a multiple of m. From the three-step

criterion for least common multiple, we have that m � lcm(a, b). j

Note that gcd(56, 35) � 7, lcm(56, 35) � 280, and gcd(56, 35) 3

lcm(56, 35) � 7 . 280 � 1960. The greatest common divisor of more than

two integers is de®ned as follows: gcd(a1, a2, . . . , an) � d if and only if,

for all i � 1, 2, . . . , n, djai and if ejai, for all i � 1, 2, . . . , n then ejd.

Similarly for the least common multiple, lcm(a1, a2, . . . , an) � m if and

only if for i � 1, 2, . . . , n, aijm and if aije for all i � 1, 2, . . . , n then

mje. If a1, a2, . . . , an are coprime in pairs then gcd(a1, a2, . . . , an) � 1.

For if gcd(a1, a2, . . . , an) � d . 1, then dja1 and dja2 contradicting the

fact that gcd(a1, a2) � 1. The converse is not true since gcd(6, 10, 15) � 1

but neither 6 and 10, 6 and 15, nor 10 and 15 are coprime.

Given positive integers d and m then a necessary and suf®cient condition

for the existence of positive integers a and b such that

(a) gcd(a, b) � d and lcm(a, b) � m is that djm,

(b) gcd(a, b) � d and a� b � m is that djm, and

(c) gcd(a, b) � d and a . b � m is that d2jm.

In order to establish (b), note that if gcd(a, b) � d and a� b � m, then

there exist integers r and s such that a � dr and b � ds. Hence,

m � a� b � dr � ds � d(r � s) and so djm. Conversely, if djm then

choose a � d and b � mÿ d. Then, a� b � m. Since 1 and m=d ÿ 1 are

relatively prime, the greatest common divisor of a � d . 1 and b �
d . (m=d ÿ 1) is d.
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Exercises 2.2

1. Prove that if a divides bc and gcd(a, b) � 1, then ajc.

2. Prove that for any positive integer n gcd(n, n� 1) � 1.

3. Show that for any integer n, gcd(22n� 7, 33n� 10) � 1.

4. Show that there cannot exist integers a and b such that gcd(a, b) � 3

and a� b � 65.

5. Show that there are in®nitely many pairs of integers a and b with

gcd(a, b) � 5 and a� b � 65.

6. If un represents the nth Fibonacci number then show that

gcd(un�1, un) � 1, for any positive integer n.

7. If gcd(a, b) � d, and x and y are integers such that a � xd and

b � yd, show that gcd(x, y) � 1.

8. Prove that if gcd(a, b) � 1 and gcd(a, c) � 1, then gcd(a, bc) � 1.

[Euclid]

9. Prove that if gcd(a, b) � 1 then gcd(am, bn) � 1 for any positive

integers m and n.

10. Prove that for integers a and b gcd(a, b) divides gcd(a� b, aÿ b).

11. Prove that if gcd(a, b) � 1, then gcd(a� ab, b) � 1.

12. Prove that if gcd(a, b) � 1, then gcd(a� b, aÿ b) � 1 or 2.

13. Suppose that gcd(a, b) � 1. For what values of a and b is it true that

gcd(a� b, aÿ b) � 1?

14. If c . 0, then show that gcd(ca, cb) � c . gcd(a, b).

15. Show that for integers a and b, gcd(a, a� b) divides b.

16. Suppose that for integers a and b gcd(a, 4) � 2 and gcd(b, 4) � 2.

Show that gcd(a� b, 4) � 2.

17. If c . 0, then show that lcm(ac, bc) � c . lcm(a, b).

18. If a divides b determine gcd(a, b) and lcm(a, b).

19. Prove that ajb if and only if lcm(a, b) � jbj.
20. For any positive integer n, ®nd lcm(n, n� 1).

21. For any positive integer n, show that lcm(9n� 8, 6n� 5) �
54n2 � 93n� 40.

22. Give an example to show that it is not necessarily the case that

gcd(a, b, c) . lcm(a, b, c) � abc.

23. Find all positive integers a and b such that gcd(a, b) � 10, and

lcm(a, b) � 100, with a > b.

24. If a and b are positive integers such that a� b � 5432 and

lcm(a, b) � 223 020 then ®nd a and b.

25. f30, 42, 70, 105g is a set of four positive integers with the property

that they are coprime when taken together, but are not coprime when
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taken in pairs. Find a set of ®ve positive integers that are coprime

when taken together, but are not coprime in pairs.

2.3 The Euclidean algorithm

A method to determine the greatest common divisor of two integers, known

as the Euclidean algorithm, appears in Book VII of Euclid's Elements. It is

one of the few numerical procedures contained in the Elements. The

method appears in India in the late ®fth century Hindu astronomical work

Aryabhatiya by Aryabhata. Aryabhata's work contains no equations. It

includes 50 verses devoted to the study of eclipses, 33 to arithmetic, and 25

to time reckoning and planetary motion. Aryabhata called his technique

the `pulverizer' and used it to determine integer solutions x, y to the

equation axÿ by � c, where a, b and c are integers. We discuss Arya-

bhata's method in Chapter 5. In 1624, Bachet included the algorithm in the

second edition of his ProbleÁmes plaisants et deÂlectables. It was the ®rst

numerical exposition of the method to appear in Europe.

The Euclidean algorithm, is based on repeated use of the division

algorithm. Given two integers a and b where, say a > b . 0, determine the

sequences q1, q2, . . . , qn�1 and r1, r2 . . . , rn�1 of quotients and

remainders in the following manner.

a � bq1 � r1, where 0 < r1 , b:

b � r1q2 � r2, where 0 < r2 , r1:

r1 � r2q3 � r3, where 0 < r3 , r2:

. . .

rnÿ2 � rnÿ1qn � rn, where 0 < rn , rnÿ1:

rnÿ1 � rnqn�1:

Suppose rn 6� 0. Since b . r1 . r2 � � � > 0, r1, r2, . . . , rn�1 is a de-

creasing sequence of nonnegative integers and must eventually terminate

with a zero remainder, say rn�1 � 0. From the last equation in the

Euclidean algorithm, we have that rn divides rnÿ1 and from the penultimate

equation it follows that rn divides rnÿ2. Continuing this process we ®nd

that rn divides both a and b. Thus, rn is a common divisor of a and b.

Suppose that e is any positive integer which divides both a and b. From the

®rst equation, it follows that e divides r1. From the second equation, it

follows that, since e divides b and e divides r1, e divides r2. Continuing

this process, eventually, we ®nd that e divides rn. Thus, any common

divisor of a and b is also a divisor of rn. Therefore, rn, the last nonzero
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remainder, is the greatest common divisor of a and b. We have established

the following result.

Theorem 2.10 Given two positive integers, the last nonzero remainder in

the Euclidean algorithm applied to the two integers is the greatest common

divisor of the two integers.

According to the Euclidean algorithm the greatest common divisor of 819

and 165 is 3 since

819 � 165 . 4� 159,

165 � 159 . 1� 6,

159 � 6 . 26� 3,

6 � 3 . 2:

One of the most important and useful applications of the Euclidean

algorithm is being able to express the greatest common divisor as a linear

combination of the two given integers. In particular, to express the greatest

common divisor of 819 and 165 as a linear combination of 819 and 165,

we work backwards step by step from the Euclidean algorithm. Using brute

force, we accomplish the feat in the following manner.

3 � 159� (ÿ26)6,

3 � (819� 165(ÿ4))� (ÿ26)(165� 159(ÿ1)),

3 � 819� 165(ÿ30)� 159(26),

3 � 819� 165(ÿ30)� (819� 165(ÿ4))(26),

3 � 819(27)� 165(ÿ134):

One of the earliest results in the ®eld of computational complexity was

established by Gabriel LameÂ in 1845. LameÂ, a graduate of the Ecole

Polytechnique in Paris, was a civil engineer who made several notable

contributions to both pure and applied mathematics. He was considered by

Gauss to be the foremost French mathematician of his generation. LameÂ

proved that the number of divisions in the Euclidean algorithm for two

positive integers is less than ®ve times the number of digits in the smaller

of the two positive integers.

If we apply the Euclidean algorithm to integers a and b where

a > b . 0, then qi > 1, for 1 < i < n. Since rn , rnÿ1, qn�1 . 1. Let

a1, a2, . . . denote the Fibonacci-type sequence with a1 � 1 and a2 � 2.

We have
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rn > 1 � 1 � a1,

rnÿ1 � rnqn�1 > 1 . 2 � 2 � a2,

rnÿ2 � rnÿ1qn � rn > 2 . 1 � 1 � 3 � a3,

rnÿ3 � rnÿ2qnÿ1 � rnÿ1 > 3 . 1 � 2 � 5 � a4,

rnÿ4 � rnÿ3qnÿ2 � rnÿ2 > 5 . 1 � 3 � 8 � a5,

. . .

b � r1q2 � r2 > anÿ1
. 1 � anÿ2 � an.

It follows that b > an � un�1 � (ôn�1 ÿ ó n�1)=(ôÿ ó ) . ôn. Since

log ô. 1
5
, n , log b=log ô, 5 . log b. If m denotes the number of digits in

b, then b , 10m. Hence, log b , m. Therefore, n , 5m and we have estab-

lished LameÂ's result.

Theorem 2.11 (LameÂ) The number of divisions in the Euclidean algo-

rithm for two positive integers is less than ®ve times the number of digits in

the smaller of the two positive integers.

In 1970, John Dixon of Carleton University improved the bound by

showing that the number of steps in the Euclidean algorithm is less than or

equal to (2:078)[log a� 1], where a is the larger of the two positive

integers. If there are a large number of steps in the Euclidean algorithm,

expressing the greatest common divisor as a linear combination of the two

integers by brute force can be quite tedious. In 1740, Nicholas Saunderson,

the blind Lucasian Professor of Mathematics at Cambridge University,

included an algorithm in his Elements of Algebra which greatly simpli®ed

the process. Saunderson attributed the origin of the method to Roger Cotes,

the ®rst Plumian Professor of Mathematics at Cambridge, who used the

algorithm in the expansion of continued fractions. A similar technique can

be traced back at least to the thirteenth century where it is found in Qin

Jiushao's Mathematical Treatise in Nine Sections.

Let a and b be integers, with a > b . 0. Utilizing the notation of the

Euclidean algorithm let d � gcd(a, b) � rn so rn�1 � 0 and ri �
ri�1qi�2 � ri�2, for i � 1, 2, . . . , n. In addition, let rÿ1 � a, r0 � b.

De®ne xi � xiÿ2 � xiÿ1qi, yi � yiÿ2 � yiÿ1qi, for i � 2, . . . , n� 1. For

completeness, let x0 � 0, x1 � 1, y0 � 1, and y1 � q1. Using this notation,

we establish the following result.

Theorem 2.12 (Saunderson's algorithm) If d is the greatest common
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divisor of two integers a and b, with a . b > 0, then d � a(ÿ1)nÿ1xn �
b(ÿ1)nyn.

Proof Consider the variable proposition P(n): axn ÿ byn � (ÿ1)nÿ1 rn.

P(0): ax0 ÿ by0 � 0ÿ b � (ÿ1)ÿ1 ro. P(1): ax1 ÿ by1 � a . 1 ÿ bq1 � r1.

Hence, P(1) is true. P(2): ax2 ÿ by2 � a(x0 � x1q2)ÿ b(y0 � y1q2) �
ax1q2 ÿ b(1� q1q2) � (ax1 ÿ bq1)q2 ÿ b � (ÿ1)r2. Hence, P(2) is true.

Assume that P(r) holds for all integers r between 1 and k for k . 1 and

consider P(k � 1). We have P(k � 1):

axk�1 ÿ byk�1 � a(xkÿ1 � xkqk�1)ÿ b(ykÿ1 � ykqk�1)

� (axkÿ1 ÿ bykÿ1)� qk�1(axk ÿ byk)

� (ÿ1)k rkÿ1 � qk�1(ÿ1)kÿ1 rk

� (ÿ1)k(rkÿ1 ÿ qk�1 rk)

� (ÿ1)k rk�1:

Hence, P(k ÿ 1) and P(k) imply P(k � 1) and, from the alternate principle

of mathematical induction, P(n) is true for all nonnegative integers. There-

fore, d � rn � (ÿ1)nÿ1(axn ÿ byn) � a(ÿ1)nÿ1xn � b(ÿ1)nyn. j

Example 2.7 We use Saunderson's method to express the greatest com-

mon divisor of 555 and 155 as a linear combination of 555 and 155. From

the Euclidean algorithm it follows that

555 � 155 . 3� 90, a � bq1 � r1,

155 � 90 . 1� 65, b � r1q2 � r2,

90 � 65 . 1� 25, r1 � r2q3 � r3,

65 � 25 . 2� 15, r2 � r3q4 � r4,

25 � 15 . 1� 10, r3 � r4q5 � r5,

15 � 10 . 1� 5, r4 � r5q6 � r6,

10 � 5 . 2� 0, r5 � r6q7:

Hence, 5, the last nonzero remainder, is the greatest common divisor of

555 and 155. Table 2.3 contains the basic elements in applying Saunder-

son's algorithm, where xi � xiÿ2 � xiÿ1qi, yi � yiÿ2 � yiÿ1qi, for i � 1, 2,

. . . , n� 1, x0 � 0, x1 � 1, y0 � 1, and y1 � q1. A useful check

when using Saunderson's algorithm arises from the fact that rn�1 � 0,

hence, axn�1 � byn�1. For the case when a � 55 and b � 155, we ®ll in

Table 2.3 with the appropriate terms to obtain Table 2.4. Therefore,
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5 � gcd(155, 555) � (ÿ12)555� (43)155. As a check, we have a . x7 �
555 . 31 � 17 205 � 155 . 111 � b . y7.

In order to minimize the computations involved for his students, Saunder-

son devised an equivalent but more ef®cient algorithm illustrated in the

next example. The simpli®ed version determines the greatest common

divisor to two natural numbers and expresses it as a linear combination of

the two given integers in one fell swoop.

Example 2.8 Given a � 555 and b � 155 form the following sequence of

equations.

1 1 . aÿ 0 . b � 555

2 0 . aÿ 1 . b � ÿ155 3

3 aÿ 3b � 90 1

4 aÿ 4b � ÿ65 1

5 2aÿ 7b � 25 2

6 5aÿ 18b � ÿ15 1

7 7aÿ 25b � 10 1

8 12aÿ 43b � ÿ5 1

9 ÿ 12a� 43b � 5

The ®rst two equations are straightforward. Since 3 is the quotient when

dividing 155 into 555, we multiply the second equation by 3 and add it to

Table 2.3.

i 0 1 2 3 . . . n n�1

qi q1 q2 q3 . . . qn qn�1

xi 0 1 x2 x3 . . . xn xn�1

yi 1 q1 y2 y3 . . . yn yn�1

Table 2.4.

i 0 1 2 3 4 5 6 7

qi 3 1 1 2 1 1 2
xi 0 1 1 2 5 7 12 31
yi 1 3 4 7 18 25 43 111
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the ®rst equation to obtain the third equation. We obtain the fourth equation

by multiplying the third equation by unity, since 90 goes into 155 once,

and adding it to the second equation, as so forth. After obtaining the eighth

equation, 12aÿ 43b � ÿ5, we note that 5 divides into 10 evenly. Hence,

gcd(555, 155) � 5. Multiplying both sides of the eighth equation by ÿ1 we

obtain the desired result, ÿ12a� 43b � 5.

Similarly if a � 6237 and b � 2520, we obtain

1 . aÿ 0 . b � 6237

0 . aÿ 1 . b � ÿ2520 2

aÿ 2b � 1197 2

2aÿ 5b � ÿ126 9

19aÿ 47b � 63 2

40aÿ 99b � 0

Hence, gcd(6237, 2520) � 63 � 19(6237)� (ÿ47)(2520). Furthermore,

lcm(6237, 2520) � 40a � 99b � 249 480.

At Cambridge Saunderson tutored algebra and lectured on calculus in the

Newtonian style. Each year he gave a very acclaimed series of natural

science lectures. Several copies of notes from students who attended his

course are extant. However, it appears that their popularity may have rested

on the fact that they were virtually devoid of mathematical content. Albeit

he was an excellent teacher, he often wondered if his everlasting fate would

include a stint in Hades teaching mathematics to uninterested students.

Saunderson was very diligent and forthright. He once told Horace

Walpole, the author and third son of England's ®rst Prime Minister Robert

Walpole, that he would be cheating him to take his money, for he could

never learn what he was trying to teach. Lord Chester®eld said of Saunder-

son that, `He did not have the use of his eyes, but taught others to use theirs'.

Exercises 2.3

1. Find the greatest common divisors and the least common multiples for

the following pairs of integers. Determine the LameÂ and Dixon limits.

(a) a � 93 and b � 51;

(b) a � 481 and b � 299;

(c) a � 1826 and b � 1742;

(d) a � 1963 and b � 1941;

(e) a � 4928 and b � 1771.
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2. Express the greatest common divisor of each pair of integers as a

linear combination of the two integers.

(a) a � 93 and b � 51;

(b) a � 481 and b � 299;

(c) a � 1826 and b � 1742;

(d) a � 1963 and b � 1941;

(e) a � 4928 and b � 1771.

2.4 Pythagorean triples

One of the earliest known geometric applications of number theory was the

construction of right triangles with integral sides by the Babylonians in the

second millennium BC. In particular, if x, y and z are positive integers with

the property that x2 � y2 � z2 then the 3-tuple (x, y, z) is called a

Pythagorean triple. In 1945 Otto Neugebauer and A. Sachs analyzed a

nineteenth century BC Babylonian cuneiform tablet in the Plimpton

Library archives at Columbia University. The tablet, designated Plimpton

322, lists 15 pairs (x, z) for which there is a y such that x2 � y2 � z2

referring to Pythagorean triples ranging from (3, 4, 5) to (12 709, 13 500,

18 541). The Babylonians undoubtedly had an algorithm to generate such

triples long before Pythagoras was born, but such are the whims of

eponymy. The earliest appearance of Pythagorean triples in Europe was in

the 1572 edition of Rafael Bombelli's Algebra. Twenty years later, they

appear in FrancËois VieÁte's Introduction to the Analytic Art.

It will be convenient to restrict our attention to primitive Pythagorean

triples, which are Pythagorean triples (x, y, z) with the additional property

that x, y and z have no positive common divisor other than unity. For

example, (3, 4, 5) is a primitive Pythagorean triple. In Theorem 3.3, we

show the Pythagorean triple (x, y, z) is primitive if and only if

gcd(x, y) � 1, gcd(x, z) � 1, and gcd(x, y) � 1. We use this fact now to

establish an algorithm, a version of which appears in Book X of Euclid's

Elements that may have been used by the Babylonians to determine

Pythagorean triples.

Theorem 2.13 If (x, y, z) is a primitive Pythagorean triple, then there

exist positive integers s and t, s . t, gcd(s, t) � 1, one even and the other

odd such that x � 2st, y � s2 ÿ t2, and z � s2 � t2.

Proof If (x, y, z) is a primitive Pythagorean triple, then x, y and z are

coprime in pairs. If x and y are even then z is even. If x and y are odd, then
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z2 is not of the form 4k or 4k � 1, a contradiction. Hence, x and y must be

of different parity. Without loss of generality, let x be even and y be odd.

Hence, z is odd. In addition, x2 � z2 ÿ y2 � (zÿ y)(z� y). Since zÿ y

and z� y must be even let zÿ y � 2u and z� y � 2v. Now u and v must

be coprime for if gcd(u, v) � d . 1, then d divides both u and v implying

that d divides both y and z, which contradicts the assumption that y and z

are coprime. In addition, if u and v were both odd, then y and z would be

even, a contradiction. So one of u and v is even and the other is odd. Since

x is even, x=2 is an integer, and

x

2

� �2

� (zÿ y)

2

� �
(z� y)

2

� �
� uv:

Since uv � (x=2)2 and gcd(u, v) � 1, u and v must be perfect squares, say

u � s2 and v � t2, where one of s and t is even and the other is odd. It

follows that x � 2st, y � s2 ÿ t2, and z � s2 � t2. j

Example 2.9 Using Theorem 2.12, and several values of s and t, we obtain

the primitive Pythagorean triplets shown in Table 2.5.

The next result implies that neither the equation x4 � y4 � z4 nor the

equation x2n � y2n � z2n, with n a positive integer greater than 1, has

integral solutions. We employ Fermat's method of descent to establish the

result. In essence, Fermat's technique is a proof by contradiction. There are

two paths we may take. Either we assume that a particular number is the

least positive integer satisfying a certain property and proceed to ®nd a

smaller positive integer having the same property or we proceed to

construct an in®nitely decreasing sequence of positive integers. In either

case, we arrive at a contradiction. The next result was arrived at indepen-

dently by Fermat and his long-time correspondent Bernard Frenicle de

Bessy. Frenicle, an of®cial at the French Mint, discovered in 1634, that the

frequency of a pendulum is inversely proportional to the square root of its

Table 2.5.

s t x y z

2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
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length. Frenicle was a good friend of Galileo and offered to publish a

French translation of his Dialogue.

Theorem 2.14 The equation x4 � y4 � z4 has no integral solutions.

Proof Without loss of generality, we consider only primitive solutions to

the equation. Let a4 � b4 � c4 be the solution with gcd(a, b, c) � 1 and

least positive value for c. From Theorem 2.13, since (a2)2 � (b2)2 � c2,

there exist coprime integers s and t of opposite parity such that s . t,

a2 � 2st, b2 � s2 ÿ t2, and c � s2 � t2. Hence, s , c, b2 � t2 � s2, with

gcd(b, t) � gcd(s, t) � 1, with say s odd and t even. Applying Theorem

2.13 to b2 � t2 � s2, we ®nd that t � 2uv, b � u2 ÿ v2, and s � u2 � v2,

with u and v coprime, of opposite parity, and u . v. In addition, (a=2)2

� st=2 and gcd(s, t=2) � gcd(t, s) � 1. Hence, s � r2 and t=2 � w2, with

(r, w) � 1. Further, w2 � t=2 � uv, so u � m2 and v � n2, with

gcd(m, n) � 1. Thus, m4 � n4 � u2 � v2 � s � r2, with r < s , c contra-

dicting the minimality of c. Therefore x4 � y4 � z2 has no integral

solutions. j

Problems concerning integral areas of rational right triangles go back to

Diophantus. A right triangle whose sides form a primitive Pythagorean

triple is called a Pythagorean triangle. The area of a Pythagorean triangle,

sans the units of measurement, is called a Pythagorean number. It follows,

from Theorem 2.13, that a Pythagorean number P can be represented as a

product of the form P � st(s� t)(sÿ t), where s and t are of different

parity and gcd(s, t) � 1. Among the properties of Pythagorean numbers

are: every Pythagorean number is divisible by 6; for every integer n . 12

there is a Pythagorean number between n and 2n; the units digit of a

Pythagorian number is either 0, 4, or 6; there are in®nitely many Pythagor-

ean numbers of the form 10k, 10k � 4, and 10k � 6; no Pythagorean

number is square; no Pythagorean number is a Lucas number.

The Pythagorean triple (9999, 137 532, 137 895) is unusual since its

associated Pythagorean triangle has area 687 591 234 which is almost

pandigital. Note that the Pythagorean triangles (20, 21, 29) and (12, 35, 51)

have different hypotenuses but the same area. In addition, for any positive

integer k, triangles with sides x � 20k4 � 4k2 � 1, y � 8k6 ÿ 4k4 ÿ
2k2 � 1, and z � 8k6 � 8k4 � 10k2, have area 4k2(2k2 � 1)2(2k2 ÿ 1)2;

however, none is a right triangle. The incenter of a triangle is the center of

the inscribed circle. The incenter is also the intersection of the angle

bisectors.
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Theorem 2.15 The radius of the incircle of a Pythagorean triangle is an

integer.

Proof Denote the area, inradius, and incenter of the Pythagorean triangle

ABC shown in Figure 2.1 by K, r, and I, respectively. Let a � y� z,

b � x� z, and c � x� y. From Theorem 2.12, K � 1
2
ra� 1

2
rb �

1
2
rc � 1

2
r(a� b� c) � 1

2
r(2st � s2 ÿ t2 � s2 � t2) � rs(t � s), which is an

integer. j

It has been shown that no in®nite set of noncollinear planar points exist

whose pairwise distances are all integral. However, we can generate such

®nite sets with that property using primitive Pythagorean triples as shown

in the next example.

Example 2.10 We use nÿ 2 primitive Pythagorean triples to determine n

noncollinear points in the plane with the property that each is an integral

distance from any other. Let (x, y) denote a point in the Cartesian plane

with abscissa x and ordinate y. Suppose n � 7 and choose ®ve different

primitive Pythagorean triples, for example, those in Table 2.6. Let

p1 � (0, 0), p2 � (0, 3 . 5 . 7 . 15 . 21) � (0, 33 075), and pi � (xi, 0), for

3 < i < 7, where

x3 � 4 . 5 . 7 . 15 . 21 � 44 100,

x4 � 3 . 12 . 7 . 15 . 21 � 79 380,

x5 � 3 . 5 . 24 . 15 . 21 � 113 400,

x6 � 3 . 5 . 7 . 8 . 21 � 17 640,

x7 � 3 . 5 . 7 . 15 . 20 � 31 500:

The basic structure of xi, the nonzero coordinate in pi, for i � 3, 4, 5, 6, 7,

derives from the product of the terms in the ®rst column of Table 2.6.

However, the (nÿ 2)nd term in the product is replaced by the correspond-

A

CB x y

x

z
z

yr
r

r
I

Figure 2.1.

2.4 Pythagorean triples 73



ing term in the second column of Table 2.6. By construction f p1,

p2, . . . , p7g forms a set of seven noncollinear points in the plane with the

property that any pair of points in the set are an integral distance apart.

This follows by construction since the distance separating each pair is the

length of a side of a Pythagorean triangle.

In 1900, D. H. Lehmer showed that the number of primitive Pythagorean

triples with hypotenuse less than or equal to n is approximately n=2ð.

Pythagorean triangles can be generalized to Pythagorean boxes, rectangular

parallelepipeds with length, width, height, and all side and main diagonals

having integral values. It is an open question whether or not a Pythagorean

box exists.

Exercises 2.4

1. For any positive integer n, show that (2n2 � 2n, 2n� 1,

2n2 � 2n� 1) is a Pythagorean triple in which one side and the

hypotenuse differ by one unit. Such triples were studied by Pythagoras,

and rediscovered by Stifel when he was investigating properties of the

mixed fractions 11
3
, 22

5
, 33

7
, 44

9
. . . , n� n=(2n� 1) � (2n2 � 2n)=

(2n� 1).

2. For any positive integer n, show that (2n, n2 ÿ 1, n2 � 1) is a Pytha-

gorean triple in which one side differs from the hypotenuse by two

units. Such triples were studied by Plato.

3. If (a, b, c) and (x, y, z) are Pythagorean triples, show that (axÿ by,

ay� bx, cz) is a Pythagorean triple.

4. Prove that (3, 4, 5) is the only primitive Pythagorean triple whose

terms are in arithmetic proportion, that is, they are of the form

(a, a� d, a� 2d).

5. Why is it not the case that the values s � 3 and t � 5 generate a

primitive Pythagorean triple?

6. Show that if (x, y, z) is a primitive Pythagorean triple then the sum of

the legs of the Pythagorean triangle generated is of the form 8m� 1.

Table 2.6.

3 4 5
5 12 13
7 24 25

15 8 17
21 20 29
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7. For any positive integer n > 3, show that there exists a Pythagorean

triple (x, y, z) with n as one if its elements.

8. De®ne the Pell sequence, 0, 1, 2, 5, 12, 27, . . . , an, . . . , recursively

such that an�2 � 2an�1 � an, with a0 � 0 and a1 � 1. Show that if

xn � a2
n�1 ÿ a2

n, yn � 2an�1an, and zn � a2
n�1 � a2

n, with n > 1, then

(xn, yn, zn) is a Pythagorean triple with xn � yn � (ÿ1)n.

9. Show that if the pair (s, t), from Theorem 2.13, with s . t, generates a

Pythagorean triple with jxÿ yj � k > 0, then (2s� t, s) generates a

Pythagorean triple with jxÿ yj � k.

10. Ignoring the dimensions of the units, ®nd two Pythagorean triangles

with the same area as perimeter.

11. Show that the Pythagorean triples (40, 30, 50), (45, 24, 51), and (48,

20, 52) have equal perimeters and their areas are in arithmetic

proportion.

12. Prove that the product of three consecutive positive integers, with the

®rst number odd, is a Pythagorean number.

13. Show that every Pythagorean number is divisible by 6.

14. Show that a Pythagorean number can never be a square.

15. What positive integers n are solutions to x2 ÿ y2 � n?

16. Show that if (x, y, z) is a primitive Pythagorean triple then 12jxyz.

17. Show that if (x, y, z) is a primitive Pythagorean triple then 60jxyz. [P.

LentheÂric 1830]

18. Find the coordinates of a set of eight noncollinear planar points each

an integral distance from the others.

19. How many primitive Pythagorean triangles have hypotenuses less than

100? How accurate is Lehmer's prediction in this case?

2.5 Miscellaneous exercises

1. A raja wished to distribute his wealth among his three daughters Rana,

Daya, and Cyndi such that Rana, the eldest, received half of his wealth,

Daya received one-third, and Cyndi, the youngest, received one-ninth.

Everything went well until the raja came to his seventeen elephants.

He was in a quandary as to how to divide them amongst his daughters.

To solve the problem he called in his lawyer who came riding her own

elephant, which she, after surveying the situation, had coloured pink

and placed among the seventeen elephants. The lawyer told Rana to

take half or nine of the elephants, but not the pink one, which she did.

The lawyer then told Daya to take a third or six of the elephants, but

not the pink one, which Daya did. Then the lawyer told Cyndi to take
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the two elephants remaining that were not pink. The raja and his

daughters were happy and after collecting her fee the lawyer took her

pink elephant and rode home. How was she able to accomplish this

remarkable feat?

2. Elephantine triples are triples or 3-tuples of numbers of the form (1=a,

1=b, 1=c) such that for the distinct positive integers a, b, c and some

positive integer n, we have that 1=a� 1=b� 1=c � n=(n� 1). For

example, (1
2
, 1

3
, 1

9
) is an elephantine triple. Find two more examples of

elephantine triples.

3. A reciprocal Pythagorean triple (a, b, c) has the property that

(1=a)2 � (1=b)2 � (1=c)2. Show that (780, 65, 60) is a reciprocal

Pythagorean triple.

4. Take three consecutive integers, with the largest a multiple of 3.

Form their sum. Compute the sum of its digits, do the same for the

result until a one-digit number is obtained. Iamblichus of Chalis

claimed that the one-digit number obtained will always equal 6. For

example, the sum of 9997, 9998 and 9999 is 29 994. The sum of the

digits of 29 994 is 33 and the sum of the digits of 33 is 6. Prove

Iamblichus's claim.

5. Given a scale with two pans, determine the least number of weights

and the values of the weights in order to weigh all integral weights in

kilograms from 1 kilogram to 40 kilograms. [Bachet]

6. Explain how the following multiplication rule works. To multiply two

given numbers, form two columns, each headed by one of the numbers.

Successive terms in the left column are halved, always rounding down,

and successive terms in the right column are doubled. Now strike out

all rows with even numbers in the left column and add up the numbers

remaining in the right column to obtain the product of a and b. For

example, to determine 83 3 154 � 12 782, we have:

83 154

41 308

20 616

10 1 232

5 2 464

2 4 928

1 9 856

12 782

7. In The Educational Times for 1882, Kate Gale of Girton College,

Cambridge, proved that if 3n zeros are placed between the digits 3 and

7, then the number formed is divisible by 37. In addition, if 3n� 1
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zeros are placed between the digits 7 and 3, the number formed is

divisible by 37. Prove these statements.

8. Let f (n) be the smallest positive integer value of xn such thatPn
k�1xÿ1

k � 1, for some positive integers x1, x2, . . . , xnÿ1 such that

1 , x1 , x2 , � � � , xn. Since 1
2
� 1

3
� 1

6
� 1 and 6 is the smallest posi-

tive integer with this property for n � 3 it follows that f (3) � 6.

Determine f (4).

9. If a . 0, b . 0, and 1=a� 1=b is an integer then show that a � b and

a � 1 or a � 2.

10. Show that in any set of n� 1 integers selected from the set

f1, 2, . . . , 2ng there must exist a pair of coprime integers.

11. Show that the product of k consecutive natural numbers is always

divisible by k! [J.J. Sylvester]

12. Show that in any set of ®ve consecutive positive integers there always

exists at least one integer which is coprime to every other integer in

the set.

13. A positive integer is called polite if it can be represented as a sum of

two or more consecutive integers. For example, 7 is polite since

7 � 3� 4. Similarly, 2 is impolite since it cannot be written as a sum

of two or more consecutive integers. Show that the only impolite

positive integers are powers of 2.

14. Use Heron's formula for the area K of a triangle with sides a, b, c,

namely, K � �������������������������������������������
s(sÿ a)(sÿ b)(sÿ c)
p

, where s � (a� b� c)=2, to

show that triangles with sides x � 20k4 � 4k2 � 1, y � 8k6 ÿ
4k4 ÿ 2k2 � 1, and z � 8k6 � 8k4 � 10k2, for k a positive integer, all

have area 4k2(2k2 � 1)2(2k2 ÿ 1)2.

15. Prove that every natural number belongs to one of three basic digital

root sequences.

16. Use the principle of induction to show that if c1, c2, . . . , ck are

pairwise coprime integers and cijn, for i � 1, 2, . . . , k, and m �Qk
i�1 ci, then mjn.

17. Prove, for all positive integers n, that n5=5� n3=3� 7n=15 is always

an integer.

18. Let g(n) denote the smallest positive integer such that g(n)! is

divisible by n. For example, g(1) � 1, g(2) � 2, and g(3) � 3.

Determine g(k) for k � 4, 5, . . . , 10.

19. Let h( p) denote the smallest positive integer such that !h( p) is

divisible by p, where p . 3 is prime and !n �Pnÿ1
k�0 k! for any positive

integer n. For example, !4 � 0!� 1!� 2!� 3! � 10, hence, h(5) � 4.

Determine h( p) when p � 7 and p � 11.
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20. Establish the following connection between Fibonacci-type sequences

and Pythagorean triples discovered by A.F. Horadam in 1961. If

a1, a2, . . . is a Fibonacci-type sequence then for n > 3, (anan�3,

2an�1an�2, 2an�1an�2 � an
2) is a Pythagorean triple.

21. If we were to extend the Fibonacci numbers, un, to include negative

subscripts, that is un�2 � un�1 � un, where n is any integer, then

determine a general rule for determining such an extended Fibonacci

array.
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3

Prime numbers

I was taught that the way of progress is neither swift nor easy.

Marie Curie

3.1 Euclid on primes

In this section, we investigate the fundamental structure of the integers.

Playing the role of indivisible quantities are those integers designated as

being prime. A positive integer, other than unity, is said to be prime if its

only positive divisors are unity and itself. That is, a prime number is an

integer greater than 1 with the minimal number of positive integral

divisors. A positive integer which is neither unity nor prime is called

composite. By considering unity as being neither prime or composite, we

follow the custom of the Pythagoreans, the ®rst group to distinguish

between primes and composites. Unfortunately, there is no ef®cient method

to determine whether or not a given number is prime. Eratosthenes of

Cyrene (now in Libya) devised a technique, referred to as the sieve of

Eratosthenes, to ®nd prime numbers. Eratosthenes was a Greek mathema-

tician±astronomer who served as director of the Library at Alexandria

under Ptolemy III and was the ®rst to calculate accurately the size of the

earth and the obliquity of the earth's axis. He was also an athlete, a poet, a

philosopher and an historian. He was called Pentathlus by his friends for

his success in ®ve Olympic sports. His enemies called him Beta for they

considered him to be second in most ®elds of learning and ®rst in none.

Eratosthenes called himself Philologus, one who loves learning. According

to legend, Eratosthenes, after all his accomplishments, ended his life at age

80 by starvation.

In order to determine all the primes less than or equal to the positive

integer n using Eratosthenes's sieve, list all the integers from 2 to n. The

smallest number, 2, must be prime making it the only even prime and

perhaps the oddest prime of all. Every alternate number after 2 must be

composite so cross them out. The smallest integer greater than 2 not
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crossed out, 3, must be prime. Every third number after 3 must be compo-

site and if they have not been crossed out already, cross them out. The next

smallest number greater than 3 not crossed out, 5, must be prime. Every

®fth number after 5 is composite, if they have not already been crossed out,

cross them out. Eratosthenes knew that one of the prime factors of a

composite number must be less than or equal to the square root of the

number. Thus, only continue the process until the largest prime less than���
n
p

is reached. At this point, all composites up to n have been crossed out,

only the primes from 2 to n remain. Nicomachus mentions Eratosthenes's

method in his Introduction. He considers, however, only odd numbers and

begins the sieve process with 3.

Example 3.1 Figure 3.1 displays the results from applying the sieve of

Eratosthenes to the set of positive integers between 2 and 99. All numbers

not crossed out are prime.

In Proposition 32 of Book VII of the Elements, Euclid states that every

integer greater than unity is divisible by at least one prime. Therefore,

every number is prime or has a prime factor. The next result does not

explicitly appear in the Elements, but it was undoubtedly known to Euclid.

The result clearly indicates the importance of prime numbers and is

instrumental in illustrating how they form the basic structure of the

integers.

Theorem 3.1 Every integer n > 2 is either prime or a product of primes.

Proof Using induction, we begin with the case n � 2. Since 2 is a prime,

the theorem is satis®ed. Suppose that the hypothesis is true for all integers

between 2 and k. Consider the integer k � 1. If k � 1 is prime then we are

done, if it is not prime then it must factor into a product of two integers r

9
19
29
39
49
59
69
79
89
99

8
18
28
38
48
58
68
78
88
98

7
17
27
37
47
57
67
77
87
97

6
16
26
36
46
56
66
76
86
96

5
15
25
35
45
55
65
75
85
95

4
14
24
34
44
54
64
74
84
94

3
13
23
33
43
53
63
73
83
93

2
12
22
32
42
52
62
72
82
92

9
11
21
31
41
51
61
71
81
91

9
10
20
30
40
50
60
70
80
90

Figure 3.1.
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and s where both r and s are less than k. By the induction hypothesis both

r and s must be primes or products of primes. Thus, k � 1 � r . s is a

product of primes. Since k � 1 is either a prime or a product of primes, the

result follows from induction. j

In a caveat to his readers, Euclid notes that given three positive integers, a,

b, c it is not always the case that if a divides the product of b and c, then

either a divides b or a divides c. For example, 6 divides the product of 3

and 4, but 6 divides neither 3 nor 4. However, in Proposition 30 of Book

VII of the Elements, Euclid proves that if a prime divides the product of

two integers then it must divide at least one of them.

Theorem 3.2 (Euclid's Lemma) If p is a prime and p divides ab, then

either p divides a or p divides b.

Proof Suppose that p is prime, p divides ab and p does not divide a.

Since p divides ab there exists an integer c such that pc � ab. Since p

does not divide a, p and a are coprime, so it follows from Theorem 2.7

that there exist integers x and y such that 1 � px� ay. Hence, b �
b( px)� b(ay) � p(bx)� p(cy) � p(bx� cy). Thus, p divides b. j

With a straightforward inductive argument it can be shown that if a prime

p divides the product m1 m2 � � � mn, where each mi is an integer, then p

divides mi for some i, 1 < i < n. The importance of considering prime

divisors becomes more evident with the proof of the next result, concerning

a property of primitive Pythagorean triples. Lacking Euclid's Lemma at the

time, we assumed it in the proof of Theorem 2.13.

Theorem 3.3 The Pythagorean triple (x, y, z) is primitive if and only if x,

y and z are coprime in pairs.

Proof If gcd(x, y) � 1, gcd(x, z) � 1, and gcd(y, z) � 1, then x, y and z

have no common factor other than 1. Conversely, suppose that (x, y, z) is a

primitive Pythagorean triple, gcd(x, y) � d . 1, p is any prime which

divides d. Since p divides x, p divides y, and x2 � y2 � z2, p divides z2.

Hence, according to Euclid's Lemma, p divides z, contradicting the fact

that x, y and z have no common factor other than 1. Similarly, it follows

that gcd(x, z) � 1, gcd(y, z) � 1, and the result is established. j

It is an open question whether or not there are in®nitely many primitive

Pythagorean triples with the property that the hypotenuse and one of the
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sides are prime. It is quite possible that the following result was known to

Euclid. However, since he had no notation for exponents and could not

express a number with an arbitrary number of factors, it was not included

in the Elements. Nevertheless, it is very similar to Proposition 14 in Book

IX. The result was ®rst stated explicitly by Gauss, who included a proof of

the result in his doctoral thesis.

Theorem 3.4 (The Fundamental Theorem of Arithmetic) Except for the

arrangement of the factors every positive integer n . 1 can be expressed

uniquely as a product of primes.

Proof Let n be the smallest positive integer for which the theorem is false,

say n � p1 p2 � � � pr � q1q2 � � � qs, where both r and s are greater than 1.

If pi � qj, for some 1 < i < r and 1 < j < s, then we could divide both

sides of the equality by pi to get two distinct factorizations of n= pi,

contradicting the minimality of n. Hence, the pi and qj are distinct.

Without loss of generality, let p1 , q1. Then m � (q1 ÿ p1)q2 � � � qs

� (q1q2 � � � qs) ÿ ( p1q2q3 � � � qs) � ( p1 p2 � � � pr) ÿ ( p1q1q2 � � � qs) �
p1[( p2 � � � pr)ÿ (q2q3 � � � qs)]. Since p1 does not divide (q1 ÿ p1), we

have two distinct factorizations for m, one with p1 as a factor and one

without. Since m , n, this contradicts the minimality of n. Therefore, there

is no smallest positive integer having two distinct prime factorizations and

the theorem is proved. j

Theorem 3.4 is fundamental in the sense that apart from a rearrangement

of factors, it shows that a positive integer can be expressed as a product of

primes in just one way. It would not be true if unity were considered to be

prime. In addition, the Fundamental Theorem of Arithmetic does not hold

if we restrict ourselves, say, to E, the set of even integers, albeit E, like the

integers, is closed under the operations of addition and multiplication. The

irreducible elements of E consist of all positive integers of the form

2 . (2n� 1), where n > 1, hence, 6, 10, and 30 are irreducible in E. Thus,

2 . 30 and 6 . 10 are two distinct prime factorizations of 60 in E.

If n is a positive integer which is greater than 1, the canonical

representation or prime power decomposition of n is given by n �Qr
i�1 pái

i � pá1

1 pá2

2 � � � pá r
r , where p1 , p2 , � � � , pr are prime and

ái . 0, for i � 1, . . . , r. We refer to p
ái

i as the pi component of n and

employ the notation pái n to signify that pájn, and pá�1 6 jn. For example,

23 i233574, 35 i233574, and 74 i233574. If pá i m, and pâ i n, where p is prime

and á, â, k, m, and n are positive integers, then pá�â i mn.
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The canonical notation for a positive integer is very useful in establish-

ing number theoretic results and easing computation. For example, if we

relax the conditions on the canonical representation and allow zero

exponents with m �Qr
i�1 pái

i and n �Qr
i�1 p

âi

i then, since maxfx, yg �
minfx, yg � x� y, the greatest common divisor and least common multi-

ple of m and n are given respectively by gcd(m, n) �Qr
i�1 p

ãi

i and

lcm(m, n) �Qr
i�1 p

äi

i , where ãi � minfái, âig and äi � maxfái, âig, for

i � 1, 2, . . . , r. For example, the canonical representation for 749 112 is

given by 23 . 3 . 74 . 13 and that of 135 828 by 22 . 32 . 73 . 11. We alter the

canonical notation slightly to represent 749 112 by 23 . 3 . 74 . 110 . 131 and

135 828 by 22 . 32 . 73 . 111 . 130. Accordingly, gcd(749 112, 135 828) �
22 . 3 . 73 and lcm(749 112, 135 828) � 23 . 32 . 74 . 11 . 13.

In 1676, Wallis showed that the length of the period of the decimal

expansion of 1=mn is the least common multiple of the length of the

periods of 1=m and 1=n. Primes play an important role in the decimal

expansion of fractions. In particular, for prime denominators p, other than

2 or 5, all decimal expansions of fractions of the form m= p, for

1 < m , p, repeat with cycles of the same length. In addition, the product

of the number of distinct cycles with this length is pÿ 1. For example,

there are ®ve distinct cycles when p � 11, namely, 0:09, 0:18, 0:27, 0:36

and 0:45, each of length 2, and 2 . 5 � 10 � 11ÿ 1. Another problem that

we will return to in Chapter 8 is determining which primes p have the

property that 1= p has a decimal expansion of period pÿ 1. For example, 7

is such a prime since 1
7
� 0:142857.

Exercises 3.1

1. Use the sieve of Eratosthenes to determine all the primes less than or

equal to 250.

2. Charles de Bovilles, Latinized Carolus Bouvellus, a French philoso-

pher and sometime mathematician, published On Wisdom in 1511, one

of the ®rst geometry texts written in French. Bouvellus claimed that

for n > 1 one or both of 6nÿ 1 and 6n� 1 were prime. Show that his

conjecture is false.

3. Bouvellus must have realized something was amiss for he soon revised

his claim to read that every prime, except 2 and 3, can be expressed in

the form 6n� 1, for some natural number n. Show that this conjecture

is true.

4. Show that every prime of the form 3k � 1 can be represented in the

form 6m� 1.
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5. In 1556, NiccoloÁ Tartaglia of Brescia claimed that the sums 1� 2� 4,

1� 2� 4� 8, 1� 2� 4� 8� 16, etc. are alternately prime and com-

posite. Show that his conjecture is false.

6. Determine the next three numbers and the general pattern in the

sequence 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, . . . :

7. Find the greatest common divisor and least common multiple of m

and n if

(a) m � 540 and n � 3750,

(b) m � 23 . 32 . 5 . 7 . 112 and n � 2 . 52 . 113.

8. A positive integer is called squarefree if it is not divisible by the square

of any prime. What can you deduce about the canonical representation

of squarefree numbers?

9. Show that every positive integer can be expressed as the product of a

squarefree integer and a square.

10. Determine the length of the longest sequence of consecutive square-

free integers.

11. A positive integer n is said to be squarefull if p2jn for every prime

divisor p of n. For example, 25 . 36 . 52 is squarefull, but 25 . 3 . 52 is

not. If Q(x) denotes the number of squarefull numbers less than x,

determine Q(100).

12. If p is irreducible in E, the set of even integers, and pjab, does it

follow that either pja or pjb? Justify your claim.

13. Consider the set H � f4n� 1: n � 0, 1, 2, 3, . . .g � f1, 5, 9, . . .g.
A number in H, other than 1, is called a Hilbert prime if it has no

divisors in H other than 1 and itself, otherwise it is called a Hilbert

composite. H is closed under multiplication. However, factorization in

H is not unique since 9, 21, 33, 77 are Hilbert primes and 21 . 33 and

9 . 77 are two distinct irreducible factorizations of 693. Find the ®rst

25 Hilbert primes. David Hilbert lectured at GoÈttingen University from

1892 to 1930. At the 1900 International Congress of Mathematicians

in Paris, he challenged mathematicians with 23 problems, several of

which remain unsolved.

14. Smith numbers, ®rst de®ned by Albert Wilanski, are composite num-

bers the sum of whose digits are equal to the sum of the digits in an

extended prime factorization. For example, 27 is a Smith number since

27 � 3 . 3 . 3 and 2� 7 � 3� 3� 3. In addition, 319 � 11 . 29 is a

Smith number since 3� 1� 9 � 1� 1� 2� 9. The pair 728 and 729

are consecutive Smith numbers. It is an open question whether there

are an in®nite number of Smith numbers. Wilanski noted, in 1982, that

the largest Smith number he knew of belonged to his brother-in-law,
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H. Smith, whose phone number was 4 937 775. Show that 4 937 775 is

a Smith number.

15. Let sp(n, b) denote the prime digital sum of the composite integer n

expressed in base b > 2. That is, if n � p1 p2 � � � pr, then sp(n, b) �Pr
k�1sd( pk , b), where sp(n, 10) � sp(n). For example, 36 � 3 . 3 .

2 . 2, 3 � 112, and 2 � 102. Hence, s2(36, 2) � 2� 2� 1� 1 � 6.

Determine sp(n, 2), for 1 < n < 16.

16. A positive integer n is called a k-Smith number if sp(n) � k . sd(n),

where k is also a positive integer. In 1987, Wayne McDaniel used the

concept of k-Smith numbers to prove that there exist an in®nite

number of Smith numbers. Show that 104 is a 2-Smith number.

17. For n a positive integer, the nth Monica set Mn consists of all

composite positive integers r for which n divides sd(r)ÿ sp(r). Show

that if r is a Smith number that r belongs to Mn for all positive

integers n.

18. Prove that if m and n are positive integers such that mjn, then Mn is a

subset of Mm.

19. If k . 1 is a positive integer show that the set of k-Smith numbers is a

subset of the (k ÿ 1)st Monica set.

20. For a positive integer n, the nth Suzanne set Sn consists of all

composite positive integers r for which n divides sd(r) and sp(r). In

1996, Michael Smith, who named Monica and Suzanne sets after his

two cousins Monica and Suzanne Hammer, showed that there are an

in®nite number of elements in each Monica and Suzanne set. Clearly

Sn is a subset of Mn. Show that it is not necessarily the case, however,

that Mn is a subset of Sn.

21. Find all primes p such that 17 p� 1 is square.

22. Prove that every number of the form 4m� 3 must have one prime

factor of the form 4k � 3.

23. Can a number of the form 4m� 1 have a factor not of the form

4k � 1? Justify your answer.

24. Prove that n4 ÿ 1 is composite for any positive integer n . 1.

25. Prove that if n . 4 is composite, then n divides (nÿ 1)!

26. Determine the number of distinct cycles and the length of each cycle,

for decimal expansions of numbers of the form m=13, with

1 < m , 13.

27. In 1968, T.S. Motzkin and E.G. Straus investigated the existence of

pairs fm, ng such that m and n� 1 have the same distinct prime

factors and n and m� 1 have the same distinct prime factors. Show

that m � 5 . 7 and n � 2 . 37 are such numbers.
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28. Prove that if p is prime and á, â, m, and n are integers with á and â
positive, pá i m, and pâ i n then pá�â i mn.

29. Give a counterexample to show that, in general, if pá i m and pá i n

then pá 6 i (m� n), where p is prime, and m, n and á are integers with

á positive.

30. Prove that
���
nm
p

is irrational unless n is the mth power of an integer.

3.2 Number theoretic functions

A function whose domain is the set of positive integers is called number

theoretic or arithmetic. In many cases, the canonical representation of

positive integers can be used to evaluate number theoretic functions. Two

very important number theoretic functions are ô(n), the number of divisors

of n, and ó (n), the sum of the divisors of n. For convenience, we use the

convention that
P

djn and
Q

djn denote, respectively, the sum and product

taken over all the divisors of n. For example, for n � 12,P
dj12d � 1� 2� 3� 4� 6� 12 � 28 and

Q
dj12 d � 1 . 2 . 3 . 4 . 6 .

12 � 1728. It follows from the de®nitions of ô and ó that
P

djn1 � ô(n)

and
P

djnd � ó (n). For completeness, we de®ne ô(1) and ó (1) to be 1.

Unless a positive integer is square, its divisors pair up, hence, ô(n) is odd if

and only if n is square. With the next result, we see how canonical

representations can be used to compute number theoretic values.

Theorem 3.5 If n �Qr
i�1 pá1

i , then ô(n) �Qr
i�1(ái � 1).

Proof If m �Qr
i�1 p

â i

i and n � Qr
i�1 pái

i then mjn if and only if

0 < âi < ái, for i � 1, 2, . . . , r. That is, if every pi component of m is

less than or equal to every pi component of n. Thus, if m �Qr
i�1 p

âi

i

represents any divisor of n �Qr
i�1 p

ái

i then there are á1 � 1 choices for

â1, á2 � 1 choices for â2, . . . , and ár � 1 choices for âr. From the

multiplication principle it follows that there are (á1 � 1)(á2 � 1) � � �
(ár � 1) different choices for the â1, â2, . . . , âr, thus, that many divisors

of n. Therefore, ô(n) �Qr
i�1(ái � 1). j

For example, ô(13 608) � ô(22357) � (3� 1)(5� 1)(1� 1) � 4 . 6 . 2

� 48. The history of the tau-function can be traced back to Girolamo

Cardano, an Italian mathematician±physician, who noted in 1537 that the

product of any k distinct primes has 2k divisors. Cardano played a major

role in popularizing the solution to cubic equations and wrote the ®rst text
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devoted to the study of probability. Cardano's result was reestablished in

1544 by Michael Stifel and again in 1657 by the Dutch mathematician

Frans van Schooten. In 1659 Van Schooten published an in¯uential Latin

translation of Descartes' La GeÂomeÂtrie that was highly regarded by Isaac

Newton. The canonical formula for ô(n), in Theorem 3.5, is found in the

1719 edition of John Kersey's Elements of that Mathematical Art Com-

monly Called Algebra. Kersey was a London surveyor and highly respected

teacher of mathematics. His book was very popular, went through several

editions, and was recommended to students at Cambridge.

An equivalent representation for ô(n), based on the canonical representa-

tion for n, appeared in the 1732 edition of Newton's Universal Arithmetic.

The canonical formula for ô(n), in Theorem 3.5, also appeared in the 1770

edition of Edward Waring's Meditationes algebraicae without justi®cation,

as was Waring's nature. Waring, Lucasian Professor of Mathematics at

Cambridge University, succeeded Isaac Barrow, Isaac Newton, William

Whiston, Nicholas Saunderson, and John Colson in that position. In 1919,

Leonard Eugene Dickson, a number theorist at the University of Chicago,

introduced the notation ô(n) to represent the number of divisors of the

positive integer n and the notation ó (n) to represent the sum of divisors

of n.

Given a positive integer n . 1, there are in®nitely many positive integers

m such that ô(m) � n. For example, if p is any prime then ô( pnÿ1) � n. It

is possible for consecutive numbers to have the same number of divisors.

For example, ô(14) � ô(15) � 4, ô(44) � ô(45) � 6, and ô(805) �
ô(806) � 8. Richard K. Guy, of the University of Calgary, conjectured that

ô(n) � ô(n� 1) for in®nitely many positive integers. Three consecutive

positive integers may also have the same number of divisors. For example,

ô(33) � ô(34) � ô(35) � 4 and ô(85) � ô(86) � ô(87) � 4. A weak upper

bound for ô(n) is given by 2
���
n
p

. A much stronger bound was given by M.I.

Isravilov and I. Allikov in 1980 when they showed that if n . 12 then

ô(n) , n2=3.

In 1838, P.G. Dirichlet proved that the average value of ô(k),

(1=n)
Pn

k�1ô(k), is approximately equal to ln(n)� 2 . ãÿ 1, where ln(n)

denotes the natural logarithm of n and ã denotes the Euler±Mascheroni

constant, limn!1(1� 1
2
� � � � � 1=nÿ ln(n)) � 0:577 215 6 . . .. It is still

an open question whether ã is rational or irrational.

The nth harmonic number, denoted by Hn, is de®ned to be

1� 1
2
� 1

3
� � � � 1=n. The Euler±Maclaurin Theorem states that for large

values of n, Hn is approximately equal to ln(n)� ã� 1=2n. An inductive

argument can be used to show that H1 � H2 � � � � � Hn � (n �
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1)(H n�1 ÿ 1). With this result and the Euler±Maclaurin Theorem, it

follows that

ln(n!) � ln(1)� ln(2) � � � � � ln(n)

� H1 � H2 � � � � � Hn ÿ n . ãÿ 1

2
Hn

� n� 1

2

� �
Hn ÿ nÿ n . ã

� n� 1

2

� �
(ln(n)� ã)ÿ nÿ n . ã

� n� 1

2

� �
ln(n)ÿ n:

Hence, n! � ���
n
p

. nneÿn. In 1730, the Scottish mathematican, James Stir-

ling showed that
���������
2ðn
p

(n=e)n gives a much better estimate of n! even for

small values of n. For example, 12! is 479 001 600. Stirling's formula

yields 475 687 486.476.

A number n with the property that ô(n) . ô(k), for all k , n, is called

highly composite. For example, 2, 4, 6, 12, 24, 36, 48, 60, and 120 are

highly composite. Highly composite numbers were studied extensively by

Srinivasa Ramanujan and formed the basis of his dissertation at Cam-

bridge. Ramanujan, a phenomenal self-taught Indian number theorist, was

working as a clerk in an accounts department in Madras when his genius

came to the attention of Gilbert Walker, head of the Indian Meteorological

Department, and Mr E.H. Neville, Fellow of Trinity College, Cambridge.

Walker was Senior Wrangler at Cambridge in 1889 and Neville was

Second Wrangler in 1909. The examination for an honors degree at

Cambridge is called the Mathematical Tripos. Up until 1910, the person

who ranked ®rst on the Tripos was called the Senior Wrangler. He was

followed by the Second Wrangler, and so forth. The person who ranked last

was called the Wooden Spoon.

In his teens, Ramanujan had independently discovered that if S(x)

denotes the number of squarefree positive integers less than or equal to x,

then for large values of x, S(x) is approximately equal to 6x=ð2. A

correspondence ensued between Ramanujan and the Cambridge mathema-

tician G.H. Hardy. As a consequence, Ramanujan left India and went to

England. He spent the period from 1914 to 1919 at Cambridge. Under the

guidance of Hardy, Ramanujan published a number of remarkable mathe-

matical results. Between December 1917 and October 1918, he was elected

a Fellow of Trinity College, Cambridge, of the Cambridge Philosophical

Society, of the Royal Society of London, and a member of the London
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Mathematical Society. His health deteriorated during his stay in England.

He returned to India in 1920 and died later that year at the age of 32.

Let D(k) denote the least positive integer having exactly k divisors. For

example, D(1) � 1, D(2) � 2, D(3) � 4, D(4) � 6, and D(5) � 16. We

say that n is minimal if D(ô(n)) � n. All the highly composite numbers

studied by Ramanujan are minimal. Normally, if n � q1q2 � � � qk , where qi

is prime and q1 < q2 < � � � < qk, then D(n) � 2q1ÿ13q2ÿ1 � � � p
q kÿ1
k ,

where pk denotes the kth prime. However, exceptions include the cases

when n � 8, 16, 24, and 32.

In 1829, the German mathematician Carl Gustav Jacob Jacobi [yah KOH

bee] investigated properties of the number theoretic function E(n), the

excess of the number of divisors of n of the form 4k � 1 over the number

of divisors of n of the form 4k � 3. For example, the divisors of 105 of the

form 4k � 1 are, 5, 21, and 105, and the divisors of the form 4k � 3 are 3,

7, 15, and 35. Hence, E(105) � ÿ1. Since 2á has no divisors of the form

4k � 3 and only one of the form 4k � 1, E(2á) � 1. If p is prime of the

form 4k � 1, E( pá) � á� 1, and if p is a prime of the form 4k � 3,

E( pá) � ((ÿ1)á � 1)=2. Jacobi claimed that if n � 2áuv, where each

prime factor of u has the form 4k � 1 and each prime factor of v the form

4k � 3, then E(n) � 0 unless v is square and in that case E(n) � ô(u).

Jacobi made important contributions to the theory of elliptic integrals

before dying at age 47, a victim of smallpox.

In 1883, J.W.L. Glaisher [GLAY sure] established Jacobi's conjecture

and showed that E(n)ÿ E(nÿ 1)ÿ E(nÿ 3)� E(nÿ 6)� E(nÿ 10)

ÿ � � � � 0 or (ÿ1)n[((ÿ1)k(2k � 1)ÿ 1)=4] depending, respectively, on

whether n is not a triangular number or the triangular number k(k � 1)=2.

Glaisher, a Cambridge mathematican, was Senior Wrangler in 1871. He

served as president of the London Mathematical Society and the Royal

Astronomical Society. In 1901, Leopold Kronecker, the German mathema-

tician who established an analogue to the Fundamental Theorm of Arith-

metic for ®nite Abelian groups in 1858, showed that the mean value for

E(n) is approximately ð=4.

In 1638, ReneÂ Descartes remarked that the sum of the divisors of a prime

to a power, say ó ( pr), can be expressed as ( pr�1 ÿ 1)=( pÿ 1). In 1658,

Descartes, John Wallis, and Frenicle investigated properties of the sum of

the divisors of a number assuming that if m and n are coprime then

ó (m . n) � ó (m) . ó (n). We establish this property in the next section.

Theorem 3.6 If n �Qr
i�1 p

ái

i , then the canonical formula for the sum of

the divisors of a positive integer is given by
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ó (n) �
Yr

i�1

pái�1
i ÿ 1

pi ÿ 1

 !
:

Proof The sum of the divisors of the positive integer n � pá1

1 pá2

2 � � � pá r
r

can be expressed by the product

(1� p1 � p2
1 � � � � � pá1

1 )(1� p2 � p2
2 � � � � � pá2

2 ) � � �
(1� pr � p2

r � � � � � pá r

r ):

Using the formula for the sum of a ®nite geometric series,

1� x� x2 � � � � � xn � x n�1 ÿ 1

xÿ 1
,

we simplify each of the r sums in the above product to ®nd that the sum of

the divisors of n can be expressed canonically as

ó (n) � pá1�1
1 ÿ 1

p1 ÿ 1

 !
pá2�1

2 ÿ 1

p2 ÿ 1

 !
� � � pá r�1

r ÿ 1

pr ÿ 1

 !
�
Yr

i�1

pái�1
i ÿ 1

pi ÿ 1
,

and the result is established. j

For example,

ó (136 608) � ó (23357) � 24 ÿ 1

2ÿ 1

� �
36 ÿ 1

3ÿ 1

� �
72 ÿ 1

7ÿ 1

� �
� 43 608:

The canonical formula for ó (n) was ®rst derived by Euler in 1750, who

used
�

n to denote the sum of the divisors of n. Three years earlier,

developing the theory of partitions, Euler derived an intriguing formula to

evaluate ó (n) involving pentagonal-type numbers, namely,

ó (n) � ó (nÿ 1)� ó (nÿ 2)ÿ ó (nÿ 5)ÿ ó (nÿ 7)� ó (nÿ 12)

� ó (nÿ 15) � � � �

� (ÿ1)k�1 ó nÿ 3k2 ÿ k

2

� �
� ó nÿ 3k2 � k

2

� �� �
� � � �,

where ó (r) � 0 if r , 0 and ó (0) � n. The result is elegant, but not very

practical. For example, according to the formula, ó (10) � ó (9) �
ó (8)ÿ ó (5)ÿ ó (3) � 13� 15ÿ 6ÿ 4 � 18, and ó (15) � ó (14)� ó (13)

ÿ ó (10)ÿ ó (8)� ó (3)� ó (0) � 24� 14ÿ 18ÿ 15� 4� 15 � 24.

The function ó k(n) representing the sum of the kth powers of the

divisors of n generalizes the number theoretic functions ó and ô since

ó0(n) � ô(n) and ó1(n) � ó (n). By de®nition, ó k(n) �Pdjndk , with

ó k(1) � 1. Hence, ó2(15) � ó2(3 . 5) � 12 � 32 � 52 � 152 � 260.

Clearly, a positive integer n is prime if and only if ó (n) � n� 1. In
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addition, for any positive integer n, ó (n)ÿ 2n is never an odd square and

since ó (n) . n, there are only ®nitely many integers m such that

ó (m) � n. There are 113 solutions to ó (n) � ó (n� 1) when n , 107, for

example, ó (14) � ó (15) � 24 and ó (206) � ó (207) � 312. The Polish

mathematician, Wastawa SierpinÂski, conjectured that the equation

ó (n) � ó (n� 1) is valid for in®nitely many positive integers n.

Using our knowledge of harmonic numbers, we can determine an upper

bound for ó (n). For any positive integer n,

ó (n) � n .
X
djn

1

d
< n .

X
1<k<n

1

k
, n(1� ln(n)) � n� n . ln(n) , 2n . ln(n):

In 1972, U. Annapurna showed if n . 12 then ó (n) , 6n3=2=ð2. Five years

earlier R.L. Duncan had shown that ó (n) , 1
6
(7n . ù(n)� 10n), where

ù(n) denotes the number of distinct prime factors of n. That is, if

n �Qr
i�1 pái

i , ù(n) �P pjn1 � r, with ù(1) � 0. For example,

ù(164 640) � ù(25 . 3 . 5 . 73) � 1� 1� 1� 1 � 4.

The number theoretic function ù(n) has a number of interesting proper-

ties. For example, for any positive integer n, 2ù(n) < ô(n) < n. In addition,

if n is a positive integer then there are 2ù(n) ordered pairs (r, s) such that

gcd(r, s) � 1 and r . s � n. In general the number of ordered pairs of

positive integers (r, s) such that lcm(r, s) � n is given by ô(n2). For

example, if n � 12, then ô(144) � 15 and the ordered pairs are (1, 12),

(2, 12), (3, 12), (3, 4), (4, 3), (4, 6), (4, 12), (6, 4), (6, 12), (12, 1), (12, 2),

(12, 3), (12, 4), (12, 6), (12, 12). If r and s are positive integers such that r

divides s, then the number of distinct pairs of positive integers x and y such

that gcd(x, y) � r and lcm(x, y) � s is equal to 2kÿ1 where k � ù(s=r).

For example, if r � 2 and s � 60 � 22 . 3 . 5, then k � ù(60=2) �
ù(2 . 3 . 5) � 3. The four ordered pairs of solutions are (2, 60), (4, 30),

(6, 20), and (10, 12). In 1838, P.G. Dirichlet showed that the average value

of ó (n), (1=n)
Pn

k�1ó (k), is approximately ð2 n=6 for large values of n.

Another number theoretic function of interest is the sum of aliquot parts

of n, all the divisors of n except n itself, denoted by s(n). Thus,

s(n) � ó (n)ÿ n. If p is prime then s( p) � 1. If n . 1; then the aliquot

sequence generated by n, a1, a2, . . . , is de®ned recursively such that

a1 � n, and ak�1 � s(ak) for k > 1.

A sociable chain or aliquot cycle of length k, for k a positive integer, is

an aliquot sequence with s(ak�1) � a1. A number is called sociable if it

belongs to a sociable chain of length greater than 2. In 1918, Paul Poulet

discovered that 12 496 generates a sociable chain of length 5 and 14 316

generates a sociable chain of length 28. In 1969, Henri Cohen discovered 7
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new sociable chains of length 4. Currently, 45 sociable chains, having

lengths 4, 5, 6, 8, 9, and 28, are known. In 1975, R.K. Guy and John

Selfridge conjectured that in®nitely many aliquot sequences never cycle

but go off to in®nity.

Sarvadaman Chowla studied properties of what is now called Chowla's

function. The function, denoted by s�(n), represents the sum of all the

divisors of n except 1 and the number itself. That is, s�(n) �
ó (n)ÿ nÿ 1 � s(n)ÿ 1. For example, since

ó (32 928) � ó (22 . 3 . 73) � 26 ÿ 1

2ÿ 1

� �
32 ÿ 1

3ÿ 1

� �
74 ÿ 1

7ÿ 1

� �
� 63 . 4 . 400 � 100 800,

it follows that s(32 928) � ó (32 928)ÿ 32 928 � 67 872 and s�(32 928)

� ó (32 928)ÿ 32 928ÿ 1 � 67 871. If p is prime then s�( p) � 0. Several

pairs of integers m and n, including 48 and 57, 140 and 195, 1050 and

1925, 1575 and 1648, have the property that ó�(m) � n and ó�(n) � m.

The functional value Ù(n), called the degree of n, represents the number

of prime divisors of n counted with multiplicity. That is, if n � Qr
i�1 pái

i ,

Ù(n) �Pr
i�1ái, with the convention that Ù(1) � 0. For example,

Ù(164 640) � Ù(25 . 3 . 5 . 73) � 5� 1� 1� 3 � 10. The average value

of Ù(n), (1=n)
Pn

k�1Ù(k), is approximately ln(ln(n))� 1:0346 for large

values of n.

Denote by En or On the number of positive integers k, 1 < k < n, for

which Ù(k) is even or odd, respectively. In 1919, George Polya conjectured

that On > En, for n > 2. However, in 1958, C.B. Haselgrove showed that

there were in®nitely many positive integers n for which On , En. In 1966,

R.S. Lehman showed that n � 906 180 359 is the smallest positive integer

for which On � En ÿ 1.

In 1657, Fermat challenged Frenicle and Sir Kenelm Digby to ®nd, other

than unity, a cube whose sum of divisors is square and a square whose sum

of divisors is a cube. Before the existence of high-speed electronic

computers, these were formidable problems. Digby was an author, naval

commander, diplomat, and bon vivant, who dabbled in mathematics,

natural science, and alchemy. His father was executed for his role in the

Gunpowder Plot. Digby's elixir, `powder of sympathy', was purported to

heal minor wounds and cure toothaches. Digby passed the problem on to

John Wallis who found ®ve solutions to Fermat's ®rst problem, namely the

cubes 39 . 53 . 113 . 133 . 413 . 473, 23 . 33 . 53 . 133 . 413 . 473, 173 . 313 .

473 . 1913, 23 . 33 . 53 . 133 . 173 . 313 . 413 . 1913, and 39 . 53 . 113 . 133 .

173 . 313 . 413 . 1913. Wallis countered with the problem of ®nding two
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squares other than 16 and 25 whose sums of divisors are equal. Wallis

knew of four solutions to the problem, namely 788 544 and 1 214 404,

3 775 249 and 1 232 100, 8 611 097 616 and 11 839 180 864, and

11 839 180 864 and 13 454 840 025. Frenicle found two of the solutions

given by Wallis to Fermat's ®rst problem and two solutions to Fermat's

second problem, namely the squares 24 . 52 . 72 . 112 . 372 . 672 . 1632 .

1912 . 2632 . 4392 . 4992 and 34 . 76 . 132 . 192 . 314 . 672 . 1092. Frenicle

submitted no less than 48 solutions to the problem posed by Wallis

including the pairs 106 276 and 165 649, 393 129 and 561 001 and

2 280 100 and 3 272 481. Wallis constructed tables of values for ó (n) for n

a square of a positive integer less than 500 or a cube of a positive integer

less than 100. During the period from 1915 to 1917, A. GeÂrardin found 11

new solutions to Fermat's ®rst problem.

Exercises 3.2

1. Show that for any positive integer nX
djn

d �
X
djn

n

d
:

2. Determine the number of divisors and sum of the divisors of (a) 122,

(b) 1424, (c) 736, (d) 31, (e) 23 . 35 . 72 . 11.

3. Show that ô(242) � ô(243) � ô(244) � ô(245).

4. Show that ô(n) � ô(n� 1) � ô(n� 2) � ô(n� 3) � ô(n� 4) if n �
40 311.

5. In 1537, Girolamo Cardano claimed that if n �Qr
i�1 pi �

p1 p2 � � � pr, where p1, p2, . . . , pr are distinct primes, then

ô(n)ÿ 1 � 1� 2� 22 � 23 � � � � � 2rÿ1. Prove his conjecture true.

6. Prove that 2ù(n) < ô(n) , 2
���
n
p

, where n . 1 is any positive integer.

7. Show that
Q

djn d � nô(n)=2, for any positive integer n.

8. Determine the canonical structure of all positive integers having the

property
Q

djn d � n2.

9. Determine the canonical structure of all positive integers having the

property Y
djn

d 6�n

d � n2:

10. Use the Israilov±Allikov and Annapurna formulas to determine upper

bounds for ô(n) and ó (n) when n � 1 000 000.

11. Use Duncan's formula to obtain an upper bound for ó(106).
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12. Determine the average value of ô(n) for 1 < n < m � 25, 50 and 100.

Compare your results with Dirichlet estimates.

13. Determine the ®rst ®ve harmonic numbers.

14. For any positive integer n, prove that

H1 � H2 � � � � � Hn � (n� 1)(H n�1 ÿ 1)

where Hn denotes the nth harmonic number.

15. Use Stirling's formula to estimate 16!

16. Show that 12 and 24 are highly composite.

17. In 1644, Mersenne asked his fellow correspondents to ®nd a number

with 60 divisors. Find D(60), the smallest positive integer with 60

divisors.

18. Determine D(n) when n � 8, 16, 24, and 32.

19. Determine E(512), E(24 137 569), E(750), E(2401). Use Glaisher's

formula to determine E(19).

20. Determine the average value of E(n) for 1 < n < 25. Compare it with

ð=4.

21. According to Liouville's formula, (
P

djnô(d))2 �Pdjnô
3(d). Check

the validity of the formula for n � 7, 12, and 24.

22. Plato noted that 24 was the smallest positive integer equal to the sum

of the divisors of three distinct natural numbers. That is, n � 24 is the

smallest positive number such that the equation ó (x) � n has exactly

three solutions for x. What are the three solutions?

23. Use Euler's recursive formula for ó (n) to show that ó (36) � 91.

24. Show that ó (n) is odd if and only if n is a square or twice a square.

25. Determine the average value of ó (n) for 1 < n < m, for m � 25, 50

and 100. Compare your results with Dirichlet's estimate.

26. Determine the ®rst 25 terms of the aliquot sequence generated by 276.

27. Determine all ordered pairs (r, s) such that lcm(r, s) � 36.

28. Determine the sociable chain of length 5 beginning with n � 12 496.

29. Determine the terms in the social chain that begins with

n � 2 115 324.

30. Show ó�(48) � 75 and ó�(75) � 48.

31. The Chowla sequence generated by n, denoted by b1, b2, . . . , is

de®ned recursively as follows: b1 � n, and bk�1 � s�(bk) for k > 1.

Determine the Chowla sequence generated by 36.

32. Calculate the average value of Ù(n) for 1 < n < 50. Compare it with

ln(ln(50))� 1:0346.

33. Show that the sum of divisors of the cube 39 . 53 . 113 . 133 . 413 . 473

is a square. [Wallis]
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34. Show that the sum of divisors of the square 24 . 52 . 72 . 112 .

372 . 672 . 1632 . 1912 . 2632 . 4392 . 4992 is a cube. [Frenicle]

35. Show that the sums of the divisors of 3262 and 4072 are equal.

[Frenicle]

36. Show that 17, 18, 26, and 27 have the property that they equal the sum

of the digits of their cubes.

37. Show that 22, 25, 28, and 36 have the property that they equal the sum

of the digits of their fourth powers.

38. Show that 2 divides [ó (n)ÿ ô(m)] for all positive integers n where m

is the largest odd divisor of n.

39. If n �Qr
i�1 p

ái

i then prove that

ó k(n) �
Yr

i�1

p
k(ái�1)
i

pi ÿ 1

 !
:

40. Show that
P

djn(1=d2) � ó2(n)=n2.

41. A number theoretic functions f is called additive if f (m, n) �
f (m)� f (n) whenever gcd(m, n) � 1, Show that ù, the number of

distinct prime factors of n, is additive.

42. A number theoretic function f is called completely additive if

f (mn) � f (m)� f (n) for all positive integers m and n. Show that Ù,

the degree function of n, is completely additive.

43. A number theoretic function f is called strongly additive if for all

primes p, f ( pá) � f ( p), where á > 1. prove that ù is strongly

additive.

44. Determine all positive integers that are divisible by 12 and have 14

divisors.

45. Find a positive integer n such that n=2 is square, n=3 is a cube, and

n=5 is a ®fth power.

46. If n �Qr
i�1 p

ái

i is the canonical representation for n, let ø(n) �
á1 p1 � á2 p2 � � � � � árpr � 1, with ø(1) � 1. De®ne the psi-

sequence, a1, a2, . . . , for n as follows: a1 � n and ak � ø(akÿ1) for

k . 1. It is an open question whether for any positive integer greater

than 6, the psi-sequence for that integer eventually contains the

repeating pattern 7, 8, 7, 8, 7, 8, . . . : Prove that if n . 6 then ø(n) . 6,

and if n . 8 is composite then ø(n) < nÿ 2.

3.3 Multiplicative functions

A number theoretic function f is said to be multiplicative if f (mn)

� f (m) f (n), whereas m and n are coprime. A number theoretic function f
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is said to be completely multiplicative if f (mn) � f (m) f (n) for all positive

integers m and n in the domain of f. By de®nition, every completely

multiplicative number theoretic function is multiplicative.

Theorem 3.7 If f is completely multiplicative and not the zero function,

then f (1) � 1.

Proof If f is not the zero function, then there exists a positive integer k

such that f (k) 6� 0. Hence, f (k) � f (k . 1) � f (k) f (1). Dividing both

sides by f (k), we obtain f (1) � 1. j

The next result illustrates the importance of multiplicative functions and

shows that they are completely determined by their values on primes raised

to powers.

Theorem 3.8 Let n �Qr
i�1 pái

i be the canonical representation for n and

let f be a multiplicative function; then f (n) �Qr
i�1 f ( p

ái

i ).

Proof Suppose that f is a multiplicative function and
Qr

i�1 p
ái

i is the

canonical representation of n. If r � 1, we have the identity, f ( pá1

i )

� f ( pá1

i ). Assume that the representation is valid whenever n has k or

fewer distinct prime factors, and consider n �Qk�1
i�1 pái

i . Since
Qk

i�1 pái

i

and p
á k�1

k�1 are relatively prime and f is multiplicative, we have

f (n) � f
Yk�1

i�1

pái

i

 !
� f

Yk

i�1

pái

i
. p

á k�1

k�1

 !
� f

Yk

i�1

pái

i

 !
. f p

á k�1

i

ÿ �
�
Yk

i�1

( f ( p
ái

i )) . f ( p
á k�1

k�1 ) �
Yk�1

i�1

f ( p
ái

i ): j

It follows immediately from Theorem 3.8 that if f is a completely multi-

plicative function and
Qr

i�1 pái

i is the canonical representation for n, then

f (n) �Qr
i�1[ f ( pi)]

ái . Thus, completely multiplicative functions are

strictly determined when their values are known for primes. For example,

if f is a completely multiplicative function, f (2) � a, f (3) � b, and

f (5) � c, then f (360) � f (23 . 32 . 5) � a3b2c. There are several basic

operations on functions in which the multiplicativity of the functions is

preserved as shown in the next two results.

Theorem 3.9 If f and g are multiplicative then so are F � f . g and

G � f =g, the latter being true whenever g is not zero.
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Proof If m and n are coprime, then F(mn) � f (mn) . g(mn) � [ f (m) .

f (n)][g(m) . g(n)] � [ f (m) . g(m)][ f (n) . g(n)] � F(m) . F(n). A similar

argument establishes the multiplicativity of G � f =g. j

The Dirichlet product of two number theoretic functions f and g, denoted

by f � g, is de®ned as
P

djn f (d)g(n=d). That is, ( f � g)(n) �P
rs�n f (r)g(s). Hence, ( f � g)(n) � (g� f )(n), for positive integers n. The

next result shows that if two functions are multiplicative then so is their

Dirichlet product.

Theorem 3.10 If f and g are multiplicative then so is F(n) �P
djn f (d)g(n=d).

Proof If m and n are coprime, then djmn if and only if d � d1d2, where

d1jm and d2jm, gcd(d1, d2) � 1, and gcd(m=d1, n=d2) � 1. Therefore,

F(mn) �
X
djmn

f (d)g
mn

d

� �
�
X
d1jm

X
d2jn

f (d1d2)g
mn

d1d2

� �
�
X
d1jm

X
d2jn

f (d1) f (d2)g
m

d1

� �
g

n

d2

� �
�

X
d1jm

f (d1)g
m

d1

� �" # X
d2jn

f (d2)g
n

d2

� �" #
� F(m)F(n): j

For any number theoretic function f,
P

djn f (d) �Pdjn f (n=d). If we let g

be the multiplicative function g(n) � 1 for any positive integer n, in

Theorem 3.10, it follows that if f is multiplicative so is F(n) �Pdjn f (d).

In particular, the constant function f (n) � 1 and the identity function

f (n) � n are multiplicative. Hence, since ô(n) �Pdjn1 and ó (n) �P
djn n, we have established the following result.

Theorem 3.11 The number theoretic functions ô and ó are multiplicative.

Example 3.2 Consider the multiplicative function f (n) � nk , where k is a

®xed positive integer. It follows from Theorem 3.10, with f (n) � nk and

g(n) � 1, that the sum of the kth powers of the divisors of n, ó k(n) �P
djndk , is multiplicative. In addition, ó k( pá) � 1k � pk � p2k � � � �

� pák � ( pk(á�1) ÿ 1)=( pk ÿ 1). Therefore, if n �Qr
i�1 pái

i ,

ó k(n) �
Yr

i�1

p
k(ái�1)
i ÿ 1

pk
i ÿ 1

 !
:
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For any positive integer n, de®ne the MoÈbius function, ì(n), as follows:

ì(n) �
1 if n � 1,

(ÿ1)r if n � p1 p2 � � � pr, is the

product of r distinct primes,

0 otherwise:

8>><>>:
For example, ì(42) � ì(2 . 3 . 7) � (ÿ1)3 � ÿ1, ì(2805) � ì(3 . 5 . 11 .

17) � (ÿ1)4 � 1, and ì(126) � ì(2 . 32 . 7) � 0. It is straightforward and

left as an exercise to show that the MoÈbius function is multiplicative. Its

properties were ®rst investigated implicitly by Euler in 1748 and in 1832

by August Ferdinand MoÈbius, a professor of astronomy at the University of

Leipzig, albeit neither used ì to denote the MoÈbius function. The symbol

ì to denote the function was introduced by Frantz Mertens in 1874. In

1897, Mertens conjectured that, for all positive integers, jPn
k�1ì(k)j

,
���
n
p

. The conjecture has been veri®ed for all n , 109. In 1984, Andrew

Odlyzko and Herman te Riele proved that Merten's conjecture must be

false for some value of n < 3:21 3 1064. The MoÈbius function has a

number of useful properties. For instance, the average value of ì,P1
n�1(ì(n)=n), is zero. In addition,

X1
n�1

ì(n)

n2
� 6

ð2
:

Theorem 3.12 For any positive integer n, if í(n) �Pdjnì(d), then

í(1) � 1, í(n) � 0 for other n.

Proof If n � 1, then í(1) �Pdjnì(n) � ì(1) � 1. If n . 1, since í(n) is

multiplicative, we need only evaluate í on primes to powers. In addition, if

p is prime, í( pá) �Pdj pá ì(d) � ì(1)� ì( p)� ì( p2) � � � � � ì( pá) �
1� (ÿ1)� 0 � � � � � 0 � 0. Thus, í(n) � 0 for any positive integer n

greater than 1. j

Theorem 3.13 (MoÈbius inversion formula) If f is a number theoretic

function and F(n) �Pdjn f (d), then f (n) �Pdjnì(d)F(n=d).

Proof Suppose that f is a number theoretic function and F(n) �P
djn f (d). We have
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X
djn

ì(d)F
n

d

� �
�
X
djn

ì(d)
X
ajn=d

f (a) �
X
djn

X
ajn=d

ì(d) f (a)

�
X
ajn

X
djn=a

f (a)ì(d) �
X
ajn

f (a)
X
djn=a

ì(d)

� f (n) . 1 � f (n):

The switch of summands in the third equality is valid since d divides n and

a divides n=d if and only if a divides n and d divides n=a. j

From Theorems 3.10 and 3.13 and the fact that the MoÈbius function is

multiplicative, we obtain the following result.

Corollary If F is multiplicative and F(n) �Pdjn f (d), then f is multi-

plicative.

Exercises 3.3

1. If f is completely multiplicative and njm, then show that

f
m

n

� �
� f (m)

f (n)
:

2. If k is a ®xed positive integer, then show that f (n) � nk is completely

multiplicative.

3. For any positive integer n, let f (n) � c g(n) with c . 0. Show that f is

(completely) multiplicative if and only if g is (completely) additive.

4. Let f (n) � kù(n), where k is a ®xed positive integer and ù(n) denotes

the number of distinct prime divisors of n. Show that f is multi-

plicative but not completely multiplicative.

5. The Liouville lambda-function, ë, is de®ned as follows: ë(1) � 1 and

ë(n) � (ÿ1)Ù(n) if n . 1, where Ù represents the degree function.

Show that ë is multiplicative. Joseph Liouville [LYOU vill] published

over 400 mathematical papers, edited the Journal de matheÂmatiques

pures at appliqueÂes for 40 years. He also edited and published the

works of short lived mathematical prodigy Evariste Galois.

6. For any positive integer n, let F(n) �Pdjn ë(d), where ë represents

the Liouville lambda-function. Determine the value of F(n) when n is

square and when n is not square.

7. If n �Qr
i�1 pái

i show that F(n) �Pdjnì(d)ë(d) � 2r, for n . 1.

8. Let ôe(n) denote the number of positive even divisors of the positive

integer n, and let ó e �
P

d ejnde, where de runs through the even
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divisors of n. Let ôo(n) denote the number of positive odd divisors of

the positive integer n, and let óo(n) �Pdojn do where do runs through

the positive odd divisors of n. Evaluate ôo(n), óo(n), ôe(n), and ó e(n),

for 1 < n < 10.

9. Show by counterexample that neither ôe nor óe is multiplicative or

completely multiplicative.

10. Show that ôo and óo are multiplicative functions which are not

completely multiplicative.

11. Prove that the MoÈbius function, ì(n), is multiplicative.

12. Prove that ì(n)ì(n� 1)ì(n� 2)ì(n� 3) � 0, for any positive integer

n.

13. Evaluate
P1

k�1ì(k!).

14. Find a positive integer n such that ì(n)� ì(n� 1)� ì(n� 2) � 3.

15. Show that
P

djnjì(d)j � 2ù(n), for all positive integers n.

16. Show that
P

djnì(d)ô(n=d) � 1, for any positive integer n.

17. If n is an even integer, show that
P

djnì(d)ó (d) � n.

18. If n �Qr
i�1 pái

i , with ái > 1, for i � 1, . . . , r, show thatP
djnì(d)ô(d) � (ÿ1)r � (ÿ1)ù(n).

19. Determine f (n) if
P

djn f (d) � 1=n.

20. For any positive integer n, show that n �Q djndô(d)ì(n=d)=2.

21. Let n �Qr
i�1 pái

i and á(n) �Pdjn(ù(d)=ô(n)), show that

á(n) �
Xr

i�1

ái

ái � 1
:

22. Von Mangolt's function, Ë, is de®ned on the positive integers as

follows: Ë(n) � ln(n), if n � pá, and 0 otherwise, where p is prime

and á a positive integer. Prove that
P

djnË(d) � ln(n).

23. For any positive integer n, prove that Ë(n) � ÿPdjnì(d) ln(d).

3.4 Factoring

Devising an ef®cient technique to determine whether a large positive

integer is prime or composite and if composite to ®nd its prime factoriza-

tion has been an ambitious goal of number crunchers for centuries.

Primality tests are criteria used to determine whether or not a positive

integer is prime. If a number passes a primality test then it may be prime.

If it passes several primality tests it is more likely to be prime. However, if

it fails any primality test then it is not prime. Brute force is reliable but not

very ef®cient in determining whether or not a number is prime. The

process of determining whether a number is divisible by any positive

100 Prime numbers



integers less than or equal to its square root is a very consuming process

indeed. For example, if we wanted to determine if 2127 ÿ 1 is prime and

estimated that only 10 percent, 1:3 3 1018, of the numbers less than����������������
2127 ÿ 1
p

were prime, then at the rate of checking 109 prime factors a

second it would take a high-speed computer 41 years to check all the prime

factors of 2127 ÿ 1 that are less than
����������������
2127 ÿ 1
p

. We would ®nd out that

none of them divided 2127 ÿ 1.

Factoring a very large positive integer is a dif®cult problem. No practical

factor algorithm currently exists. In Chapter 5, we discuss more elegant

and sophisticated primality tests, including Fermat's Little Theorem and

Wilson's Theorem. However, Monte Carlo methods, which employ statis-

tical techniques to test for the primality of very large numbers, are beyond

the scope of this book.

In 1202, Fibonacci's Book of Calculations contained a list of all the

primes and composite natural numbers less than or equal to 100. Pietro

Cataldi's Treatise on Perfect Numbers published in Bologna in 1603

contains factors of all positive integers less than 750. In 1657, Frans van

Schooten listed all the primes up to 9929. In 1659, the ®rst extensive factor

tables were constructed and published by Johann Heinrich Rahn, Latinized

Rohnius, in his Algebra. Rahn included all factors of the numbers from 1

to 24 000, omitting from the tables all multiples of 2 and 5. Rahn, who was

a student of John Pell's at Zurich, introduced the symbol `�' to denote

division. In 1668, Thomas Brancker determined the least factor, greater

than 1, of each integer less than 105. Johann Lambert, the ®rst to show that

ð was irrational, published an extensive table of least factors of the integers

up to 102 000 in 1770.

Others have not been so fortunate. In 1776, Antonio Felkel, a Viennese

schoolteacher, constructed factor tables for the ®rst 408 000 positive

integers. The tables were published at the expense of the Austrian Imperial

Treasury but, because of the disappointing number of subscribers, the

Treasury con®scated all but a few copies and used the paper for cartridges

in a war against the Turks, a dubious mathematical application to warfare

at best. In 1856, A.L. Crelle, determined the ®rst six million primes and, in

1861, Zacharias Dase extended Crelle's table to include the ®rst nine

million primes. Crelle founded and, for many years, edited and published

the prestigious Journal fuÈr die reine und angewandte Mathematik.

In 1863, after 22 years of effort to complete the task, J.P. Kulik, a

professor at the University of Prague, published factor tables that ®lled

several volumes. His tables included the factors, except for 2, 3, and 5, of

the ®rst 100 million positive integers. He donated his work to the library at
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the University of Prague, but unfortunately, through someone's negligence,

the second volume, the factorizations of the integers from 12 642 600 to

22 852 800, was lost. In 1910, D.H. Lehmer published factor tables for the

integers up to 10 million. Lehmer worked on a long table equipped with

rollers at each end. For small primes, he made paper stencils with holes

through which he recorded multiples.

Fermat devised a number of ingenious methods to factor integers. We

know of his work chie¯y through his correspondence with Marin Mers-

enne, a Franciscan friar, number theory enthusiast and philosopher who

corresponded with a number of mathematicians and scientists including

Galileo and Torricelli. Mersenne was the leader of a group that met

regularly in Paris in the 1630s to discuss scienti®c topics. He once asked

Fermat whether he thought that 100 895 598 269 was prime. After a short

period, Fermat replied that it was not and, in fact, it was the product of

898 423 and 112 303.

The basis for one of Fermat's factoring methods depends on the abil-

ity to write the integer to be factored as the difference of two integral

squares. In this case, 100 895 598 269 � 505 3632 ÿ 393 0602 � (505 363 �
393 060)(505 363ÿ 393 060). Fermat assumed that the integer n to be

factored was odd, hence its two factors u and v must also be odd. If

n � uv � x2 ÿ y2 � (x� y)(xÿ y), u � x� y, and v � xÿ y, then x �
(u� v)=2 and y � (uÿ v)=2. Fermat let k be the least integer for which

k2 . n and formed the sequence

k2 ÿ n,

(k � 1)2 ÿ n,

(k � 2)2 ÿ n,

. . . ,

until one of the terms, say (k � m)2 ÿ n, was a perfect square, which for

many numbers may never be the case. He then let (k � m)2 ÿ n � y2, so

x � k � m and y �
���������������������������
(k � m)2 ÿ n

p
. Thus, a factorization of n is given by

n � (xÿ y)(x� y). For example, if n � 931, then k � 31 is the least

integer such that k2 . 931. We have

312 ÿ 931 � 30,

322 ÿ 931 � 93,

332 ÿ 931 � 158,

342 ÿ 931 � 225 � 152 � y2:

Hence, y � 15, m � 3, x � k � m � 31� 3 � 34, and 931 � (34 ÿ
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15)(34� 15) � 19 . 49. Nevertheless, it is unlikely that Fermat used this

method to factor 100 895 598 269 for he would have had to perform 75 000

iterations to arrive at his factorization.

In 1641, Frenicle asked Fermat if he could factor a number which can be

written as the sum of two squares in two different ways. We do not have

Fermat's answer but, in 1745, Euler showed that if n � a2 � b2 � c2 � d2,

that is if n can be written as the sum of two squares in two distinct ways,

then

n � [(aÿ c)2 � (bÿ d)2][(a� c)2 � (bÿ d)2]

4(bÿ d)2
:

For example, since 2501 � 502 � 12 � 492 � 102, we have a � 50, b � 1,

c � 49, and d � 10, hence

2501 � (12 � 92)(992 � 92)

4 . 92
� 82 . 9882

4 . 81
� 82

2

� �
9882

2 . 81

� �
� 41 . 61:

In order to determine whether or not a very large number was prime,

Euler used 65 numbers ranging from 1 to 1848 which he called numeri

idonei (appropriate numbers). They had the property that if ab was one of

the numeri idonei, n � ax2 � by2 uniquely, and gcd(ax, by) � 1, then

n � p, 2 p, or 2k, where p is prime and k a positive integer. For example,

using 57, one of the numeri idonei, Euler discovered the unique representa-

tion 1 000 003 � 19 . 82 � 3 . 5772, with 57 � 19 . 3 and (19 . 8, 3 . 577)

� 1, hence, 1 000 003 is prime. In 1939, H.A. Heilbronn and S. Chowla

showed that there were in®nitely many numeri idonei.

Exercises 3.4

1. Use Fermat's method to show that 12 971 is composite.

2. Use Euler's method to show that the following numbers are composite:

(a) 493, and (b) 37 673 � 1872 � 522 � 1732 � 882.

3. Euler showed that if N � a2 � kb2 � c2 � kd2 then a factorization of

N is given by N � (km2 � n2)(kr2 � s2)=4, where a� c � kmr,

aÿ c � ns, d � b � ms, and d ÿ b � nr. Show algebraically that the

method is valid.

4. Use the factorization technique outlined in the previous exercise

to factor 34 889 given that 34 889 � 1572 � (10 . 322) � 1432 �
(10 . 382).

5. Show that if the smallest prime factor p of n is greater than n1=3, then

the other factor of n must be prime.

6. Show that 2 027 651 281 is composite.
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3.5 The greatest integer function

If x is any real number, then the greatest integer not greater than x, or

integral part of x, denoted by ��x��, is the unique integer ��x�� such that

��x�� < x < ��x�� � 1. Equivalently, ��x�� is the integer such that xÿ 1 ,

��x�� < x. For example, ��2:5�� � 2; ��10:1�� � 10; ��0:4�� � 0; ��ÿ3:7�� � ÿ4.

Theorem 3.14 If n is an integer and x any real number then

��x� n�� � ��x�� � n.

Proof Since xÿ 1 ,��x�� < x it follows that ÿx < ÿ��x��,ÿx� 1. Com-

bining this inequality with x� nÿ 1 ,��x� n�� < x� n, we obtain

nÿ 1 ,��x� n�� ÿ ��x��, n� 1. Hence, ��x� n�� ÿ ��x�� � n. j

The greatest integer function has a number of useful properties. For

instance, if a and b are integers with 0 , b < a, then ��a=b�� is the number

of positive integer multiples of b not exceeding a. That is, if a � bq

� r, where 0 < r , q, then q � ��a=b��. For example, there are

��3000=11�� � 272 positive integers less than or equal to 3000 which are

divisible by 11. In addition, if á and â are real numbers, with á. â, then

��á�� ÿ ��â�� represents the number of integers n such that â, n < á.

Furthermore, if 10kÿ1 < n , 10k , then the number of digits of n to the

base b is given by ��logb(n)�� � 1. For example, the number 354 has 26 digits

since ��log(354)�� � 1 � ��54 . log(3)�� � 1 � ��54 . (0:477 121 3)�� � 1 �
��25 .764 55�� � 1 � 25� 1 � 26.

A point (x, y) in the Cartesian plane is called a lattice point if both

coordinates x and y are integers. The greatest integer function can be used

to determine the number of lattice points in a bounded region. In particular,

if y � f (x) is a nonnegative function whose domain is the closed interval

a < x < b, where both a and b are integers and S denotes the region in the

Cartesian plane consisting of all lattice points (x, y) for which a < x < b

and 0 , y < f (x), then the number of lattice points in the region S is given

by
Pb

n�a�� f (n)��.
Adrien Marie Legendre's TheÂorie des nombres, published in 1808,

contains a wealth of number theoretic results. The book includes discus-

sions of a number of topics that we will soon encounter including the

Prime Number Theorem, the quadratic reciprocity law, and quadratic

forms. It includes a nearly complete proof of Fermat's Last Theorem for

the case when n � 5. In addition, Legendre used the greatest integer
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function to devise a method for determining the power of prime exponents

in the canonical representation of factorials.

Theorem 3.15 (Legendre's Theorem) If n is a positive integer and p is a

prime such that p divides n then p appears in the canonical representation

of n! with exponent ep, where ep �
P1

k�1��n=pk ��.
Proof For a given integer k, the multiples of pk that do not exceed n are

pk , 2 pk , . . . , qpk , where q is the largest integer such that qpk < n. That is,

q, the largest integer not exceeding n=pk , equals ��n=pk ��. Thus, ��n= pk �� is

the number of positive multiples of pk that do not exceed n. If 1 < m < n

and m � qpk, with gcd( p, q) � 1 and 0 < k < r, then m contributes

exactly k to the total exponent ep with which p appears in the canonical

representation of n! Moreover, m is counted precisely k times in the sum

��n=p�� � ��n=p2�� � ��n=p3�� � � � � , once as a multiple of p, once as a

multiple of p2, . . . , once as a multiple of pk , and no more. If k � 0, then

m is not counted in the sum. Therefore,
P1

k�1��n= pk �� equals the exponent

of p in the canonical representation of n! j

Corollary If n �Qr
i�1 p

ái

i , then n! �Qr
i�1 p

e pi

i .

For example,

16! � 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16

� 1 . 2 . 3 . 2 . 5 . 2 . 7 . 2 . 3 . 2 . 11 . 2 . 13 . 2 . 3 . 2

� 2 3 2 3 5 2 7 5 2

� 2 3 2

� 2

There are ��16=2�� twos in the ®rst row, ��16=4�� twos in the second row,

��16=8�� twos in the third row, and ��16=16�� twos in the fourth row. Hence,

the exponent of 2 in the canonical representation of 16! is given by

��16=2�� � ��16=4�� � ��16=8�� � ��16=16�� � 8� 4� 2� 1 � 15. In addition,

from Legendre's Theorem, we have that ��452=3�� � ��452=9�� � ��452=27�� �
��452=81�� � ��452=243�� � 150� 50� 16� 5� 1 � 222. Hence, 222 is

the exponent of 3 in the canonical representation of 452!

Theorem 3.16 If r is the exponent of 2 in the canonical representation of

n! and s is the number of ones in the binary representation of n, then

r � s � n.
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Proof Suppose n � a0 � a1
. 2� a2

. 2 � � � � � ak
. 2k , where 0 < ai

< 1, for i � 1, 2, . . . , k, and ak 6� 0.��
n

2

��
�
��

a0

2
� a1 � 2a2 � � � � � 2kÿ1ak

��
� a1 � 2a2 � � � � � 2kÿ1ak ,��

n

4

��
�
��

a0

4
� a1

2
� a2 � � � � � 2kÿ2ak

��
� a2 � 2a3 � � � � � 2kÿ2ak ,

� � ���
n

2i

��
� ai � 2ai�1 � � � � � 2kÿiak :

Hence,

r �
Xk

i�1

��
n

2i

��
� a1 � a2(1� 2)� a3(1� 2� 22) � � � � � ak(1� 2 � � � � � 2k)

� (a0 � 2a1 � 22a2 � � � � � 2k ak)ÿ (a0 � a1 � � � � � ak)

� nÿ (a0 � a1 � � � � � ak) � nÿ s:

Therefore, n � r � s. j

In general, if the representation of n to the base p, where p is prime, is

given by brp
k � brÿ1 pkÿ1 � � � � � b1 p� b0, where 1 < bi < p, for

i � 1, 2, . . . , k, bp 6� 0, and á is the exponent of p in the canonical

representation of n!, then á( pÿ 1)� n � b0 � b1 � � � � � bk .

Exercises 3.5

1. Prove that for any real number x, xÿ 1 ,��x�� < x.

2. Prove that ��x�� � ��ÿx�� � 0 if x is an integer and ��x�� � ��ÿx�� � ÿ1

otherwise.

3. Prove that for any two real numbers x and y ��x� y�� > ��x�� � ��y��.
4. Find the most general sets of numbers for which the following equa-

tions in x hold:

(a) ��x�� � ��x�� � ��2x��,
(b) ��x� 3�� � ��x�� � 3,

(c) ��x� 3�� � x� 3,

(d) ��9x�� � 9.

5. Determine the exponents of 2, 3, and 5 in the canonical representation

of 533!

6. Determine the smallest positive integer n such that 57 divides n!
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7. Determine the number of terminal zeros in 1000!

8. Find the least positive integer n such that n! terminates in 37 zeros.

9. How many integers strictly between 1000 and 10 000 are divisible by

7?

10. How many integers less than 1000 are divisible by 3 but not by 4?

11. Determine the number of integers less than or equal to 10 000 which

are not divisible by 3, 5, or 7.

12. The largest number in decimal notation represented with just three

digits and no additional symbols is 999

. How many digits does 999

have?

13. For any positive integer n, prove that
Pn

k�1ô(k) �Pn
k�1��n=k�� andPn

k�1ó (k) �Pn
k�1 k��n=k��. [Dirichet 1849]

14. If p is prime and pjn, determine the power that p appears to in the

canonical representation of (2n)!=(n!)2.

15. Show that Xn

k�1

ì(k)

��
n

k

��
� 1:

3.6 Primes revisited

In Proposition 20 in Book IX of the Elements, Euclid proved that there is

no largest prime. Speci®cally, he established the following result.

Theorem 3.17 (Euclid's Theorem) The number of primes is in®nite.

Proof Suppose that the number of primes is ®nite and p is the largest

prime. Consider N � p!� 1. N cannot be composite because division of N

by any prime 2, 3, . . . , p leaves a remainder 1, hence, it has no prime

factors. However, N cannot be prime since, N . p. Since N cannot be

either prime or composite, we have a contradiction. Hence, our assumption

is incorrect and the number of primes must be in®nite. j

The largest prime known having only 0 and 1 for digits is
1
9
(10640 ÿ 1) . 10640 � 1. Even with an in®nitude of primes the six-millionth

prime has only nine digits. Nevertheless, large prime gaps exist. In

particular, if n is any positive integer then (n� 1)!� 2, (n� 1)!� 3, . . . ,

(n� 1)!� (n� 1) is a sequence of n consecutive composite integers.

In 1748, Euler devised a proof of the in®nitude of primes using the fact

that if m . 1 and n . 1 are natural numbers with gcd(m, n) � 1, then
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1

1ÿ 1

m

0@ 1A .
1

1ÿ 1

n

0@ 1A � X1
k�0

1

m

� �k
 !

.
X1
k�0

1

n

� �k
 !

� 1� 1

m
� 1

n
� 1

m2
� 1

mn
� 1

n2
� � � � :

Because of the unique factorization of positive integers into products of

primes, this series is precisely the sum of the reciprocals of all the positive

integers of the form 1=mánâ with á and â nonnegative, each counted only

once. He reasoned that if p1 , p2 , � � � , pr constituted all the primes

then for each i, 1 < i < r,X1
k�0

1

pi

� �k

� 1

1ÿ 1

pi

0@ 1A:
Therefore, X1

n�1

1

n
�
Yr

i�1

X1
k�0

1

pi

� �k
 !

�
Yr

i�1

1

1ÿ 1

pi

0@ 1A,1,

which is impossible since
P1

n�1 nÿ1 is the divergent harmonic series.

Hence, the number of primes must be in®nite.

In 1775, Euler claimed that for a ®xed positive integer a, the sequence

a� 1, 2a� 1, 3a� 1, . . . contains in®nitely many primes. In 1785, Le-

gendre conjectured that for coprime positive integers a and b there are

in®nitely many primes which leave a remainder of a when divided by b.

Hence, if a and b are coprime the arithmetic progression a, a� b, a� 2b,

a� 3b, . . . contains in®nitely many primes. The validity of Legendre's

conjecture was established in 1837 by Peter Gustav Lejeune Dirichlet,

Gauss's successor at GoÈttingen and father of analytic number theory. Not

only does Legendre's result give yet another proof of the in®nitude of

primes, but it indicates that there are an in®nite number of primes of the

form 4k � 1, of the form 4k � 3, of the form 6k � 5, and so forth. In

1770, Edward Waring conjectured that if a, a� b, a� 2b are three primes

in arithmetic progression and a 6� 3 then 6 must divide b. The result was

established in 1771 by J.L. Lagrange.

In 1845, Joseph Louis FrancËois Bertrand, a French mathematician and

educator, conjectured that for any positive integer n > 2, there is a prime p

for which n < p < 2n. Bertrand's postulate was ®rst proven by P.L.

Chebyshev in 1852. Bertrand had veri®ed his conjecture for all positive

integers less than 3 3 106. Bertrand's postulate acquired its name because
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Bertrand had assumed it to prove that the number of primes is in®nite. If p

were the largest prime, then by Bertrand's postulate there would be a larger

prime between p� 1 and 2( p� 1), contradicting the hypothesis that p was

largest.

Two functions f (x) and g(x) are said to be asymptotically equivalent if

limx!1( f (x)=g(x)) � 1. For example, if A(x) denotes the average distance

between the ®rst x primes, for example, A(20) � 3, A(150) � 5, and

A(1050) � 155, it can be shown that A(x) and ln(x) are asymptotically

equivalent.

One of the more intriguing functions in number theory is the prime

counting function, denotes by ð(x). It represents the number of primes less

than or equal to x, where x is any real number. It is related to the MoÈbius

function and the distinct prime factor function by the equation

ð(x) <
P

mn<xì(m)ù(n). In 1798, Legendre conjectured that ð(x) is

asymptotically equivalent to x=(ln(x)ÿ 1:083 66). When he was 15 years

old, Gauss attempted to prove what we now call the Prime Number

Theorem, namely, that ð(x) is asymptotically equivalent to x=ln(x). Using

L'HoÃpital's rule, Gauss showed that the logarithmic integeral� x

2
dt=(ln(t))ÿ1, denoted by Li(x), is asymptotically equivalent to x=ln(x),

and, if the Prime Number Theorem is true, to ð(x). Gauss felt that Li(x)

gave better approximations to ð(x) than x=ln(x) for large values of x.

Bernhard Riemann, a nineteenth century German mathematician who

studied under Dirichlet and Jacobi, believed that R(x) �P1k�1

(ì(k)=k)Li(k1=k) gave better approximations to ð(x) than either x=ln(x) or

Li(x). The data in Table 3.1 seem to indicate that he was correct. Riemann

made signi®cant contributions to non-Euclidean geometry and analysis

before dying at age 39 of tuberculosis.

Table 3.1.

x x=ln(x) Li(x) R(x) ð(x)

10 4.3 5.12 4.42 4
100 21.7 29.1 25.6 25
500 80.4 100.8 94.4 95

1 000 144.7 176.6 165.6 168
5 000 587.0 683.2 669.1 669

10 000 1 087.0 1 245.11 1 226.4 1 230
15 000 1 559.9 1 775.6 1 755.57 1 754

106 72 381.9 78 632 78 555.9 78 498
109 48 254 630 50 849 240 50 847 465 50 847 478
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The ®rst proofs of the Prime Number Theorem were given independently

in 1896 by the French mathematician Jacques Hadamard and the Belgian

mathematician C.J. de la ValleÂe-Poussin. Hadamard was a ®rm believer

that the sole purpose of mathematical rigor was to legitimitize `conquests

of intuition'. Both proofs entail the use of complex number theory applied

to the Riemann zeta-function, æ(s) �P1n�1 nÿs, where s is a complex

number. A great deal of theory regarding functions of a complex variable

was developed in attempts to prove the Prime Number Theorem. The ®rst

proof using only elementary properties of numbers was given by Paul

ErdoÈs and Atle Selberg in 1948.

The real valued Riemann zeta-function, where s is real, has a number of

interesting properties. For example, using the integral test from calculus,

we ®nd that the in®nite series
P1

n�1 nÿs converges when s . 1. Hence, the

real Riemann zeta-function is well-de®ned. In 1736, Euler showed that

æ(2k) �
X1
k�1

1

nsk
� 22kÿ2ð2k jB2k j

2k!
,

where Bm denotes the mth Bernoulli number. In particular, æ(2) � ð2=6,

æ(4) � ð4=90, and æ(6) � ð6=945. In 1885, Ernesto CesaÁro proved that the

probability that n has no mth power divisors larger than 1 is 1=æ(r). There

are a number of identities between the real Riemann zeta-function and

number theoretic functions we encountered earlier. The ®rst three identities

shown below were established by CesaÁro in 1883.

(a) (æ(s))2 �
X1
n�1

ô(n)

ns
, s . 1,

(b) æ(s) . æ(sÿ 1) �
X1
n�1

ó (n)

ns
, s . 2,

(c) æ(s) . æ(sÿ k) �
X1
n�1

ó k(n)

ns
, s . k � 1,

(d)
1

æ(s)
�
X1
n�1

ì(n)

ns
, s . 1,

(e) ÿ
d(æ(s))

ds
æ(s)

�
X1
n�1

Ë(n)

ns
, s . 1, where d=ds denotes the derivative with

respect to s,

(f) æ(s) �
Y

p

1ÿ 1

ps

� �ÿ1

, where s . 1 and p runs through all primes.
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For example, to establish (f)

æ(s) � 1� 1

2s
� 1

3s
� 1

4s
� 1

5s
� � � �

� 1� 1

3s
� 1

5s
� � � � � 1

2s
1� 1

2s
� 1

3s
� � � �

� �
� 1� 1

3s
� 1

5s
� � � � � 1

2s
æ(s):

Thus,

æ(s) 1ÿ 1

2s

� �
� 1� 1

3s
� 1

5s
� � � � � 1� 1

5s
� 1

7s
� � � � � 1

3s
æ(s) 1ÿ 1

2s

� �
and transposing we have

æ(s) 1ÿ 1

2s

� �
1ÿ 1

3s

� �
� 1� 1

5s
� 1

7s
� � � � :

Continuing this process, we obtain

æ(s)
Y

p

1ÿ 1

ps

� �
� 1,

where p runs through the primes. Therefore,

æ(s) �
Y

p

1ÿ 1

ps

� �ÿ1

:

The expression in the right side of (f) is called the Euler product. As we

noted earlier in this section, Euler used it to prove the in®nitude of primes.

When s � x� yi is complex, the identity implies that the Riemann zeta-

function has no zeros for x . 1. If x , 0, æ(s) has only trivial zeros at

s � ÿ2, ÿ4, ÿ6, . . . : All other zeros of the zeta-function must therefore

occur when 0 > x > 1. In 1860, Riemann conjectured that all zeros occur

on the line x � 1
2
. This conjecture, known as the Riemann hypothesis, is

one of 23 outstanding unsolved problems posed by Hilbert in 1900. Nearly

three million zeros of the zeta-function have been found on the line x � 1
2

and none off it. In 1951, G.H. Hardy showed that an in®nite number of

zeros of the zeta-function lie on the critical line x � 1
2
.

The pairs, 3 and 5, 5 and 7, 11 and 13, 17 and 19, and 1 000 000 000 061

and 1 000 000 000 063, are examples of consecutive odd primes, called

twin primes. The largest known example of twin primes, 170 659 .

211 235 � 1, was discovered in 1990 by B. Parady, J. Smith, and S.

Zarantonello. In 1737, Euler proved that the in®nite series of reciprocals of

primes,
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X 1

p
� 1

2
� 1

3
� 1

5
� 1

7
� 1

11
� � � � ,

diverges. In 1919, Viggo Brun showed that the in®nite series of reciprocals

of twin primes,X 1

q
� 1

3
� 1

5

� �
� 1

5
� 1

7

� �
� 1

11
� 1

13

� �
� � � ,

converges to 1.902 160 577 832 78. . . , called Brun's constant. Brun also

proved that for every positive integer n these exist n consecutive primes

none of which are twin primes. In 1949, P. Clement showed that (n, n� 2)

forms a pair of twim primes if and only if n(n� 2) divides

[4((nÿ 1)!� 1)� n]. In 1849, Alphonse Armand Charles Marie Prince de

Polignac conjectured that for a ®xed positive even integer n, there are

in®nitely many prime pairs p and p� n. Polignac's conjecture when n � 2

is the twin prime conjecture.

If we let p denote an odd prime then there is only one triple of

consecutive odd primes ( p, p� 2, p� 4), namely (3, 5, 7). Hence, we

de®ne prime triplets to be 3-tuples of the form ( p, p� 2, p� 6) or

( p, p� 4, p� 6), where p and p� 6 are odd primes and one of p� 2

and p� 4 is an odd prime. That is, a sequence of four consecutive odd

integers forms a prime triplet if the ®rst and last are prime and one of the

two other numbers is prime. For example, (5, 7, 11) and (7, 11, 13) are

prime triplets. It is an open question whether or not there are an in®nite

number of prime triplets. Of course, if there were then there would be an

in®nite number of twin primes.

The smallest prime quartet, that is a 4-tuple of the form ( p, p� 2,

p� 6, p� 8), where p, p� 2, p� 6, and p� 8 are odd primes, is (5, 7,

11, 13). The next smallest is (11, 13, 17, 19). It is not known whether the

number of prime quartets is in®nite but the 8-tuple (11, 13, 17, 19, 23, 29,

31, 37) is the only example known of a prime octet, a set of eight primes

beginning with p and ending with p� 26 both of which are odd primes.

Many primes have interesting and surprising properties. For example, 43

and 1987 are primes in cyclic descending order, that is, in the cyclic order

ÿ9ÿ8ÿ7ÿ6ÿ5ÿ4ÿ3ÿ2ÿ1ÿ9ÿ8ÿ7ÿ. The largest prime in cyclic des-

cending order is 76 543. There are 19 primes with their digits in cyclic

ascending order. The smallest being 23. The largest known prime in cyclic

ascending order, 1 234 567 891 234 567 891 234 567 891, was discovered in

1972 by Ralph Steiner and Judy Leybourn of Bowling Green State

University. Some primes, called right-truncatable primes, remain prime
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when they are right truncated. The largest known left-truncatable prime is

357 686 312 646 216 567 629 137. See Table 3.2.

The numbers 313, 383 and 757 are examples of three-digit palindromic

primes while 12 421 is an example of a ®ve-digit palindromic prime. The

number of primes versus the number of palindromic primes is illustrated in

Table 3.3.

When the digits of a prime are reversed, sometimes a square results as in

the case of 163, since 361 � 192. In several cases when the digits of a

prime are reversed the result is another prime as is the case with 13, 17, 37

and 1193. Primes whose reverse is also prime are called reversible primes.

Some primes, such as 113 and 79, have the property that any permutation

of their digits is prime. The prime 113 also has the property that the sum

and product of its digits are primes. A prime is called a permutation prime

if at least one nontrivial permutation of its digits yields another prime.

Since 3391 is prime, 1933 is a permutation prime. In 1951, H.-E. Richert

Table 3.2.

Right-truncatable
primes

Left-truncatable
primes

73939133 46232647
7393913 6232647
739391 232647
73939 32647
7393 2647
739 647
73 47
7 7

Table 3.3.

Number of digits Number of primes Number of
palindromic

primes

1 4 4
2 21 1
3 143 15
4 1 061 0
5 8 363 93
6 68 906 0
7 586 081 668
8 5 096 876 0
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showed that, except for numbers whose digits are all ones no prime number

exists with more than 3 and less than 6 . 10175 digits such that every

permutation of its digits is prime.

The primes 13 331, 15 551, 16 661, 19 991, 72 227 are examples of

primes of the form ab bba. The primes 1 333 331, 1 777 771, 3 222 223 and

3 444 443 are all of the form a bbb bba. For a number to be prime and of

the form aaa � � � a, it must be the case that a � 1. An integer written in

decimal notation using only ones is called a repunit, short for repeated unit.

The nth repunit, Rn, is given by (10n ÿ 1)=9. There is a scarcity of primes

among the repunits. The only known repunit primes for n less than 104 are

R2, R19, R23, R317, and R1031. A necessary condition for Rn to be prime is

that n be prime. Properties of repunits were ®rst discussed by William

Shanks in 1874.

A prime p is called a Sophie Germain prime if 2 p� 1 is also prime. It

is an open question whether there are an in®nite number of Sophie

Germain primes. In 1995, the largest known Sophie Germain prime,

2 687 145 . 3003 . 105072 ÿ 1, was discovered by Harvey Dubner. Sophie

Germain managed to obtain the mathematical lecture notes from the Ecole

Polytechnique and taught herself calculus. She corresponded with Gauss,

Legendre and Cauchy, under the pseudonym Monsieur Le Blanc. She won

numerous prizes for her work in mathematical physics and number theory.

In 1823, she established Fermat's Last Theorem for a class of prime

exponents. In particular, she showed that if p is a Sophie Germain prime

then xp � yp � zp has no nontrivial integer solutions.

Let P#
n denote the product of the ®rst n primes. For example, P

#
1 � 2,

P
#
2 � 2 . 3, P

#
3 � 2 . 3 . 5, and so forth. Reverend Reo F. Fortune, an

anthropologist at Cambridge University once married to Margaret Mead,

the sociologist, devised an algorithm to generate what we now call

fortunate numbers. In order to generate the fortunate numbers, determine

the smallest prime p greater than P#
n � 1, then f n, the nth fortunate

number, is given by pÿ P#
n . The ®rst three fortunate primes, 3, 5, and 7,

are derived in Table 3.4, where p denotes the smallest prime greater than

P#
n � 1. It is an open question whether every fortunate number is prime.

To date, the largest prime of the form P#
n � 1, 24 029# � 1, was discov-

ered by C. Caldwell in 1993, and the largest prime of the form

P#
n ÿ 1, 15 877# ÿ 1, was discovered by Dubner and Caldwell in 1993.

Finding any type of pattern that will enable one to determine prime

numbers is a much more dif®cult task. Euler and the Russian mathemati-

cian Christian Goldbach proved that no polynomial f (x) � a0 � a1x �
a2x2 � � � � � anxn can ever yield primes for all positive integer values of
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x. For if b is a positive integer such that f (b) � p, a prime, then p divides

f (b� mp), for m � 1, 2, . . . , so there are in®nitely many values of n for

which f (n) is composite. Nevertheless, there have been some notable

attempts to devise such polynomials. For example, in 1772 Euler noted that

f (x) � x2 � x� 17 yields primes for x � 1, . . . , 15, but not for x � 16.

That same year, he and Legendre showed that f (x) � x2 � x� 41 yields

primes for ÿ41 < x , 40, but not for x � 40. Euler claimed that

f (x) � 2x2 � p, for p � 3, 5, 11, or 29, assumes prime values for x � 0, 1,

. . . , pÿ 1. In 1899, E.B. Escott showed that f (x) � x2 � 79x� 1601

yields primes for x � 0, . . . , 79, but not for x � 80.

Going up a dimension, for any natural numbers x and y let

f (x, y) � 1
2
(yÿ 1)[jA2 ÿ 1j ÿ (A2 ÿ 1)]� 2, where A � x(y� 1)ÿ (y!

� 1). Hence, when n � 2k � 1, f (n, n) � k � 2. The image of f (x, y)

includes all prime numbers as x and y run through the positive integers.

The function generates the prime 2 an in®nite number of times but each

odd prime only once. Dirichlet conjectured that if gcd(a, b, c) � 1, then as

x, y, and z range over the positive integers, ax2 � bxy� cy2 generates

in®nitely many primes.

In 1958 Norman Galbreath conjectured that in the table of absolute

values of the r th difference of the primes, shown in Figure 3.2, the leading

Table 3.4.

n P#
n P#

n � 1 p fn � pÿ P#
n

1 2 3 5 3
2 6 7 11 5
3 30 31 37 7
4 210 211 223 13
5 2310 2311 2333 23

02 03 05 07 11 13 17 19 23 …
01 02 02 04 02 04 02 04 …

01 00 02 02 02 02 02 …
01 02 00 00 00 00 …

01 02 00 00 00 …
01 02 00 00 …

01 02 00 …
01 02 …

01 …

Figure 3.2.
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diagonal consists of only ones. Galbreath showed that the conjecture was

valid for the ®rst 60 thousand primes.

In 1956, a sieve process, similar to that of Eratosthenes, was devised by

Verna Gardiner and Stanislaw Ulam. The process is as follows: from a list

of positive integers strike out all even numbers, leaving the odd numbers.

Apart from 1, the smallest remaining number is 3. Beginning the count

with the number 1, pass through the list of remaining numbers striking out

every third number. The next smallest number not crossed out is 7.

Beginning the process again with the number 1, pass through the list of

remaining numbers striking out every seventh number. The smallest num-

ber not crossed out greater than 7 is 9. Strike out every ninth number from

what is left, and so on. The numbers that are not struck out are called lucky

numbers. The lucky numbers between 1 and 99 are shown in Figure 3.3.

Lucky numbers have many properties similar to those of primes. For

example, for large values of n, the number of lucky numbers between 1

and n compares favorably with the number of primes between 1 and n.

There are 715 numbers between 1 and 48 000 that are both prime and

lucky. Every even integer less than or equal to 105 can be expressed as the

sum of two lucky numbers. Ulam noted that there appear to be just as many

lucky numbers of the form 4n� 1 as of the form 4n� 3.

Given any two positive integers m and n, Ulam de®ned the sequence of

u(m, n)-numbers, a1, a2, a3, . . . , such that a1 � m, a2 � n, and for k . 2,

ak is the least integer greater than akÿ1 uniquely expressible as ai � aj, for

1 < i , j < k ÿ 1, that is, as the sum of two distinct previous terms of the

sequence. For example, if m � 1 and n � 2, then the ®rst few u(1, 2)-

numbers are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57,

62, 69, 72, 77, 82, 87, 97, 99 and so forth. Note that 3 � 1� 2, 4 � 1� 3;

however, 5 � 2� 3 � 4� 1. Thus, 5 does not have a unique representation

as a sum of previous terms and, hence, does not belong in the sequence.

9
19
29
39
49
59
69
79
89
99

8
18
28
38
48
58
68
78
88
98

7
17
27
37
47
57
67
77
87
97

6
16
26
36
46
56
66
76
86
96

5
15
25
35
45
55
65
75
85
95

4
14
24
34
44
54
64
74
84
94

3
13
23
33
43
53
63
73
83
93

2
12
22
32
42
52
62
72
82
92

1
11
21
31
41
51
61
71
81
91

9
10
20
30
40
50
60
70
80
90

Figure 3.3.
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There are a number of open questions concerning u(1, 2)-numbers. For

example, are there in®nitely many numbers which are not the sum of two

u(1, 2)-numbers? Are there in®nitely many pairs of consecutive u(1, 2)-

numbers? Are there arbitrarily large gaps in the sequence of u(1, 2)-

numbers? Ulam worked as a mathematician on the Manhattan Project in

Los Alamos which led to the development of the ®rst atomic bomb.

Similarly, given any two positive integers m and n, we de®ne the

sequence of v(m, n)-numbers b1, b2, b3, . . . , such that b1 � m, b2 � n,

and for k . 2, bk is the least integer greater than bkÿ1 that is not of the

form bi � bj, for 1 < i , j < k ÿ 1. That is, each succeeding term in the

sequence is the next positive integer that cannot be written as a sum of two

previous terms of the sequence. For example, the ®rst ten v(2, 5)-numbers

are 2, 5, 6, 9, 10, 13, 17, 20, 21, 24.

These concepts can be generalized. For example, the sequence of

u(a1, a2, a3, . . . , an)-numbers, a1, a2, a3, . . . , has the property that for

k . n, ak is the least integer greater than akÿ1 uniquely expressible as

ai � aj, for 1 < i , j < k ÿ 1, the sequence of v(b1, b2, b3, . . . , bn)-num-

bers, b1, b2, b3, . . . , has the property that for k . n, bk is the least integer

greater than bkÿ1 that cannot be represented as bi � bj, for 1 < i , j < k.

In 1775, Lagrange conjectured that every odd positive integer can be

expressed as p� 2q where p and q are prime. In 1848, Polignac

conjectured that every positive odd integer is expressible as p� 2k , where

p is prime and k a positive integer. However, neither 509 nor 877 can be

expressed in such a manner.

Every even positive integer is of the form 10k, 10k � 2, 10k � 4,

10k � 6, or 10k � 8. Hence, since 10k � 15� (10k ÿ 15), 10k � 2 �
10� (10k ÿ 8), every even integer greater than 38 can be written as the

sum of two composite numbers. In 1724, Christian Goldbach showed that

the product of three consecutive integers can never be a square. In 1742,

Goldbach wrote to Euler in St Petersburg, asking whether or not every

positive integer greater than 1 was the sum of three or fewer primes. The

query, known as Goldbach's conjecture, is another of Hilbert's problems

that remains unsolved. Goldbach taught in St Petersburg and tutored Peter

II in Moscow before accepting a post in the Russian Ministry of Foreign

Affairs. Euler responded to Goldbach saying that the problem was dif®cult

and equivalent to that of representing every even positive integer, greater

than 2, as the sum of two primes. Goldbach's letter to Euler was not

published until 1843. Oddly enough, the conjecture ®rst appeared in print

in 1770 in Edward Waring's Meditationes algebraicae, an abstruse alge-

braic work. G.H. Hardy said that Goldbach's conjecture was one of the
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most dif®cult problems in mathematics. H.S. Vandiver jested that if he

came back to life after death and was told that the problem had been solved

he would immediately drop dead again. In 1930, the Russian mathemati-

cian L. Schnirelmann proved that there is a positive integer S such that

every positive integer is the sum of at most S primes. Seven years later,

I.M. Vinogradov proved that from some point on every odd number is the

sum of three odd primes. Hardy and J.E. Littlewood devised a formula to

determine the number of such representations given that one such repre-

sentation exists. In 1966, Chen Jing-run proved that every even number

greater than 2 is of the form p� a, where p is prime and a is prime or the

product of two primes. In 1997, Jean-Marc Deshouillers, Yannik Saouter,

and Herman J.J. te Riele showed the conjecture to be true for all positive

integers less than 1014.

The only solution to pm ÿ qn � 1, where m and n are positive integers

and p and q are prime, is given by 32 ÿ 23 � 1. It is an open question

whether n!� 1 is prime for in®nitely many integral values of n, likewise

whether there always exists a prime between two consecutive squares, and

whether there is a prime of the form a2 � b for each positive integer b. In

1993, the largest prime of the form n!� 1 known, 1477!� 1, was found by

Dubner, and the largest known prime of the form n!ÿ 1, 3601!ÿ 1 was

found by Caldwell. In 1922, Hardy and Littlewood conjectured that there

are in®nitely many prime numbers of the form n2 � 1. In 1978, Hendrik

Iwaniec showed that there are in®nitely many numbers of the form n2 � 1

which are either prime or the product of two primes. It remains an open

question whether the sequence, 2, 5, 17, 37, 101, 197, 257, . . . , with

general term n2 � 1, contains an in®nite number of primes.

Suppose that we have a large urn containing all the positive integers,

from which we select two integers a and b and ask the question, `What is

the probability that a and b are coprime?' The answer relies on a result

established by Euler concerning the Riemann zeta-function, namely that

æ(2) �P1n�1 nÿ2 � ð2=6. The question was answered ®rst by CesaÁro in

1881 and independently by J.J. Sylvester two years later. Given two positive

integers a, b, and a prime p, since p divides every pth integer, the

probability that p divides a is given by 1=p. Similarly, the probability that

p divides b is 1= p. Since the two events are independent, the probability

that p divides both a and b is the product of the probabilities. That is,

(1=p)(1=p) � 1= p2. Therefore, the probability of the complementary

event, that either p 6 ja or p 6 jb, is given by 1ÿ 1= p2. Now a and b are

coprime if and only if p 6 ja or p 6 jb for every prime p. So the probability

that gcd(a, b) � 1 is given by the in®nite product (1ÿ (1
2
)2)(1 ÿ
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(1
3
)2)(1ÿ (1

5
)2)(1ÿ (1

7
)2) � � �, where the product is taken over all the primes.

However, from a property of the Riemann zeta-function, we have

1� 1

2

� �2

� 1

3

� �2

� � � �
" #

1ÿ 1

2

� �2
 !

1ÿ 1

3

� �2
 !

1ÿ 1

5

� �2
 !

� � �
24 35

� 1:

Dividing both sides by 1� (1
2
)2 � (1

3
)2 � � � � and using Euler's result we

obtain

1ÿ 1

2

� �2
 !

1ÿ 1

3

� �2
 !

1ÿ 1

5

� �2
 !

1ÿ 1

7

� �2
 !

� � � � 6

ð2
:

Thus, the probability of randomly selecting two coprime numbers is just

over 61%.

We end this section with a remarkable result established by Euler in

1738, namely that

3

4
.
5

4
.
7

8
.
11

12
.
13

12
.
17

16
.
19

20

� � �
� � � �

ð

4
:

Since the in®nite geometric series
P1

k�1xk converges to 1=(1ÿ x), when

jxj, 1, we have

3

4
� 1

1� 1

3

0@ 1A � 1ÿ 1

3
� 1

3

� �2

ÿ 1

3

� �3

� � � � ,
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4
� 1

1ÿ 1

5
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� 1
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� �2

� 1
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� �3

� � � � ,
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� 1

1� 1
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� 1
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� �2

ÿ 1
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� �3

� � � � ,

� � � �
Hence,
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X1
n�0

(ÿ1)n

2n� 1
� arctan (1) � ð

4
:

Exercises 3.6

1. Prove that {3, 5, 7} is the only set of three consecutive odd primes.

2. Are there an in®nite number of primes of the form n2 ÿ 1, where

n . 2?
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3. Prove that the number of primes of the form 4k � 3 is in®nite.

4. Prove that the number of primes of the form 4k � 1 is in®nite. (Hint:

Suppose that there are only ®nitely many primes of the form 4k � 1,

say q1, . . . , qr, and consider N � (q1 � � � qr)
2 � 1.

5. Does the sequence 31, 331, 3331, 33 331, . . . always yield a prime?

6. If P n denotes the nth prime and A(n) � (P n ÿ 2)=(nÿ 1) denotes the

average distance between the ®rst n primes, determine A(50) and

compare it with ln(50).

7. Use L'HoÃpital's rule to prove that Li(x) and x=ln(x) are asymptotically

equivalent.

8. Show that æ(6) � ð2=945.

9. If p and p� 2 are twin primes, show that ó ( p� 2) � ó ( p)� 2.

10. Show that n(n� 2) divides [4((nÿ 1)!� 1)� n], when n � 17.

Hence, the twin primes 17 and 19 satisfy Clement's formula.

11. If p and p� 2 are twin primes, with p . 3, prove that 12 divides

2( p� 1).

12. Does the product of twin primes always differ from a square by 1?

13. Odd primes which are not in a set of twin primes are called isolated

primes. Find the ®rst ten isolated primes.

14. Determine a prime triple with all terms greater than 13.

15. Determine a prime quartet with all terms greater than 100.

16. Show that 76 883 is a left-truncatable prime.

17. Show that 59 393 339 is a right-truncatable prime.

18. Find three primes such that the reverse of their digits yields a square or

a cube.

19. Find all two-digit reversible primes.

20. Find all 15 three-digit palindromic primes.

21. Show that the palindromic numbers 1441 and 3443 factor into

palindromic primes.

22. Show that 113 is a panpermutation prime, that is, all the permutations

of its digits yield primes.

23. Show that 1423 and 1847 belong to permutation sets.

24. Find ten four-digit reversible primes.

25. Let Rn � (10n ÿ 1)=9 for n a positive integer denote the nth repunit.

Show that 3304 . R4 is a Smith number.

26. Find all Sophie Germain primes between 11 and 200.

27. A Cunningham chain of length k is a ®nite sequence of

primes p1, p2, . . . , pk such that either pi�1 � 2 pi � 1 or

pi�1 � 2 pi ÿ 1, for i � 1, 2, . . . k. Determine a Cunningham chain

that begins with 5.
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28. Determine the next three fortunate numbers f 6, f 7 and f 8. Are they

prime?

29. Show that f (x) � x2 � x� 17 yields primes for x � 1, . . . , 15, but

not for x � 16.

30. Show that f (x) � 2x2 � p generates primes for p � 11 and x � 1, 2,

. . . , 10, but not for x � 11.

31. Show that f (x) � x2 ÿ 79x� 1601 generates primes for x � 25, 30,

40, 60, but not for x � 80.

32. Show that f (x, y) � 1
2
(yÿ 1)[jA2 ÿ 1j ÿ (A2 ÿ 1)]� 2, where A �

x(y� 1)ÿ (y!� 1), yields a prime when x � [( pÿ 1)!� 1]=p and

y � pÿ 1, where p is prime.

33. With f (x, y) as de®ned in the previous exercise, evaluate f (n, n) for

any positive integer n.

34. Determine the ®rst 50 lucky numbers.

35. Show that every even integer greater than 4 and less than or equal to

50 is the sum of two lucky numbers.

36. Determine the ®rst 15 u(1, 3)-numbers.

37. Determine the ®rst 15 u(2, 3)-numbers.

38. Determine the ®rst 30 u(2, 5)-numbers.

39. Determine the ®rst 15 u(2, 3, 5)-numbers.

40. Determine the ®rst 15 v(1, 2)-numbers.

41. Determine the ®rst 15 v(1, 3)-numbers.

42. Determine the ®rst 15 v(3, 4, 6, 9, 10, 17)-numbers.

43. De®ne the sequence a1, a2, . . . of w(m, n)-numbers as follows. Let

a1 � m, a2 � n, and ak , for k . 2, be the unique smallest number

greater than akÿ1 equal to a product aiaj, where i , j , k. Determine

the ®rst eight w(2, 3)-numbers.

44. Show that Goldbach's conjecture and Euler's restatement of it are

equivalent.

45. Verify Goldbach's conjecture for all even integers between 4 and 50.

46. A copperbach number is a positive integer which can be expressed as

the sum of two primes in exactly two different ways. For example,

14 � 7� 7 � 11� 3. Find three other copperbach numbers.

47. A silverbach number is a positive integer which can be expressed as

the sum of two primes in at least three different ways. For example,

26 � 3� 23 � 7� 19 � 13� 13. Find three other silverbach num-

bers.

48. Paul Levy conjectured that every odd number greater than 5 can be

expressed in the form 2 p� q, where p and q are prime. Show that the

conjecture is true for all odd numbers between 7 and 49.
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49. If the ®rst 109 positive integers were put into a very large urn, estimate

the probability that a number drawn from the urn is prime.

50. Prove that

(æ(s))2 �
X1
n�1

ô(n)

ns
,

where s . 1 and n is a positive integer.

51. Prove that

æ(s) . æ(sÿ 1) �
X1
n�1

ó (n)

ns
,

where s . 2 and n is a positive integer.

52. Prove that

æ(s) . æ(sÿ k) �
X1
n�1

ó k(n)

ns
,

where s . k � 1 and n is a positive integer.

53. Prove that

1

æ(s)
�
X1
n�1

ì(n)

ns
,

where s . 1 and n is a positive integer.

3.7 Miscellaneous exercises

1. Given that gcd(a, b) � p, where p is prime, determine gcd(am, bn),

where m and n are positive integers.

2. If p is a prime and a and b are positive integers such that

gcd(a, p2) � p and gcd(b, p3) � p2, determine gcd(a� b, p4) and

gcd(ab, p4).

3. In 1951, Alfred Moessner devised a sieve process that generates

integral powers. According to Moessner's algorithm, in order to obtain

the nth powers of the natural numbers, begin with the sequence of

natural numbers and strike out every nth natural number. Form the

sequence of partial sums of the remaining terms and from it strike out

each (nÿ 1)st term. Form the sequence of partial sums of the remain-

ing terms and from it strike out each (nÿ 2)nd term. Repeat the

process nÿ 1 times to obtain the sequence of nth powers of natural

numbers. The validity of Moessner's process was established by Oskar

Perrone in 1951. For example, in order to generate third powers, we

have
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 7 12 19 27 37 48 61 75

1 8 27 64 125

Use Moessner's algorithm to generate the ®rst ®ve fourth powers of the

natural numbers.

4. If we take the sequence of nth powers of the positive integers, the nth

differences, Än, will all be equal to n! For example if n � 3, we have

1 8 27 64 125 216

7 19 37 61 91

12 18 24 30

6 6 6

Show that the fourth difference of the fourth powers of the positive

integers are 4!.

5. V. Ramaswami Aiyer founded the Indian Mathematical Society in

1907 and the Journal of the Indian Mathematical Society in 1909. In

1934, he discovered that, if a positive integer n appears in the array

shown in Table 3.5, then 2n� 1 is composite, and if n does not appear

in the array then 2n� 1 is prime, and all odd primes can be obtained

in this manner. Show that this is the case for the Aiyer array.

6. Determine a necessary and suf®cient condition for the product of the

®rst n positive integers to be divisible by the sum of the ®rst n positive

integers.

7. Let dk(n) represent the number of distinct solutions to the equation

x1
. x2 � � � xk � n, where x1, x2, . . . , xk run independently through the

set of positive integers. Show that d2(n) � ô(n). Determine d1(n).

8. Let t(nÿ k, k) represent the number of divisors of nÿ k greater than

k where n . k > 0. In 1887, M. Lerch showed that ô(n) � n ÿPnÿ1
k�1 t(nÿ k, k). According to Lerch's formula with n � 10, we have

that ô(10) � 10ÿ [t(9, 1)� t(8, 2)� t(7, 3)� t(6, 4)� t(5, 5) �

Table 3.5.

4 7 10 13 16 19 . . .
7 12 17 22 27 32 . . .

10 17 24 31 38 45 . . .
13 22 31 40 49 58 . . .
16 27 38 49 60 71 . . .
19 32 45 58 71 84 . . .
. . . . . . . . . . . . . . . . . . . . .
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t(4, 6) � t(3, 7) � t(2, 8) � t(1, 9)] � 10ÿ [2� 2� 1� 1� 0 �
0� 0� 0� 0] � 4. Use Lerch's formula to show that ô(24) � 8.

9. In 1878, CesaÁro showed that the mean difference between the number

of odd and even divisors of any integer is ln(2). In 1883, J.W.L

Glaisher showed that if è(n) represents the excess of the sum of the

odd divisors of n over the even divisors of n, then è(n)� è(nÿ 1) �
è(n ÿ 3) � è(n ÿ 6) � è(n ÿ 10) � � � � � 0, where 1, 3, 6, . . . are

the triangular numbers, and è(nÿ n) � 0. For example, è(6) �
è(5)� è(3)� è(0) � è(6)� 6 � 4� (ÿ6) � 0. Thus, è(6) � ÿ4.

Use Glaisher's formula to determine è(10) and è(24).

10. Recall that a positive integer is called polite if it can be written as a

sum of two or more consecutive positive integers. Prove that the

number of ways of writing the polite positive integer n as a sum of two

or more consecutive positive integers is ô(m)ÿ 1, where m is the

largest odd divisor of n. For example, if n � 30 then its largest odd

divisor is 15, ô(15) � 4. We obtain 9� 10� 11, 6� 7� 8� 9,

4� 5� 6� 7� 8 as the three ways to represent 30 as a sum of two or

more consecutive positive integers.

11. Show that for any positive integer n . 1 the sum 1� 1
2
� 1

3
� 1

4
�

� � � � 1=n is never an integer.

12. Let P be a polygon whose vertices are lattice points. Let I denote the

number of lattice points inside the polygon and B denote the number

of lattice points on the boundary of P. Determine a formula for the

area of the region enclosed by P as a function of I and B. [G. Pick

1899]

13. Generalize Pick's formula to the case where the region contains a

polygonal hole whose vertices are lattice points.

14. Ulam's spiral if formed as shown in Table 3.6. Continue the pattern for

several more revolutions of the spiral and color the primes red. Can

Table 3.6.

. . . . . . . . . . . . . . . . . . . . . . . .

. . . 36 35 34 33 32 31 . . .

. . . 17 16 15 14 13 30 . . .

. . . 18 5 4 3 12 29 . . .

. . . 19 6 1 2 11 28 . . .

. . . 20 7 8 9 10 27 . . .

. . . 21 22 23 24 25 26 . . .

. . . . . . . . . . . . . . . . . . . . . . . .
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you detect any patterns? Ulam's spiral appeared on the cover of the

March 1964 issue of Scienti®c American.

15. Given ��p2�� � 1, ��2p2�� � 2, and ��3p2�� � 4, if n is a positive integer,

®nd the ®rst 16 terms of the sequence generated by ��np2��.
16. If a � 2�p2 then ��a�� � 3, ��2a�� � 6, and ��3a�� � 10. If n is a

positive integer, ®nd the ®rst 20 terms of the sequence generated by

��na��.
17. Show that if f (n) � (1� ��������������

8nÿ 7
p

)=2 then the nth term of the

sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . . is given by �� f (n)��.
18. The sequence 1, 2, 4, 5, 7, 9, 10, 12, 14, 16, . . . is formed by taking the

®rst odd number, the next two even numbers, the next three odd

numbers, the next four even numbers, and so forth. Show that

the general term of the sequence is given by an � 2nÿ ��(1 ���������������
8nÿ 7
p

)=2��.
19. In The Educational Times for 1881, Belle Easton of Buffalo, New

York, showed the highest power of p dividing the product pn! is given

by ( pn ÿ 1)=( pÿ 1). Prove it.

20. In The Educational Times for 1883, Belle Easton determined the

greatest value of x for which 2n!=2x is an integer. What value did she

®nd for x?

21. In The Educational Times for 1892, Emily Perrin of Girton College,

Cambridge, showed that if n is a positive integer, A is the sum of the

divisors of n whose quotient is odd (the divisors d such that d times an

odd number is n), B is the sum of the divisors of n having even

quotient, and C is the sum of the odd divisors of n, then A � B� C.

Prove it.

22. In 1898, C.J. de la ValleÂe-Poussin showed that if a large number, say n,

is divided by all the primes up to n, then the average fraction by which

the quotient falls short of the next whole number is given approxi-

mately by ã, the Euler±Mascheroni constant. For example, if n � 43,

then 211
2
, 141

3
, 83

5
, 61

7
, 310

11
, 3 4

13
, 2 9

17
, 2 5

19
, 120

23
, 114

29
, 112

31
, 1 6

37
, 1 2

41
, will fall

short of 22, 15, 9, 7, 4, 4, 3, 3, 2, 2, 2, 2, 2, respectively by 1
2
, 2

3
, 2

5
, 6

7
, 1

11
,

9
13

, 8
17

, 14
19

, 3
23

, 15
29

, 19
31

, 31
37

, 39
41

. The average value of these 13 numbers is

approximately ã. Use de la ValleÂe-Poussin's technique with n � 67 to

obtain an estimate for the Euler±Mascheroni number.

23. For n . 0 and k > 2, let ôk(n) �Pdjnôkÿ1(d), where ô1(n) � ô(n).

Show that if n �Qr
i�1 pái

i ,

ô2(n) �
Yr

i�1

ái � 2

2

� �
:
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In general,

ôk(n) �
Yr

i�1

ái � k

k

� �
:

24. Let S � f(x, y): 0 < x < 1, 0 < y < 1g and T � f(u, v): u� v <

ð=2g. Use the transformation x � sin u=cos v, y � sin v=cos u to show

that
� �

T dudv � � � S(1ÿ x2 y2)ÿ1dxdy. Use the latter equality to show

that æ(2) � ð2=6.
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4

Perfect and amicable numbers

It is always better to ask some of the questions than to try to

know all the answers.

James Thurber

4.1 Perfect numbers

History is replete with numbers thought to have mystical or anodynical

powers. One set of such is that of the perfect numbers. A positive integer n

is said to be perfect if the sum of its divisors is twice the number itself, that

is, if ó (n) � 2n. The concept of perfect numbers goes back to Archytas of

Tarentum, a colleague of Plato, who claimed that if 2n ÿ 1 is prime then

the sum of the ®rst 2n ÿ 1 positive integers is a perfect number. An

equivalent statement, Theorem 4.1, appears as the ®nal proposition in Book

IX of Euclid's Elements, the culmination of the three books in the

Elements Euclid devotes to number theory.

Theorem 4.1 If 2n ÿ 1 is a prime number then 2nÿ1(2n ÿ 1) is perfect.

Proof The only divisors of 2nÿ1 are 1, 2, 22, . . . , 2nÿ1. If 2n ÿ 1 is prime

its only divisors are itself and 1. Since 2nÿ1 and 2n ÿ 1 are coprime, the

sum of the divisors of 2nÿ1(2n ÿ 1) can be represented as the product of

the sums of the divisors of 2nÿ1 and 2n ÿ 1. Hence,

(1� 2� 22 � � � � � 2nÿ1)[(2n ÿ 1)� 1] � 2n ÿ 1

2ÿ 1

� �
. 2n

� (2n ÿ 1)(2n)

� 2(2nÿ1)(2n ÿ 1):

Therefore, 2nÿ1(2n ÿ 1) is perfect as claimed. j

We call numbers of the form 2nÿ1(2n ÿ 1), where 2n ÿ 1 is prime,

Euclidean perfect numbers. It is important to note, however, that Euclid did
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not claim that all perfect numbers are of the form 2 pÿ1(2 p ÿ 1), where p is

prime, or that all even perfect numbers are of that form.

The ®rst four even perfect numbers were known to the ancients and can

be found in the second century works of Nicomachus and Theon of

Smyrna. They appear in the last column of Table 4.1.

Perfect numbers have generated a wealth of conjectures in number

theory. In Introduction to Arithmetic, Nicomachus partitioned the positive

integers into perfect, abundant, and de®cient numbers. He de®ned a

positive integer n to be abundant if ó (n) . 2n and to be de®cient if

ó (n) , 2n. He claimed that abundant and de®cient numbers were numer-

ous, but knew of no way to generate them.

Abundant numbers, like lucky numbers, have some Goldbach-type

properties. For example, every number greater than 46 can be expressed as

the sum of two abundant numbers. In the early seventeenth century, Bachet

showed that 945 was the only odd abundant number less than 1000 and

claimed that the product of any two primes, except 2 . 3, is a de®cient

number.

With respect to perfect numbers, Nicomachus conjectured that there is

only one perfect number between 1 and 10, only one between 10 and 100,

and only one between 1000 and 10 000. That is, the nth perfect number has

exactly n digits. He also conjectured that Euclidean perfect numbers end

alternately in 6 and 8.

Iamblichus, two centuries later, reiterated Nicomachus's claim that there

is exactly one perfect number in the interval 10k < n < 10k�1 for any

positive integer k. Boethius noted that perfect numbers were rare, but

thought that they could be easily generated in a regular manner. In the late

seventh century, Alcuin [AL kwin] of York, a theologian and advisor to

Charlemagne, explained the occurrence of the number 6 in the creation of

the universe on the grounds that 6 was a perfect number. He added that the

second origin of the human race arose from the de®cient number 8 since

there were eight souls on Noah's ark from which the entire human race

Table 4.1.

n 2(nÿ1) 2n ÿ 1 2(nÿ1)(2n ÿ 1)

2 2 3 6
3 4 7 28
5 16 31 496
7 64 127 8128
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sprang. Alcuin concluded that the second origin of humanity was more

imperfect than the ®rst.

In 950, Hrotsvita, a Benedictine nun in Saxony, mentioned the ®rst four

perfect numbers in a treatise on arithmetic. She was the author of the

earliest known Faustian-type legend where the protagonist sells his soul to

the devil for worldly gain. In 1202, Fibonacci listed the ®rst three perfect

numbers in Liber abaci. In the early thirteenth century Jordanus de Nemore

claimed, in Elements of Arithmetic, that every multiple of a perfect or

abundant number is abundant and every divisor of a perfect number is

de®cient. Nemore, Latinized Nemorarius, was the head of a Teutonic

monastic order. He perished in a shipwreck in 1236. About 1460, the ®fth

perfect number, 212(213 ÿ 1), appeared in a Latin codex. In the late

®fteenth century, Regiomontanus listed the ®rst six perfect numbers as 6,

26, 496, 8128, 33 550 336, and 8 589 869 056.

In 1510, Bouvellus, in On Perfect Numbers, discovered the ®rst odd

abundant number, 45 045. He showed that every even perfect number is

triangular and conjectured, as did Tartaglia 50 years later, that the sum of

the digits of every Euclidean perfect number larger than 6 leaves a

remainder 1 when divided by 9. The conjecture was proven by Cataldi in

1588 and independently, in 1844, by Pierre Laurent Wantzel when he

showed the digital root of a Euclidean perfect number is unity. Seven years

earlier Wantzel had given the ®rst rigorous proof of the impossibility of

trisecting a given angle with only a straight edge and collapsing compasses.

The trisection of a general angle, the duplication of a cube and the squaring

of a circle, three great problems bequeathed to us by the Greeks of

antiquity, have all been shown to be impossible.

In 1536, in Arithmetic, Hudalrichus Regius showed that 211 ÿ 1 �
23 . 89 and, in doing so, established that it is not always the case that

2 p ÿ 1 is prime when p is prime. In 1544, in Complete Arithmetic, Michael

Stifel stated that all Euclidean perfect numbers greater than 6 are triangular

and multiples of 4, which did little to enhance his analytic reputation. In

1575, Francesco Maurolico, Latinized Franciscus Maurolycus, a Benedic-

tine and professor of mathematics at Messina, showed that Euclidean

perfect numbers are hexagonal. In 1599, Pierre de la RameÂe, Latinized

Petrus Ramus, author of a system of logic opposed in many respects to the

Aristotelian system, claimed that there is at most one k-digit perfect

number, resurrecting Nicomachus's conjecture. In 1638, in On Perfect

Numbers, Jan Brozek, Latinized Broscius, a professor of theology, astron-

omy, and rhetoric at Krakow, showed that 223 ÿ 1 is composite and claimed

that there are no perfect numbers between 104 and 105.
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In 1588, in Treatise on Perfect Numbers, Pietro Antonio Cataldi showed

that Euclidean perfect numbers end in either 6 or 8, but not alternately as

Nicomachus had claimed. In 1891, Lucas proved that every even perfect

number, except for 6 and 496, ends in 16, 28, 36, 56, or 76 and all but 28

can be expressed as 7k � 1. Cataldi showed that 217 ÿ 1 was prime and

discovered the sixth perfect number, 216(217 ÿ 1). Fifteen years later, he

discovered the seventh perfect number, 218(219 ÿ 1), and conjectured that

2n ÿ 1 was prime for n � 23, 29, 31 and 37. However, in 1640, Fermat

factored 223 ÿ 1 and 237 ÿ 1. A century later Euler showed that 229 ÿ 1

and 231 ÿ 1 were composite. Cataldi was professor of mathematics and

astronomy at Florence, Perugia and Bologna. He founded the ®rst mathe-

matics academy in Bologna. He wrote his mathematical works in Italian

and, in an effort to create interest in the subject, distributed them free of

charge.

In 1638, ReneÂ Descartes wrote to Marin Mersenne, the French cleric

who kept up a prodigious mathematical correspondence in the seventeenth

century, to the effect that he thought all even perfect numbers were of the

form 2nÿ1(2n ÿ 1), with 2n ÿ 1 prime. He added, however, that he could

see no reason why an odd perfect number could not exist. In correspondnce

between Frenicle and Fermat in 1640 several major results concerning

perfect numbers were established. Using Mersenne as a conduit, Frenicle

asked Fermat to produce a perfect number of 20 or 21 digits or more. Two

months later, Fermat replied that there were none.

Fermat began his research on perfect numbers by determining all the

primes of the form an ÿ 1, where a and n are positive integers. His

conclusion is stated as Theorem 4.2.

Theorem 4.2 If an ÿ 1 is prime for integers n . 1 and a . 1, then a � 2

and n is prime.

Proof Since an ÿ 1 � (aÿ 1)(anÿ1 � anÿ2 � � � � � a� 1) is prime,

aÿ 1 � 1, hence a � 2. Moreover, if n is a composite number, say n � rs,

with r . 1 and s . 1, then 2n ÿ 1 � 2rs ÿ 1 � (2r ÿ 1)(2r(sÿ1) �
2r(sÿ2) � � � � � 1). However, each factor on the right exceeds 1 contra-

dicting the fact that 2n ÿ 1 is prime. Hence, n is prime and the result is

established. j

Frenicle wrote that 237 ÿ 1 was composite but he could not ®nd its factors.

Fermat replied that its factors were 223 and 616 318 177. Fermat discov-

ered that if p is prime and 2 p ÿ 1 is composite then all the prime factors of
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2 p ÿ 1 must be of the form np� 1, where n is a positive integer and

p . 2. Hence, any prime divisor of 237 ÿ 1 is of the form 37n� 1. In order

to verify 237 ÿ 1 is prime, Fermat had only to check to see if

149 � 37 . 4� 1 and 223 � 37 . 6� 1 were factors. In 1732, Euler ex-

tended Fermat's work and claimed that if n � 4k ÿ 1 and 8k ÿ 1 are prime

then 2n ÿ 1 has the factor 8k ÿ 1. Euler used the result to show 2n ÿ 1 is

composite for n � 11, 23, 83, 131, 179, 191, 239 and found factors of

2n ÿ 1 when n � 29, 37, 43, 47, and 73. Lagrange gave a formal proof of

Euler's claim in 1775 as did Lucas in 1878. In 1772, Euler showed that

231 ÿ 1 was prime and generated the eighth perfect number, 230(231 ÿ 1).

Euler, in a posthumous work entitled On Amicable Numbers, established

the converse of Euclid's theorem on perfect numbers by showing that all

even perfect numbers are Euclidean.

Theorem 4.3 Every even perfect number is of the form 2nÿ1(2n ÿ 1),

where 2n ÿ 1 is prime.

Proof Suppose that r is an even perfect number, say r � 2nÿ1s, where

n > 2 and s is odd. Since r is perfect ó (r) � 2r. We have ó (r) �
ó (2nÿ1s) � 2(2nÿ1s) � 2ns. Since 2nÿ1 and s have no common factors, the

sum of the divisors of 2nÿ1s is given by (2n ÿ 1)=(2ÿ 1) times the sum of

the divisors of s, that is, ó (r) � (2n ÿ 1)ó (s). Hence, 2ns � (2n ÿ 1)ó (s).

Let ó (s) � s� t where t denotes the sum of the divisors of s which are

strictly less than s. Thus, 2ns � (2n ÿ 1)(s� t) and we have that

s � (2n ÿ 1)t. Thus, t divides s and thus must be one of the divisors of s,

which could only be the case if t � 1. Therefore, s � 2n ÿ 1, and the result

is established. j

According to Theorem 4.3, in order to ®nd even perfect numbers, we need

only ®nd primes of the form 2 p ÿ 1, where p is also a prime. Such primes,

denoted by Mp, are called Mersenne primes. In 1644, in the preface of his

Cogitata physico-mathematica, Mersenne claimed Mp is prime for p � 2,

3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. The number of combinations of

Mp things taken two at a time is given by 2 pÿ1(2 p ÿ 1). Hence, all even

perfect numbers are triangular and, as such, lie on the third diagonal of

Pascal's triangle.

In 1869, F. Landry showed that 2n ÿ 1 was composite if n � 53 or 59. In

1876 Lucas discovered a technique that was improved by D. H. Lehmer in

1930, called the Lucas±Lehmer test. Let p be prime, a � 4, and an�1 be

the remainder when (an)2 ÿ 2 is divided by Mp. According to the test, if
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Mp divides a pÿ1, that is if a pÿ1 � 0, then Mp is prime. For example, the

Lucas±Lehmer sequence for 31 � 25 ÿ 1 is given by 4, 14, 8, 0. Hence,

M31 is prime. In 1877, Lucas discovered the 9th perfect number

2126(2127 ÿ 1) when he veri®ed that M127 was prime. In 1883, I. Pervushin

discovered the 10th perfect number when he established that M61 was

prime.

At a special session on number theory at a meeting of the Ameri-

can Mathematical Society in October 1903, Frank Nelson Cole of Co-

lumbia University presented a paper entitled `On the factorization of

large numbers'. When his turn came to speak, he went to the black-

board, multiplied 761 838 257 287 by 193 707 721 and obtained

147 573 952 589 676 412 927, which is 267 ÿ 1. Cole put down the chalk

and, amid vigorous applause, returned to his seat without ever uttering a

word. There were no questions. He later said that it took him several years,

working Sunday afternoons, to ®nd the factors of 267 ÿ 1. Cole served as

Secretary to the AMS from 1896 to 1920 and as editor of the AMS Bulletin

for 21 years.

In 1911, R.E. Powers veri®ed that M89 was prime and, in 1914, showed

M107 was prime. Hence, up to the First World War, only 12 perfect

numbers were known corresponding to the Mersenne primes Mp, for

p � 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127. When the age of

electronic computers dawned in the early 1950s, mathematicians applied

the new technology to the search for Mersenne primes. In 1952, Raphael

M. Robinson, using the SWAC computer at the National Bureau of

Standards, now the National Institute of Standards and Technology, showed

that M521, M607, M1279, M2203, and M2281 were prime. It took 66 minutes

of computer time to con®rm that M2281 is prime. In 1957, Hans Riesel,

with the help of a BESK computer, discovered that M3217 was prime. In

1961, Alexander Hurwitz of UCLA showed that M4253 and M4423 were

prime using an IBM 7090. In 1963, Don Gillies, using the ILLIAC

computer at the University of Illinois, generated the Mersenne primes

M9689, M9941, and M11 213. The last generates the 23rd perfect number and

for a time 211 213 ÿ 1 appeared in the University of Illinois's metered stamp

cancellation. In 1971, Bryant Tuckerman took 39.44 minutes of computer

time using an IBM 360/91 at the Watson Research Center to discover the

24th Mersenne prime, M19 937.

In 1978, after three years of hard work using a Control Data CYBER

174, Laura Nickel and Curt Noll, 18-year-old undergraduates at California

State University at Hayward, discovered that M21 701 is prime. In 1979,

Noll showed that M23 209 was prime. Later that year, Harry Nelson and
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David Slowinski of Cray Research discovered the 27th Mersenne prime

M44 497. In the early 1980s, using a Cray X-MP, Slowinski determined that

M86 243 and M132 049 were Mersenne primes. It took three hours of

computer time to establish that M132 049 was indeed prime. In 1985,

Slowinski, using a Cray X-MP 24 at Cheveron Geoscience in Houston,

discovered that M216 091 was prime. In 1988, Walter N. Colquitt and Luther

Welsh, Jr, with the help of a NEC SX 2 supercomputer at the Houston Area

Research Center, discovered that M110 503 was prime. In 1992, Slowinski

and Paul Gage of Cray Research established that M756 839 was prime. In

1994, using the Lucas±Lehmer test and 7.2 hours on a Cray Y-MP M90

series computer Slowinski and Gage showed that M859 433 and M1 257 787

were prime. Given the present data, it appears that roughly every three-

thousandth prime is a Mersenne prime. In 1996, George Woltman estab-

lished the Great Internet Mersenne Prime Search (GIMPS). Volunteers

using their own personal computers aid in the search for large prime

numbers. In November 1996, Joel Armengaud, a 29-year-old programmer

from Paris, France, using a Lucas±Lehmer program written by Woltman

and the help of 750 programmers scattered across the internet, established

that M1 398 269 is prime. In 1997, Gordon Spencer using Woltman's GIMPS

program showed that M2 976 221 is prime. In 1998, Roland Clarkson, a

student at California State University, Dominguez Hill, using Woltman's

GIMPS program and a networking software written by Scott Kuratowsi,

showed that the 909 526 digit number M3 021 377 is prime. It remains an

open question whether there are an in®nite number of Mersenne primes.

kLet V (x) represent the number of perfect numbers n such that n < x. In

1954, H.-J. Kanold showed that the natural density of perfect numbers,

limx!1(V (x)=x), equals zero, implying that V (x) goes to in®nity slower

than x does. In a posthumous work, Tractatus de numerorum ductrina, Euler

proved that there are no odd perfect numbers of the form 4k � 3, and if an

odd perfect number exists it must be of the form p4a�1 N2, where p is a

prime of the form 4k � 1, a > 0, N is odd and p does not divide N . In 1888,

J.J. Sylvester showed that no odd perfect number exists with less than six

distinct prime factors and no odd perfect number exists, not divisible by 3,

with less than eight distinct prime factors. In 1991, R.P. Brent, G.L. Cohen,

and H.J.J. te Riele showed that if n is odd and perfect then n > 10300.

Exercises 4.1

1. In 1700, Charles de NeuveÂglise claimed the product of two consecutive

integers n(n� 1) with n > 3 is abundant. Prove or disprove his claim.
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2. In 1621, Bachet claimed that every multiple of a perfect number or an

abundant number is abundant. Prove that his claim is true thereby

establishing NeuveÂglise's conjecture that there are an in®nite number

of abundant numbers.

3. Prove that there are an in®nite number of odd de®cient numbers and

an in®nite number of even de®cient numbers.

Table 4.2. Known Mersenne primes Mp

Number Value of p Discoverer Year

1 2 anonymous 4th cent. BC
2 3 anonymous 4th cent. BC
3 5 anonymous 4th cent. BC
4 7 anonymous 4th cent. BC
5 13 anonymous 1456
6 17 Cataldi 1588
7 19 Cataldi 1603
8 31 Euler 1772
9 61 Pervushin 1883

10 89 Powers 1911
11 107 Powers 1914
12 127 Lucas 1876
13 521 Robinson 1952
14 607 Robinson 1952
15 1 279 Robinson 1952
16 2 203 Robinson 1952
17 2 281 Robinson 1952
18 3 217 Riesel 1957
19 4 253 Hurwitz 1961
20 4 423 Hurwitz 1961
21 9 689 Gillies 1963
22 9 941 Gillies 1963
23 11 213 Gillies 1963
24 19 937 Tuckerman 1971
25 21 701 Noll, Nickel 1978
26 23 209 Noll 1979
27 44 497 Nelson, Slowinski 1979
28 86 243 Slowinski 1982
29 110 503 Colquitt, Welsh 1988
30 132 049 Slowinski 1983
31 216 091 Slowinski 1985
32 756 839 Slowinski, Gage 1992
33 859 433 Slowinski, Gage 1994
34 1 257 787 Slowinski, Gage 1996
35 1 398 269 Armengaud, Woltman (GIMPS) 1996
36 2 976 221 Spencer, Woltman (GIMPS) 1997
37 3 021 377 Clarkson, Woltman (GIMPS) 1998

134 Perfect and amicable numbers



4. Show that every proper divisor of a perfect number is de®cient.

5. Determine the binary representations for the ®rst four perfect numbers.

Generalize your answers.

6. Show that the digital root of the seventh perfect number is 1.

7. Show that every Euclidean perfect number is triangular.

8. Show that every Euclidean number is hexagonal.

9. Prove that Ódjndÿ1 � 2 if and only if n is perfect. [Carlo Bourlet

1896]

10. Show that the product of the divisors of the even perfect number

n � 2 pÿ1(2 p ÿ 1) is given by n p.

11. Show that M1 398 269 has 420 921 digits.

12. Show that no perfect number greater than 6 can be either a product of

two primes or a power of a prime.

13. Show that 6 is the only squarefree perfect number.

14. Show that every Euclidean perfect number greater than 6 can be

expressed as the sum of consecutive odd cubes beginning with unity

cubed. For example, 28 � 13 � 33, 496 � 13 � 33 � 53 � 73, and

8128 � 13 � 33 � � � � � 153.

15. Prove that the units digit of any Euclidean perfect number is either 6

or 8. [Cataldi 1588]

16. Prove that the sum of the digits of every Euclidean perfect number

larger than 6 always leaves a remainder of 1 when divided by 9. (Hint:

it suf®ces to show that every Euclidean perfect number is of the form

9k � 1.) [Cataldi 1588]

17. Show that 6 is the only positive integer n with the property that n and

ó (ó (n)) are perfect.

18. Use the Lucas±Lehmer test to show that M17 is prime.

19. Show that a number of the form 2 . 3á cannot be perfect, unless á � 1.

20. A positive integer n is called multiplicatively perfect or product

perfect if the product of its divisors is equal to n2. For example, 6 and

15 are product perfect. Find the ®rst 15 product perfect numbers.

21. Use the number theoretic function ô to succinctly classify all product

perfect numbers.

22. What is the length of the aliquot cycle generated by a perfect number?

4.2 Fermat numbers

Fermat, after discovering the conditions on the integers a and n for an ÿ 1

to be prime, determined under what conditions an � 1 is prime.
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Theorem 4.4 If an � 1, with a . 1 and n . 0, is prime then a is even and

n � 2r for some positive integer r.

Proof Suppose that an � 1 is prime. If a were odd, then an � 1 would be

even, greater than 3, and hence not prime. Therefore, a is even. Suppose

that n has an odd factor which is greater than 1, say n � rs, with s odd and

greater than 1. Hence, an � 1 � ars � 1 � (ar � 1)(ar(sÿ1) ÿ ar(sÿ2) �
� � � ÿ ar � 1). Since s > 3, both factors of an � 1 are greater than 1,

contradicting the fact that an � 1 is prime. Hence, n has no odd factors and

must be a power of 2. j

If n is a nonnegative integer, 22 n � 1, denoted by Fn, is called a Fermat

number. The ®rst ®ve Fermat numbers, corresponding to n � 0, 1, 2, 3, 4,

are, respectively, 3, 5, 17, 257, and 65 537 and are prime. Fermat

conjectured that Fn was prime for every nonnegative integer n. However,

one of Euler's ®rst number theoretic discoveries, was that F5 is composite.

Speci®cally, he showed the 4 294 967 297 � 641 . 6 700 417. Later, he

proved that every prime divisor of Fn for n > 2 must be of the form

k . 2n�2 � 1. He used this discovery to show that 19 . 29450 � 1 divides

F9448 and 5 . 223 473 � 1 divides F23 471. Currently, the only Fermat numbers

known to be prime are F0, F1, F2, F3, and F4. In addition, 274 177 divides

F6, 596 495 891 274 977 217 divides F7, 1575 . 219 � 1 divides F16, and

F5 � (29 � 27 � 1)(227 ÿ 221 � 219 ÿ 217 � 214 ÿ 29 ÿ 27 � 1). The only

Fn whose prime status remains undecided are those with n > 24. Even

F3310, which has 10990 digits, has been shown to be composite. In 1877, T.

Pepin proved that Fn is prime if and only if it does not divide 322 nÿ1 � 1. In

1905 J.C. Morehead and A.E. Western, using Pepin's test (Theorem 6.14),

showed that F7 was composite. Four years later, they proved that F8 was

composite. In 1977, Syed Asadulla established that the digital root of Fn is

5 or 8 according as n . 1 is odd or even. It is an open question whether

every Fermat number is squarefree.

In 1796, Gauss renewed interest in Fermat numbers when, as the

capstone of his Disquisitiones arithmeticae, he proved that a regular

polygon of n � 2k p1 p2 � � � pr sides can be constructed using a straight-

edge and compasses if and only if the primes pi, for 1 < i < r, are distinct

and each is a Fermat prime. The only such polygons known with an odd

number of sides are those for which n equals 3, 5, 17, 257, 65 537 or a

product of these numbers. William Watkins of California State University,

Northridge, discovered that the binary number represented by the rows of

the Pascal triangle, where even numbers are represented by 0 and odd

136 Perfect and amicable numbers



numbers by 1, generates these odd numbers for which constructable regular

polygons exist. (See Figure 4.1.)

Gauss requested that a 17-sided regular polygon should be inscribed on

his tombstone, but his request was thought by local stonemasons to be too

dif®cult to construct even without being restricted to using only straight-

edge and collapsing compasses.

Exercises 4.2

1. Find the digital roots of the ®rst six Fermat numbers.

2. Using Gauss's result concerning regular polygons, for which numbers

n less than 26 can regular polygons of n sides be constructed using

only Euclidean tools?

3. Show that
Qnÿ1

i�0 Fi � Fn ÿ 2.

4. Prove that the last digit of any Fermat number, Fn, for n > 3 is always

7.

5. Prove that if m 6� n then gcd(Fm, Fn) � 1.

6. Prove that if m , n then Fm divides Fn ÿ 2.

7. Show that Fn for n . 0 is of the form 12k � 5.

8. Prove that no Fermat number is square.

9. Prove that no Fermat number is a cube.

10. Prove that no Fermat number greater than 3 is a triangular number.

4.3 Amicable numbers

Distinct positive integers m and n are called amicable if each is the sum of

the proper divisors of the other, that is, if ó (m) � m� n � ó (n). Perfect

numbers are those numbers which are amicable with themselves. Iambli-

chus ascribed the discovery of the ®rst pair of amicable numbers, 220 and

284, to Pythagoras, who when asked what a friend was, answered, `another

I', which in a numerical sense, is just what these numbers are to each other.

Reference to the number 220 can be found in the Book of Genesis.

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

......................................

5 1
5 3
5 5
5 15
5 17
5 51

Figure 4.1.
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Amicable numbers appear repeatedly in Islamic works where they play a

role in magic, astrology, the casting of horoscopes, sorcery, talismans, and

the concoction of love potions. Ibn Khaldun, a fourteenth century Islamic

historian, stated in the Muqaddimah (Introduction to History) that `persons

who have concerned themselves with talismans af®rm that the amicable

numbers 220 and 284 have an in¯uence to establish a union or close

friendship between two individuals.' Khaldun, who developed the earliest

nonreligious philosophy of history, was rescued by and served for a time in

the court of the Turkish conqueror Tamerlane.

Thabit ibn Qurra, a ninth century mathematician, devised the ®rst

method to construct amicable pairs. He formed the sequence a0 � 2,

a1 � 5, a2 � 11, a3 � 23, . . . , in which each term is obtained by doubling

the preceding term and adding 1 to it. If any two successive odd terms a

and p of the sequence are primes, and if r � pq� p� q is also prime,

then Thabit concluded that 2n pq and 2n r are amicable. According to

Thabit's method 2n pq and 2n r are amicable if p � (3 . 2n)ÿ 1, q �
(3 . 2nÿ1)ÿ 1, and r � (9 . 22nÿ1)ÿ 1, with n . 1, are all odd primes.

Thabit's method generates the three amicable pairs 220 and 284, 17 296

and 18 416, and 9 363 584 and 9 437 056 and no others of that type less

than 2 3 1010 have been discovered.

Thabit's rule was rediscovered on a number of occasions. In 1646,

Fermat constructed a table in which the second row consisted of the powers

of 2, the third row three times the number on the second row, the ®rst row

the number on the third row less 1, and the fourth row the product of two

successive numbers on the third row less 1, as shown in Table 4.3. Fermat

claimed that if the number d on the fourth row is prime, the number b

directly above it on the ®rst row and the number a directly preceding b on

the ®rst row are both prime, and if c is the number on the second row above

d, then c . d and a . b . c are amicable, as shown in Table 4.4. For example,

in Table 4.3, `71' on the fourth row is prime. The number on the ®rst row

directly above `71' is `11'; it and the number immediately preceding it on

the ®rst row `5' are both prime. The number `4' on the second row is above

`71'. Hence, 4 . 71 and 4 . 5 . 11 form an amicable pair.

Table 4.3.

5 11 23 47 95 191 . . . 3 . 2n ÿ 1
2 4 8 16 32 64 . . . 2n

6 12 24 48 96 192 . . . 3 . 2n

71 287 1151 4607 18 431
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In 1742, Euler devised a method for generating amicable pairs. At that

time, only three pairs of amicable numbers were known. He listed 30 new

pairs of amicable numbers in On Amicable Numbers and eight years later

found 59 more pairs. In 1866, 16-year-old Nicolo Paganini discovered an

amicable pair, 1184 and 1210, which Euler had overlooked. Unfortunately,

Paganini gave no indication whatsoever of how he found the pair. In 1884,

P. Seelhof used Euler's method to discover two new pairs of amicable

numbers, (32 . 72 . 13 . 19 . 23 . 83 . 1931, 32 . 72 . 13 . 19 . 23 . 162 287)

and (26 . 139 . 863, 26 . 167 . 719). In 1911, Leonard Eugene Dickson

discovered two new pairs of amicable numbers, (24 . 12 959 . 50 231,

24 . 17 . 137 . 262 079) and (24 . 10 103 . 735 263, 24 . 17 . 137 . 2 990 783).

In 1946, E.B. Escott added 233 pairs to the list. In 1997, at age 79, Mariano

Garcia discovered an amicable pair each of whose members has 4829

digits. Currently, about 1200 amicable pairs are known. (See Table 4.5 for

some.)

There are a number of unanswered questions concerning amicable pairs;

for example, whether there are an in®nite number of amicable pairs, or

whether there exists a pair of amicable numbers of opposite parity. It

appears plausible that the sum of the digits of amicable pairs taken together

is divisible by 9 and that every pair of amicable numbers has unequal

remainders when each component is divided by 4. However, if there exists

a pair with equal remainders when divided by 4 then no odd perfect

number exists. In 1988, the amicable pair (A . 140 453 . 85 857 199,

A . 56 099 . 214 955 207), with A � 54 . 73 . 113 . 132 . 172 . 19 . 612 . 97 .

307, was discovered proving that it is not the case that all odd amicable

pairs are divisible by 3.

Exercises 4.3

1. Show that (220, 284), (1184, 1210), (17 296, 18 416) and (24 . 23 . 479,

24 . 89 . 127) are amicable pairs.

2. Prove that if (m, n) is an amicable pair then

Table 4.4.

a b
c

d
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3. Show that for the amicable pairs (22 . 5 . 23 . 137, 22 . 23 . 827) and

(23 . 17 . 4799, 23 . 29 . 47 . 59) the sum of the digits taken together is

divisible by 9.

4. A pair of numbers (m, n), with m , n, is called betrothed if

ó (m) � m� n� 1 � ó (n). In 1979, 11 betrothed pairs were known.

Show that (48, 75), (140, 195), and (1575, 1648) are betrothed pairs.

5. A triple (a, b, c) is called an amicable triple if ó (a) � ó (b) �
ó (c) � a� b� c. Show that (25 . 33 . 47 . 109, 25 . 32 . 7 . 659,

25 . 32 . 5279) is an amicable triple.

6. Show that (22 . 32 . 5 . 11, 25 . 32 . 7, 22 . 32 . 71) is an amicable triple.

7. Show that (123 228 768, 103 340 640, 124 015 008) is an amicable tri-

ple.

8. Determine the length of the aliquot cycle generated by an amicable

number.

Table 4.5. Some amicable pairs

22 . 5 . 11 22 . 71 Pythagoreans
24 . 23 . 47 24 . 1151 Fermat (1636)
27 . 191 . 383 27 . 73 727 Descartes (1636)
22 . 5 . 23 . 137 22 . 23 . 827 Euler (1747)
32 . 5 . 7 . 13 . 17 32 . 7 . 13 . 107 Euler (1747)
32 . 5 . 7 . 1317 32 . 7 . 13 . 107 Euler (1747)
32 . 5 . 11 . 13 . 19 32 . 5 . 13 . 239 Euler (1747)
32 . 5 . 72 . 13 . 41 32 . 72 . 13 . 251 Euler (1747)
32 . 5 . 7 . 53 . 1889 32 . 5 . 7 . 102 059 Euler (1747)
22 . 13 . 17 . 389 509 22 . 13 . 17 . 198 899 Euler (1747)
32 . 5 . 7 . 19 . 37 . 887 32 . 5 . 19 . 37 . 7103 Euler (1747)
34 . 5 . 11 . 29 . 89 34 . 5 . 11 . 2699 Euler (1747)
32 . 72 . 11 . 13 . 41 . 461 32 . 72 . 11 . 13 . 19 403 Euler (1747)
32 . 5 . 13 . 19 . 29 . 569 32 . 5 . 13 . 19 . 17 099 Euler (1747)
32 . 5 . 72 . 13 . 97 . 193 32 . 72 . 13 . 97 . 1163 Euler (1747)
32 . 5 . 7 . 13 . 41 . 163 . 977 32 . 7 . 13 . 41 . 163 . 5867 Euler (1747)
23 . 17 . 79 23 . 23 . 59 Euler (1747)
24 . 23 . 1367 24 . 53 . 607 Euler (1747)
24 . 47 . 89 24 . 53 . 79 Euler (1747)
25 . 37 2 . 5 . 112 Paganini (1866)
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4.4 Perfect-type numbers

A positive integer n is called multiperfect or, more precisely, k-perfect if

ó (n) � kn, where k > 2 is a positive integer. Thus, a perfect number is a

2-perfect number. The term multiperfect was coined by D.H. Lehmer in

1941. The ®rst multiperfect number, with k . 2, was discovered by the

Cambridge mathematician Robert Recorde in 1557, when he noted in his

Whetstone of Witte that 120 is 3-perfect. In Whetstone, Recorde introduced

the modern symbol of two horizontal line seqments for equals, `�' adding

that `no 2 things can be more equal'. In 1556, Recorde's The Castle of

Knowledge introduced English readers to the Copernican theory.

Multiperfect numbers were studied extensively by French mathemati-

cians in the seventeenth century. In 1631, Mersenne challenged Descartes

to ®nd a 3-perfect number other than 120. Six years later, Fermat

discovered that 672 is 3-perfect. Fermat constructed an array similar to that

found in Table 4.6, where the second row consists of the powers of 2, the

top row numbers one less than the numbers on the second row, and the

third row one more. Fermat claimed that if the quotient of a number in the

top row of the (n� 3)rd column and the bottom row of the nth column is

prime, for n . 1, then three times the product of the quotient and the

number in the (n� 2)nd column is a 3-perfect number. In essence, Fermat

claimed that if q � (2n�3 ÿ 1)=(2n � 1) is prime then 3 . q . 2n�2 is 3-

perfect. For example, from Table 4.6, with n � 3, q � 63
9
� 7, hence,

3 . 7 . 23�2 � 672 is 3-perfect.

In 1638, AndreÂ Jumeau, prior of Sainte Croix, Oloron-Ste-Marie,

showed that 523 776 was a 3-perfect number, and issued a second challenge

to Descartes to ®nd another 3-perfect number. Descartes responded that

1 476 304 896 is 3-perfect and listed six 4-perfect numbers, and two 5-

perfect numbers. Descartes claimed that if n was 3-perfect and not

divisible by 3 then 3n is 4-perfect; if 3 divides n and both 5 and 9 do not

divide n then 45n is 4-perfect; if 3 divides n and 57, 9, and 13 do not

divide n then 3 . 7 . 13 . n is 4-perfect. He added that Fermat's method only

yields the 3-perfect numbers 120 and 672.

Table 4.6.

1 2 3 4 5 6 7 8

2n ÿ 1 1 3 7 15 31 63 127 255 . . .
2n 2 4 8 16 32 64 128 256 . . .
2n � 1 3 5 9 17 33 65 129 257 . . .
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In 1639, Mersenne discovered the ®fth 3-perfect number 459 818 240.

Eight years later, Fermat found the 3-perfect number 51 001 180 160, 2 4-

perfect numbers, 2 5-perfect numbers, and the ®rst 2 6-perfect numbers. In

1647, Mersenne claimed that if n were 5-perfect and 5 did not divide n

then 5n would be 6-perfect. In 1929, Poulet listed 36 4-perfect numbers, 55

5-perfect numbers, 166 6-perfect numbers, 69 7-perfect numbers and 2 8-

perfect numbers, one of them being 262 . 322 . 510 . 74 . 113 . 137 . 172 .

19 . 23 . 292 . 31 . 372 . 43 . 47 . 53 . 612 . 672 . 73 . 89 . 972 . 1272 .

139 . 167 . 181 . 193 . 271 . 307 . 317 . 337 . 487 . 521 . 1523 . 3169 . 3613 .

5419 . 9137 . 14 281 . 92 737 . 649 657 . 2 384 579 . 12 207 031 .

1 001 523 179. In the 1950s, Benito Franqui and Mariano GarcõÂa at the

University of Puerto Rico and Alan Brown independently generated about

100 multiperfect numbers, albeit there were a few numbers common to

both lists and some overlap with the multiperfect numbers generated by

Poulet 25 years earlier. No multiperfect numbers have been discovered

with k . 10. (See Tables 4.7 and 4.8.) Two open questions concerning

multiperfect numbers are whether there are in®nitely many multiperfect

numbers and whether an odd multiperfect number exists.

Table 4.7.

Multiperfect
type

Number known

2-perfect 37
3-perfect 6
4-perfect 36
5-perfect 65
6-perfect 245
7-perfect 516
8-perfect 1097
9-perfect 1086

10-perfect 25

Table 4.8. Some multiperfect numbers (in order of discovery)

(a) 3-perfect numbers

1 23 . 3 . 5 Recorde (1557)
2 25 . 3 . 7 Fermat (1637)
3 29 . 3 . 11 . 31 Jumeau (1638)
4 213 . 3 . 11 . 43 . 127 Descartes (1638)
5 28 . 5 . 7 . 19 . 37 . 73 Mersenne (1639)
6 214 . 5 . 7 . 19 . 31 . 151 Fermat (1643)
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Table 4.8. (b) 4-perfect numbers

1 25 . 33 . 5 . 7 Descartes (1638)
2 23 . 32 . 5 . 7 . 13 Descartes (1638)
3 29 . 33 . 5 . 11 . 31 Descartes (1638)
4 29 . 32 . 7 . 11 . 13 . 31 Descartes (1638)
5 213 . 33 . 5 . 11 . 43 . 127 Descartes (1638)
6 213 . 32 . 7 . 11 . 13 . 43 . 127 Descartes (1638)
7 28 . 3 . 5 . 7 . 19 . 37 . 73 Mersenne (1639)
8 27 . 33 . 52 . 17 . 31 Mersenne (1639)
9 210 . 33 . 52 . 23 . 31 . 89 Mersenne (1639)

10 214 . 3 . 5 . 7 . 19 . 31 . 151 Fermat (1643)
11 27 . 36 . 5 . 17 . 23 . 137 . 547 . 1093 Fermat (1643)
12 22 . 32 . 5 . 72 . 13 . 19 Lehmer (1900)
13 28 . 32 . 72 . 13 . 192 . 37 . 73 . 127 Lehmer (1900)
14 214 . 32 . 72 . 13 . 192 . 31 . 127 . 151 Carmichael (1910)
15 225 . 33 . 52 . 19 . 31 . 683 . 2731 . 8191 Carmichael (1910)
16 225 . 36 . 5 . 19 . 23 . 137 . 547 . 683 . 1093 . 2731 . 8191 Carmichael (1910)
17 25 . 34 . 72 . 112 . 192 . 127 Poulet (1929)
18 25 . 34 . 72 . 112 . 194 . 151 . 911 Poulet (1929)
19 27 . 310 . 5 . 7 . 23 . 107 . 3851 Poulet (1929)
20 28 . 32 . 72 . 13 . 194 . 37 . 73 . 151 . 911 Poulet (1929)

Table 4.8. (c) 5-perfect numbers

1 27 . 34 . 5 . 7 . 112 . 17 . 19 Descartes (1638)
2 210 . 35 . 5 . 72 . 13 . 19 . 23 . 89 Frenicle (1638)
3 27 . 35 . 5 . 72 . 13 . 17 . 19 Descartes (1638)
4 211 . 33 . 52 . 72 . 13 . 19 . 31 Mersenne (1639)
5 220 . 33 . 5 . 72 . 132 . 19 . 31 . 61 . 127 . 337 Fermat (1643)
6 217 . 35 . 5 . 73 . 13 . 192 . 37 . 73 . 127 Fermat (1643)
7 210 . 34 . 5 . 7 . 112 . 19 . 23 . 89 Fermat (1643)
8 221 . 36 . 52 . 7 . 19 . 232 . 31 . 79 . 89 . 137 . 547 . 683 . 1093 Lehmer (1900)
9 211 . 35 . 5 . 72 . 132 . 19 . 31 . 61 Poulet (1929)

10 211 . 35 . 52 . 73 . 132 . 312 . 61 . 83 . 331 Poulet (1929)
11 211 . 35 . 53 . 73 . 133 . 17 Poulet (1929)
12 211 . 36 . 5 . 72 . 13 . 19 . 23 . 137 . 547 . 1093 Poulet (1929)
13 211 . 310 . 5 . 72 . 13 . 19 . 23 . 107 . 3851 Poulet (1929)
14 214 . 32 . 52 . 73 . 13 . 19 . 312 . 83 . 151 . 331 Poulet (1929)
15 215 . 37 . 5 . 7 . 11 . 17 . 41 . 43 . 257 Poulet (1929)
16 217 . 35 . 5 . 73 . 13 . 192 . 37 . 73 . 127 Poulet (1929)
17 217 . 35 . 5 . 73 . 13 . 194 . 37 . 73 . 151 . 911 Poulet (1929)
18 219 . 36 . 5 . 7 . 11 . 23 . 31 . 41 . 137 . 547 . 1093 Poulet (1929)
19 219 . 37 . 52 . 7 . 11 . 312 . 412 . 83 . 331 . 431 . 1723 Poulet (1929)
20 219 . 310 . 5 . 7 . 11 . 23 . 31 . 41 . 107 . 3851 Poulet (1929)
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A positive integer n is called k-hyperperfect if k . ó (n) � (k � 1)n

� k ÿ 1. For example, 21, 2133, and 19 521 are 2-hyperperfect and 325 is

3-hyperperfect. In 1974, Daniel Minoli and Robert Bear described a num-

ber of properties of hyperperfect numbers. For example, if 3n ÿ 1 is prime

then 3nÿ1(3n ÿ 2) is 2-hyperperfect. They conjectured that for each posi-

tive integer k there exists a k-hyperperfect number.

A positive integer n is called semiperfect or pseudoperfect if there exists

a collection of distinct proper divisors of n such that their sum is n. For

example, 20 is semiperfect since its divisors include 1, 4, 5, 10, and

20 � 10� 5� 4� 1. Every multiple of a semiperfect number is semiper-

fect, hence, there are in®nitely many semiperfect numbers. It is an open

question whether every odd abundant number is semiperfect. A positive

integer is called primitive semiperfect if it is semiperfect and is not

divisible by any other semiperfect number. All numbers of the form 2m p,

where m > 1, p is prime, and 2m , p , 2m�1, are primitive semiperfect as

are 770 and 945. The smallest odd primitive semiperfect number is 945.

An abundant number which is not semiperfect is called a weird number.

There are 24 weird numbers known, all even and less than 106.

In 1680, Leibniz conjectured that if n was not prime then n did not

divide 2n ÿ 2. In 1736, Euler proved that if p was prime then it divided

2 p ÿ 2. It was thought for a while that if a positive integer n divided

Table 4.8. (d) 6-perfect numbers

1 223 . 37 . 53 . 74 . 113 . 133 . 172 . 31 . 41 . 61 . 241 . 307 .

467 . 2801
Fermat (1643)

2 227 . 35 . 53 . 7 . 11 . 132 . 19 . 29 . 31 . 43 . 61 . 113 . 127 Fermat (1643)
3 223 . 37 . 55 . 11 . 132 . 19 . 312 . 43 . 61 . 83 . 223 .

331 . 379 . 601 . 757 . 1201 . 7019 . 823 543 . 616 318 177 .

100 895 598 169

Fermat (1643)

4 219 . 36 . 53 . 72 . 11 . 13 . 19 . 23 . 31 . 41 . 137 .

547 . 1093
Lehmer (1900)

5 224 . 38 . 5 . 72 . 11 . 13 . 17 . 192 . 31 . 43 . 53 . 127 .

379 . 601 . 757 . 1801
Lehmer (1900)

6 262 . 38 . 54 . 72 . 11 . 13 . 192 . 23 . 59 . 71 . 79 . 127 .

157 . 379 . 757 . 43 331 . 3 033 169 . 715 827 883 .

2 147 483 647

Cunningham
(1902)

7 215 . 35 . 52 . 72 . 11 . 13 . 17 . 19 . 31 . 43 . 257 Carmichael (1906)
8 236 . 38 . 55 . 77 . 11 . 132 . 19 . 312 . 43 . 61 . 83 .

223 . 331 . 379 . 601 . 757 . 1201 . 7019 . 112 303 .

898 423 . 616 318 177

GeÂrardin (1908)

9 215 . 35 . 54 . 73 . 112 . 13 . 17 . 19 . 43 . 71 . 257 Poulet (1929)
10 215 . 37 . 53 . 72 . 11 . 13 . 17 . 19 . 41 . 43 . 257 Poulet (1929)
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2n ÿ 2, then it was prime. However, in 1819, F. Sarrus showed 341 divides

2341 ÿ 2, yet 341 � 11 . 31. Hence, there exist composite numbers n, called

pseudoprimes, which divide 2n ÿ 2. Even though all composite Fermat

numbers are pseudoprime, pseudoprimes are much rarer than primes. In

1877, Lucas showed that 2701 is a pseudoprime. The smallest even

pseudoprime, 161 038, was discovered in 1950 by D.H. Lehmer. In 1903,

E. Malo showed that if n . 1 was an odd pseudoprime then so was 2n ÿ 1.

In 1972, A. Rotkiewicz showed that if p and q were distinct primes then

p . q is pseudoprime if and only if (2 p ÿ 1)(2q ÿ 1) is pseudoprime.

Hence, there are an in®nite number of pseudoprimes. For example,

2341 ÿ 2 is a pseudoprime since 2341 ÿ 2 � 2(2340 ÿ 1) � 2[(210)34 ÿ 134]

� 2[(210 ÿ 1)(. . .)] � 2[(1023)(. . .)] � 2[(3)(341)(. . .)]. Thus, the compo-

site 341, divides 2341 ÿ 2.

A composite integer m is called a k-pseudoprime if m divides k m ÿ k.

For example, 341 is a 2-pseudoprime. a 2-pseudoprime is often referred to

simply as a pseudoprime. A composite integer m is called a Carmichael

Table 4.8. (e) 7-perfect numbers

1 246 . 315 . 53 . 75 . 11 . 13 . 17 . 192 . 23 . 31 . 37 . 41 .

43 . 61 . 89 . 97 . 127 . 193 . 2351 . 4513 . 442 151 .

13 264 529

Cunningham
(1902)

2 246 . 315 . 53 . 75 . 11 . 13 . 17 . 194 . 23 . 31 . 37 . 41 .

43 . 61 . 89 . 97 . 151 . 193 . 911 . 2351 . 4513 . 442 151 .

13 264 529

Cunningham
(1902)

3 232 . 311 . 54 . 75 . 112 . 132 . 17 . 193 . 23 . 31 . 37 .

43 . 61 . 71 . 73 . 89 . 181 . 2141 . 599 479
Poulet (1929)

4 232 . 311 . 54 . 78 . 112 . 132 . 172 . 193 . 23 . 31 . 372 .

61 . 67 . 71 . 73 . 89 . 181 . 307 . 1063 . 2141 . 599 479
Poulet (1929)

5 235 . 313 . 52 . 75 . 113 . 13 . 17 . 192 . 312 . 372 . 41 .

43 . 61 . 67 . 73 . 83 . 109 . 127 . 163 . 307 . 331 . 5472 .

613 . 1093

Poulet (1929)

6 235 . 313 . 52 . 75 . 113 . 13 . 17 . 194 . 312 . 372 . 41 .

43 . 61 . 67 . 73 . 83 . 109 . 151 . 163 . 307 . 331 . 5472 .

613 . 911 . 1093

Poulet (1929)

7 235 . 313 . 52 . 75 . 113 . 17 . 192 . 31 . 372 . 41 . 47 .

612 . 67 . 73 . 97 . 109 . 127 . 163 . 307 . 5472 . 613 . 1093
Poulet (1929)

8 235 . 313 . 52 . 75 . 113 . 17 . 194 . 31 . 372 . 41 . 47 .

612 . 67 . 73 . 97 . 109 . 151 . 163 . 307 . 5472 . 613 .

911 . 1093

Poulet (1929)

9 235 . 313 . 53 . 74 . 112 . 133 . 172 . 192 . 23 . 372 . 41 .

43 . 67 . 73 . 109 . 127 . 163 . 3072 . 367 . 467 . 5472 .

613 . 733 . 1093 . 2801

Poulet (1929)

10 235 . 313 . 53 . 74 . 112 . 133 . 172 . 194 . 23 . 372 . 41 .

43 . 67 . 73 . 109 . 151 . 163 . 3072 . 367 . 467 . 5472 .

613 . 733 . 911 . 1093 . 2801

Poulet (1929)
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number if m divides k m ÿ k whenever 1 , k , m and gcd(k, m) � 1.

Hence, a J. Chernick number m is a number that is a k-pseudoprime for all

values of k, where gcd(k, m) � 1. In Example 5.9, we show that

561 � 3 . 11 . 17 is a Carmichael number.

All Carmichael numbers are odd and the product of at least three prime

factors. In 1939, J. Chernick showed that if m > 1 and n � (6m� 1)(12m

� 1)(18m� 1), and 6m� 1, 12m� 1, and 18m� 1 are prime, then n is a

Carmichael number. For example, 1729 � 7 . 13 . 19 is a Carmichael num-

ber. A. Korselt devised a criterion in 1899 for such numbers showing that a

positive integer n is Carmichael if and only if n is squarefree and pÿ 1

divides nÿ 1 for all primes p which divide n. In 1993, W.R. Alford, A.

Granville, and C. Pomerance showed that there are no more than n2=7

Carmichael numbers less than or equal to n. Richard Pinch of Cambridge

University calculated all 105 212 Carmichael numbers less than 1015. It is

an open question whether there are an in®nite number of Carmichael

numbers. See Table 4.9.

In 1948, A.K. Srinivasan de®ned a positive integer n to be practical if

every positive integer less than n can be expressed as a sum of distinct

divisors of n. If n is a positive integer, then 2nÿ1(2n ÿ 1) is practical. There

Table 4.9. The 20 smallest

Carmichael numbers

561 � 3 . 11 . 17
1 105 � 5 . 13 . 17
1 729 � 7 . 13 . 19
2 465 � 5 . 17 . 29
2 821 � 7 . 13 . 31
6 601 � 7 . 23 . 41
8 911 � 7 . 19 . 67

10 585 � 5 . 29 . 73
15 841 � 7 . 31 . 73
29 341 � 13 . 37 . 61
41 041 � 7 . 11 . 13 . 41
46 657 � 13 . 37 . 97
52 633 � 7 . 73 . 103
62 745 � 3 . 5 . 47 . 89
63 973 � 7 . 13 . 19 . 37
75 361 � 11 . 13 . 17 . 31

101 101 � 7 . 11 . 13 . 101
115 921 � 13 . 37 . 241
126 217 � 7 . 13 . 19 . 73
162 401 � 17 . 41 . 233
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are 49 practical numbers less than 200. The integer 10 is not practical since

4 cannot be expressed as a sum of distinct divisors of 10. However, 8 is

practical since 1 � 1, 2 � 2, 3 � 2� 1, 4 � 4, 5 � 4� 1, 6 � 4� 2, and

7 � 4� 2� 1.

A positive integer n is called unitary nonrepetitive, if, excluding the

divisors 1 and n, it is possible to express nÿ 1 as a sum of some or all of

the remaining divisors of n using each divisor once and only once. For

example, 6 and 20 are unitary nonrepetitive since 5 � 2� 3 and 19 � 10

� 5 � 4. In fact, every perfect number is unitary nonrepetitive.

A positive integer is called harmonic if the harmonic mean of its divisors

is an integer. That is, n is harmonic if H(n) � n . ô(n)=ó (n) is an integer.

Every Euclidean perfect number is harmonic. The smallest harmonic

number which is not perfect is 140.

Thabit ibn Qurra introduced two terms that describe the deviation of a

number from being perfect. He de®ned the abundancy of an abundant

number, denoted by á(n), as ó (n)ÿ 2n and the de®ciency of a de®cient

number, denoted by ä(n), as 2nÿ ó (n). A positive integer n is called

quasiperfect if it has an abundancy of 1 and almost perfect if it has a

de®ciency of 1.

Every quasiperfect number n is the square of an odd integer, is greater

than 1020, and ù(n) > 5, but so far none has been found. The only

examples of almost perfect numbers are powers of 2. A positive integer n

is called superperfect if ó (ó (n)) � 2n. In 1969, D. Suryanarayana showed

that all even superperfect numbers are of the form 2 pÿ1, where 2 p ÿ 1 is a

Mersenne prime. That same year, H.-J. Kanold showed that odd super-

perfect numbers must be square numbers. In 1975, Carl Pomerance showed

that there are no odd superperfect numbers less than 7 . 1024. In 1944, Paul

ErdoÈs and Alaoglu de®ned a positive integer n to be superabundant if

ó (n)=n . ó (k)=k, for all positive integers k , n. For example, 2 and 4 are

superabundant, but 3 and 5 are not. There exist an in®nite number of

superabundant numbers.

A positive integer n is called m-superperfect if ó m(n) � 2n. For m > 3,

no even m-superperfect number exists. Paul ErdoÈs de®ned a positive

integer n to be untouchable if there does not exist a positive integer x such

that ó (x) � n. For example, 2, 52, 88, 96, and 120 are untouchable. A

divisor d of a natural number n is said to be unitary if gcd(d, n=d) � 1.

The sum of the unitary divisors of n is denoted by ó�(n). A natural number

is said to be unitary perfect if ó�(n) � 2n. Since ó�(60) � 1 �
3� 4� 5� 12� 15� 20� 60 � 120, 60 is unitary perfect. In 1975,

Charles Wall showed that there are no odd unitary perfect numbers. The
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only unitary perfect numbers known are 6, 60, 90, 87 360, and

146 361 946 186 458 562 560 000 (218 . 3 . 54 . 7 . 11 . 13 . 19 . 37 . 79 . 109
. 157 . 313).

In 1971, Peter Haggis de®ned a pair of positive integers (m, n) to be

unitary amicable if ó�(m) � ó�(n) � m� n. Nineteen unitary amicable

pairs have been discovered including (114, 126), (1140, 1260), and

(18 018, 22 302). No coprime pair of unitary amicable numbers has been

discovered. It is an open question whether there are in®nitely many pairs of

unitary amicable numbers.

Exercises 4.4

1. Show that 120, 672, and 523 776 � 29 . 3 . 11 . 31 are 3-perfect.

2. Prove that there are no squarefree 3-perfect numbers.

3. Show that 30 240 � 25 . 33 . 5 . 7 is 4-perfect. [Descartes]

4. Show that 14 182 439 040 � 27 . 34 . 5 . 7 . 112 . 17 . 19 is 5-perfect.

[Descartes]

5. Let (ó (n)ÿ n)=n � h. If h is an integer we call n an h-fold perfect

number. Show that n is an h-fold perfect number if and only if n is

(hÿ 1)-perfect.

6. Show that 21, 2133, and 19 521 are 2-hyperperfect.

7. Show that 325 is 3-hyperperfect.

8. Show that 36, 40, 770, and 945 are pseudoperfect.

9. Show that 770 and 945 are primitive semiperfect.

10. Show that 70 is weird.

11. Show that 161 038 � 2 . 73 . 1103 is a pseudoprime.

12. Show that 24 is a practical number.

13. Show that Euclidean perfect numbers are practical.

14. Show that 24 is unitary nonrepetitive.

15. Show that all perfect numbers are unitary nonrepetitive.

16. Show that 140 is a harmonic number.

17. Prove that every perfect number is harmonic.

18. Determine the abundancy of 60 and the de®ciency of 26.

19. The arithmetic mean of the divisors of a positive integer is denoted by

A(n) and given by A(n) � ó (n)=ô(n). Determine the arithmetic mean

of the divisors of pá, where p is prime and á is a positive integer.

20. A positive integer n is called arithmetic if the arithmetic mean of its

divisors is an integer. Determine the ®rst 10 arithmetic numbers.

21. Determine the harmonic mean, H(n) � n . ô(n)=ó (n), of the divisors

of pá, where p is prime and á is a positive integer.
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22. Oystein Ore of Yale conjectured that H(n) is never an integer when n

is odd, if n . 1, then H(n) . 1 and except for n � 1, 4, 6, or a prime,

H(n) . 2. Determine H(1), H(4), H(6), and H( p), where p is prime.

23. Determine H(2nÿ1(2n ÿ 1)) where 2nÿ1(2n ÿ 1) is a Euclidean perfect

number.

24. Determine the geometric mean, G(n) � (
Q

djnd)1=ô(n), of the divisors

of pá, where p is prime and á is a positive integer.

25. Show that A(n) and H(n) are multiplicative. Is G(n) multiplicative?

26. Show that 2n, for n a positive integer, is almost perfect.

27. Show that 16 is a superperfect number.

28. Show that 90 and 87 360 are unitary perfect.

29. Show that if n �Qr
i�1 pái

i , then ó�(n) �Qr
i�1( pái

i � 1).

30. A positive number is called primitive abundant if it is abundant, but all

of its proper divisors are de®cient. Find a primitive abundant positive

integer.

31. Show that 114 and 126 are a unitary amicable pair.
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5

Modular arithmetic

Even if you are on the right track, you'll get run over if you just

sit there.

Will Rogers

5.1 Congruence

In this section, we introduce a concept of fundamental importance that will

revolutionize the way we regard problems concerning divisibility. Albeit the

underlying ideas have Indian and Chinese origins and Euler investigated

some basic properties of remainders, it was Gauss who, in 1801, introduced

the modern concepts of congruence and the arithmetic of residue classes to

European audiences in Disquisitiones arithmeticae (Arithmetical Investiga-

tions) when he was 24. Gauss considered number theory to be the queen of

mathematics. To him, its magical charm and inexhaustible wealth of

intriguing problems placed it on a level way above other branches of

mathematics. We owe a debt of gratitude to mathematicians such as Euler,

Lagrange, Legendre, and Gauss for treating number theory as a branch of

mathematics and not just a collection of interesting problems.

Given three integers a, b, and m, with m > 2, we say that a is congruent

to b modulo m, denoted by a � b (mod m), if a and b yield the same

remainder or residue when divided by m. Equivalently, a � b (mod m), if

there is an integer k such that aÿ b � km, that is, their difference is

divisible by m. If a is not congruent to b modulo m we write a 6� b (mod

m). For example, 52 � 38 (mod 7) since 52ÿ 38 � 14 � 2 . 7. If

a � mq� r, with 0 < r , m, then r is called the least residue of a modulo

m. The least residue of 58 modulo 4 is 2 since 58 � 4 . 14� 2 and

0 < 2 , 4. If the columns for the residue classes modulo 4 in Table 5.1

below were extended, 58 would appear in the penultimate column. The

ability to effectively replace congruences with equalities and vice versa

will be of crucial importance in solving problems. For example, 5x � 6

(mod 11) if and only if there is an integer k such that 5x � 6� 11k.

Similarly, if 3x� 5y � 7, then 3x � 7 (mod 5) and 5y � 7 (mod 3).

By a partition of a set S, we mean a collection of disjoint subsets of S
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whose union is S. Given a set S, a relation R on S is a subset of

S 3 S � f(a, b): a 2 S and b 2 Sg. We say that a is related to b, denoted

by aRb, if (a, b) is in R. For example, `divides' is a relation on Z 3 Z. A

relation R is re¯exive on S if, for all a in S, aRa; symmetric, if aRb implies

bRa; and transitive, if aRb and bRc imply aRc. An equivalence relation R

on S is a subset of S 3 S which is re¯exive, symmetric, and transitive.

Given an equivalence relation R on a set S, the subsets Ra � fx: xRag
form a partition of S. Conversely, given a partition of S, the relation R such

that aRb if a and b are in the same subset of the partition is an equivalence

relation on S. In Theorem 5.1, we show that congruence is an equivalence

relation on the set of integers and, hence, splits the integers into disjoint

residue classes. The disjoint residue classes modulo 3 and 4 are represented

by the columns in Table 5.1.

Theorem 5.1 Congruence is an equivalence relation on the set of inte-

gers.

Proof Let R correspond to the relation `is congruent to modulo m', where

m > 2 is a positive integer. That is, aRb signi®es that a � b (mod m). For

any integer a, a � a� 0 . m, hence, a � a (mod m) implying that aRa.

Therefore, congruence is a re¯exive relation. If a and b are integers such

that aRb, then a � b (mod m). Hence, for some integer k, a � b� km.

Thus, b � a� (ÿk)m implying that b � a (mod m). Hence, bRa. There-

fore, congruence is symmetric. If a, b, and c are integers such that aRb and

bRc, then a � b (mod m) and b � c (mod m). Hence, there exist integers s

Table 5.1.
(a) Residue classes modulo 3 (b) Residue classes modulo 4

[0] [1] [2] [0] [1] [2] [3]

. . . . . . . . . . . . . . . . . . . . .
ÿ12 ÿ11 ÿ10 ÿ16 ÿ15 ÿ14 ÿ13
ÿ9 ÿ8 ÿ7 ÿ12 ÿ11 ÿ10 ÿ9
ÿ6 ÿ5 ÿ4 ÿ8 ÿ7 ÿ6 ÿ5
ÿ3 ÿ2 ÿ1 ÿ4 ÿ3 ÿ2 ÿ1

0 1 2 0 1 2 3
3 4 5 4 5 6 7
6 7 8 8 9 10 11
9 10 11 12 13 14 15

12 13 14 16 17 18 19
. . . . . . . . . . . . . . . . . . . . .
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and t such that a � b� sm and b � c� tm. Thus, a � c� (s� t)m

implying that a � c (mod m), hence, aRc and congruence is transitive.

Therefore, we have established that congruence is an equivalence re-

lation. j

Each residue class modulo m is in®nite and consists of all the integers

having the same remainder when divided by m. In Table 5.1(a), the three

disjoint residue classes modulo 3 constitute the three columns. In Table

5.1(b), the four disjoint residue classes modulo 4 constitute the four

columns. Every integer appears in one of the three columns in Table 5.1(a)

and in one of the four columns in Table 5.1(b).

A complete residue system modulo m consists of any set of m integers,

no two of which are congruent modulo m. For example, fÿ12, ÿ2, 8g and

f7, 15, 23g form complete residue systems modulo 3. The set f1,

2, 3, . . . , mg forms a complete residue system modulo m as does the set

f0, �1, �2, . . . , �(mÿ 1)=2g when m is odd. Usually, the most conveni-

ent complete residue system modulo m to work with is the least residue

system f0, 1, 2, 3, . . . , mÿ 1g.
The next result illustrates the property that two integers are congruent

modulo m, that is, belong to the same residue class modulo m, if and only

if they have the same remainder when each is divided by m.

Theorem 5.2 The integers a and b have the same least residue modulo m

if and only if a � b (mod m).

Proof Let r and s be the least residues of a and b modulo m, respectively.

From the division algorithm there exist integers t and u such that

a � mt � r and b � mu� s, with 0 < r , m and 0 < s , m. Thus

aÿ b � m(t ÿ u)� (r ÿ s). Hence m divides aÿ b if and only if m

divides r ÿ s. Since both r and s are less than m, m divides r ÿ s if and

only if r ÿ s � 0. Therefore, a � b (mod m) if and only if r � s. j

If a � b (mod m) and c � d (mod m), there exist integers r and s such that

a � b� rm and c � d � sm, hence a� c � b� d � (r � s)m and ac �
(b� rm)(d � sm) � bd � (rd � bs� rsm)m. Hence, a� c � b� d (mod

m) and ac � bd (mod m). We generalize these two results in the next two

theorems. The proofs are straightforward and are left as exercises.

Theorem 5.3 If ai � bi (mod m), for i � 1, 2, . . . , n, then
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(a)
Xn

i�1

ai �
Xn

i�1

bi (mod m), and (b)
Yn

i�1

ai �
Yn

i�1

bi (mod m):

Theorem 5.4 If a � b (mod m), for any integer c and nonnegative integer

n,

(a) a� c � b� c (mod m),

(b) ac � bc (mod m),

(c) an � bn (mod m).

For example, since (27)(98)� (13)(15)77 � 6 . 0� (ÿ1)(1)77 � 6 (mod 7),

it follows from Theorem 5.4 that the least positive residue of

(27)(98)� (13)(15)77 modulo 7 is 6. Equivalently, the remainder when

(27)(98)� (13)(15)77 is divided by 7 is 6.

Halley's comet appears in our skies approximately every 76 years. It

visited us in 1835, 1910, and most recently in 1986. It will return in 2061.

From Theorem 5.4, 18351910 � 19862061 � 11910 � 52061 � 1� (56)343 .

53 � 1� (1)343 . 6 � 1� 6 � 0 (mod 7). Hence, 7 divides 18351910 �
19862061.

In the seventeenth century, English spelling was not as uniform as it is

now. Halley spelt his name differently on a number of occasions. In 1985,

Ian Ridpath used the London telephone directory to conduct an informal

survey to determine how people with the surname Halley pronounced their

name. The majority of those surveyed preferred [HAL ee]. However, some

used [HALL ee], some [HAIL ee], and some preferred not to be disturbed.

How Edmond Halley pronounced his name remains an open question.

Example 5.1 If p is a prime greater than 3, then p � �1 (mod 3). Hence,

p2 � 1 (mod 3) and p2 � 2 � 0 (mod 3). Since 2 � ÿ1 (mod 3), for any

positive integer n, 22 n � 1 (mod 3). Hence, 22 n � 5 � 6 � 0 (mod 3). Thus

3 divides 22 n � 5. Therefore, if p is a prime greater than 3, p2 � 2 is

composite and, for any positive integer n, 22 n � 5 is composite.

The following result follows from Theorem 2.8 using a straightforward

inductive argument that we omit.

Theorem 5.5 If a � b (mod mi), for i � 1, 2, . . . , k, where m1, m2, . . . ,

mk are pairwise coprime, then a � b (mod m), where m �Qk
i�1 mi.

If gcd(m, n) � 1, the system of congruences x � a (mod m) and x � b

(mod n) can be written as a single congruence of the form x � c (mod mn).
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For example, if x � 1 (mod 5) and x � 3 (mod 4) then there is an integer k

such that x � 1� 5k. Since 1� 5k � 3 (mod 4), k � 2 (mod 4) or

k � 2� 4t. Substituting, we obtain x � 1� 5(2� 4t) � 11� 20t. There-

fore, x � 11 (mod 20).

In modular arithmetic the cancellation law, if ac � bc (mod m) then

a � b (mod m), does not necessarily hold. For example, 4 . 5 � 4 . 8

(mod 6) but 5 6� 8 (mod 6). However, we can establish the following result.

Theorem 5.6 If ac � bc (mod m) then a � b (mod m=d), where d is the

greatest common divisor of c and m.

Proof If ac � bc (mod m), there exists an integer k such that

acÿ bc � km. Let d � gcd(c, m); then (aÿ b)(c=d) � k(m=d), with

gcd(c=d, m=d) � 1. Hence, m=d divides aÿ b or, equivalently, a � b

(mod m=d). j

Corollary If ac � bc (mod m) and gcd(c, m) � 1, then a � b (mod m).

Example 5.2 Raising both sides of the congruence 5 . 27 � ÿ1 (mod 641)

to the fourth power yields 54 . 228 � 1 (mod 641). Since 641 � 625� 16,

54 � ÿ24 (mod 641) and, hence, 232 � ÿ1 (mod 641). The latter con-

gruence implies that there is an integer k such that 232 � 1 � 641 . k.

Hence, 641 divides 232 � 1. Therefore, the Fermat number F5 is compo-

site.

Example 5.3 (The binary-square technique) Consider the composite

number 161 038 � 2 . 73 . 1103. Since 161 037 can be represented in

binary notation as 100 111 010 100 001 1012, 161 037 � 217 � 214 � 213 �
212 � 210 � 28 � 23 � 22 � 20 and, hence, 2161 037 � 2131 072 . 216 384 .

28192 . 24096 . 21024 . 2256 . 28 . 24 . 21. Beginning with 21 � 2 (mod 73) and

21 � 2 (mod 1103) and squaring both sides of the congruence in each

succeeding step, we obtain the following array.

21 � 2 (mod 73) 21 � 2 (mod 1103)

22 � 4 (mod 73) 22 � 4 (mod 1103)

24 � 16 (mod 73) 24 � 16 (mod 1103)

28 � 37 (mod 73) 28 � 256 (mod 1103)

216 � 55 (mod 73) 216 � 459 (mod 1103)

232 � 32 (mod 73) 232 � 8 (mod 1103)

264 � 2 (mod 73) 264 � 64 (mod 1103)

2128 � 4 (mod 73) 2128 � 787 (mod 1103)
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2256 � 16 (mod 73) 2256 � 586 (mod 1103)

2512 � 37 (mod 73) 2512 � 363 (mod 1103)

21024 � 55 (mod 73) 21024 � 512 (mod 1103)

22048 � 32 (mod 73) 22048 � 733 (mod 1103)

24096 � 2 (mod 73) 24096 � 128 (mod 1103)

28192 � 4 (mod 73) 28192 � 942 (mod 1103)

216 384 � 16 (mod 73) 216 384 � 552 (mod 1103)

232 768 � 37 (mod 73) 232 768 � 276 (mod 1103)

265 536 � 55 (mod 73) 265 536 � 69 (mod 1103)

2131 072 � 32 (mod 73) 2131 072 � 349 (mod 1103)

Therefore,

2161 037 � 2131 072 . 216 384 . 28192 . 24096 . 21024 . 2256 . 28 . 24 . 2

� 32 . 16 . 4 . 2 . 55 . 16 . 37 . 16 . 2 � 4 267 704 320 � 1 (mod 73),

and

2161 037 � 2131 072 . 216 384 . 28192 . 24096 . 21024 . 2256 . 28 . 24 . 2

� (349 . 552 . 942 . 128) . (512 . 586 . 256 . 16 . 2)

� 23 228 725 248 . 2 457 862 144 � 787 . 918 � 1 (mod 1103):

Thus, 2161 038 � 2 (mod 2), 2161 038 � 2 (mod 73), and 2161 038 � 2

(mod 1103). Thus, 2, 73, and 1103 each divide 2161 038 ÿ 2. Therefore,

161 038 divides 2161 038 ÿ 2 and, hence, 161 038 is a pseudoprime.

Harold Davenport of Cambridge University investigated properties of

systems of congruences, called Davenport coverings, such that each integer

satis®es at least one of the congruences. Davenport coverings having the

property that each integer satis®es exactly one congruence are called exact

Davenport coverings. For example, x � 0 (mod 2) and x � 1 (mod 2) is an

exact Davenport covering of the integers. A necessary condition that a

system of congruences be an exact Davenport covering is that the sum of

the reciprocals of the moduli is unity and the greatest common divisor of

the moduli is greater than one. Paul ErdoÈs proposed the following open

question: for any positive integer n, does there exist a Davenport covering

with distinct moduli all greater than n? Three examples of Davenport

coverings are given in the columns of Table 5.2.

Easter, named for Ostura, a pagan goddess of spring, was celebrated by

the early Christian Church. However, there was no uniform method for

determining Easter. The Council of Nicaea convened by Constantine the

Great on June 1, 325, to solve the problem caused by Arianism, formulated

the doctrine of the Trinity, ordered bishops to establish hospitals in every

cathedral city, and ®xed the date of Easter. They decreed that Easter would
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henceforth occur on the ®rst Sunday after the full moon that occurs on or

after March 21, the date of the vernal equinox. As a consequence, each

year Easter falls between March 22 (in 2285) and April 25 (in 2038), the

least common occurrence being March 22 and the most common being

April 19. Gauss's method for determining the date of Easter is illustrated

below.

In Table 5.3, m and n are given by m � 15� C ÿ ��C=4�� ÿ
��(8C � 13)=25�� (mod 30) and n � 4� C ÿ ��C=4�� (mod 7), where C de-

notes the century year. For example, for 1941, C � 19. Gauss let

a � YEAR (mod 4),

b � YEAR (mod 7),

c � YEAR (mod 19),

d � 19c� m (mod 30),

e � 2a� 4b� 6d � n (mod 7),

According to Gauss's algorithm, Easter is either March (22� d � e) or

April (d � eÿ 9). Gauss noted two exceptions to his rule: if d � 29 and

e � 6, Easter falls one week earlier, on April 19; if d � 28, e � 6, and

m � 2, 5, 10, 13, 16, 21, 24, or 39, Easter falls one week earlier, on April

18. For example, for the year 2020, a � 0, b � 4, c � 6, d � 18, and

e � 3. Hence, in 2020, Easter will fall on April 12.

Table 5.2.

x � 0 (mod 2) x � 0 (mod 2) x � 0 (mod 2)
x � 0 (mod 3) x � 0 (mod 3) x � 0 (mod 3)
x � 1 (mod 4) x � 1 (mod 4) x � 1 (mod 4)
x � 1 (mod 6) x � 5 (mod 6) x � 3 (mod 8)
x � 11 (mod 12) x � 7 (mod 12) x � 7 (mod 12)

x � 23 (mod 24)

Table 5.3.

Period m n

1583±1699 22 2
1700±1799 23 3
1800±1899 23 4
1900±1999 24 5
2000±2099 24 5
2100±2199 24 6
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Exercises 5.1

1. If a � b (mod m), prove for any integer c and nonnegative integer n

that

(a) a� c � b� c (mod m),

(b) ac � bc (mod m), and

(c) an � bn (mod m).

2. If ai � bi (mod m), for i � 1, 2, . . . , n, prove that

(a)
Xn

i�1

ai �
Xn

i�1

bi (mod m) and (b)
Yn

i�1

ai �
Yn

i�1

bi (mod m):

3. If a � b (mod m1) and a � b (mod m2) where gcd(m1, m2) � 1, prove

that a � b (mod m1 m2).

4. Show that if a � b (mod m) and d divides m, where d . 0, then a � b

(mod d).

5. If a � b (mod m) and a � b (mod n) then show that a � b

(mod lcm(m, n)).

6. Show that if a � b (mod m) and c � d (mod m) then for any integers

x and y, (ax� cy) � (bx� dy) (mod m).

7. Prove that if a � b (mod m), then gcd(a, m) � gcd(b, m).

8. Show that if a2 � b2 (mod p), where p is prime, then either p divides

a� b or p divides aÿ b.

9. Show that f47, 86, 22, ÿ14, 32, 20, 143g is a complete residue sys-

tem modulo 7.

10. Find all integers x such that ÿ100 < x < 100, and x � 7 (mod 19).

11. Find a complete residue system modulo 11 composed of multiples

of 7.

12. Show that f2, 4, 6, . . . , 2mg is a complete residue system modulo m

if and only if m is odd.

13. Show that f12, 22, 32, . . . , m2g is never a complete residue system

modulo m if m . 2.

14. Show that 7 divides 19411963 � 19631991:

15. Determine the last two digits of 999

.

16. Show that 39 divides 53103 � 10353.

17. Show that 7 divides 111333 � 333111.

18. What is the least positive remainder when 19385 is divided by 31?

19. Find the units digit of 397.

20. What are the last two digits of 31000?

21. Find the remainder when 1!� 2! � � � � � 100! is divided by 15.

22. Find the remainder when 15 � 25 � � � � � 1005 is divided by 4.

23. Show that 61!� 1 � 63!� 1 (mod 71).

5.1 Congruence 157



24. Show that 7 divides 52n � 3 . 25nÿ2 for any positive integer n.

25. Show that 13 divides 3n�2 � 42n�1 for any positive integer n.

26. If n is odd then show that n2 � 1 (mod 8).

27. What was the date of Easter in 1916?

28. What day does Easter fall in the current year?

29. Show that x � 0 (mod 2), x � 0 (mod 3), x � 1 (mod 4), x � 1

(mod 6), and x � 11 (mod 12) form a Davenport covering for the

integers.

30. Show that the cube of any positive integer leaves a remainder 0, 1, or 8

when divided by 9.

31. Show that the sum of three consecutive cubes is a multiple of 9.

32. If n � ckbk � � � � � c1b� c0, where 0 , ck , b, 0 < ci , b, for

i � 1, 2, . . . , k ÿ 1, and b . 1 is a positive integer, show that bÿ 1

divides n if and only if bÿ 1 divides c0 � � � � � ck .

33. If the positive integer n has the remainders r and s when divided by

the positive integers m and m� 1, respectively, show that n has the

remainder (m� 1)r � m2s when divided by m(m� 1). [Stifel 1544]

5.2 Divisibility criteria

Before the age of calculators and computers a number of very practical

criteria were used to test for divisibility. For example, in the Talmud it is

written, if a and b are positive integers and 7 divides 2a� b, then 7 divides

100a� b. Other rules can be found in the works of al-Khwarizmi and

Fibonacci, who included divisibility criteria for 7, 9, and 11 in Liber abaci.

Some are very straightforward, for example, for any integer n, 2 divides n

if and only if the last digit of n is even, and 5 divides n if and only if the

last digit of n is either 0 or 5. The next result is helpful in establishing

divisibility criteria for other positive integers.

Theorem 5.7 Let f (x) �Pn
i�1cix

i (mod m), where the ci are integers, for

i � 1, 2, . . . , n. If a � b (mod m), then f (a) � f (b) (mod m).

Proof It follows from Theorem 5.4 that, since a � b (mod m), ai � bi

(mod m), and cia
i � cib

i (mod m), for i � 1, 2, . . . , n. Hence,Pn
i�0cia

i �Pn
i�0cib

i, and the result is established. j

Before assuming the chair of mathematics at Montpellier, Joseph Diez

Gergonne was an artillery of®cer and taught at the Lyceum in NõÃmes. The

Gergonne point of a triangle, the intersection of the Cevians joining the

158 Modular arithmetic



vertices of the triangle with the points of contact of the incircle, is named

for him. He founded the mathematics journal Annales de MatheÂmatiques

and in 1814, devised the following divisibility criteria.

Theorem 5.8 Let
Pn

i�0ai(10)i be the decimal representation of an integer

a, s �Pn
i�1ai, the sum of the digits of a, and t �Pn

i�0(ÿ1)iai, the

alternating sum of the digits of a; then

(a) 9ja if and only if 9js,

(b) 3ja if and only if 3js, and

(c) 11ja if and only if 11jt.
Proof If f (x) �Pn

i�0aix
i, then a � f (10), s � f (1), and t � f (ÿ1).

Since 10 � 1 (mod 9), a � s (mod 9) or aÿ s � 9k. Hence, 9|a if and only

if 9|s. Similarly, 3|a if and only if 3|s. Since 10 � (ÿ1) (mod 11), a � t

(mod 11), so 11|a if and only if 11|t. j

Example 5.4 Suppose we wish to determine x, y, z, given that 5, 9, and 11

divide 2x1642y032z. Since 5 divides the number z � 0 or 5. From

Theorem 5.8, x� y� z � 7 (mod 9) and ÿx� y� z � 0 (mod 11). If

z � 0, x� y � 7 (mod 9) and ÿx� y � 0 (mod 11), with x � y � 8 as a

solution. If z � 5, x� y � 2 (mod 9) and ÿx� y � 6 (mod 11), then

x � 8 and y � 3 is a solution. Therefore, solutions are given by

28 164 280 320 (212 . 32 . 5 . 11 . 29 . 479) and 28 164 230 325 (5 . 9 . 11 .

56 897 435).

Example 5.5 Using divisibility criteria, we show that each term of the

sequence 49, 4489, 444 889, 44 448 889, 4 444 488 889, . . . is a square. The

general term of the sequence is given by

9� 8 . 10� 8 . 102 � � � � � 8 . 10n � 4 . 10n�1 � � � � � 4 . 102n�1

� 1� 4(1� 10� 102 � � � � � 10n)� 4(1� 10 � � � � � 102n�1)

� 1� 4 .
10n�1 ÿ 1

9
� 4 .

102n�2 ÿ 1

9
� 4 . 102n�2 � 4 . 10n�1 � 1

9

� 2 . 10n�1 � 1

3

� �2

:

From Theorem 5.8, 3 divides 2 . 10n�1 � 1. Therefore, (2 . 10n�1 � 1)=3 is

an integer and the result is established.

Example 5.6 (A divisibility rule for 7) Given a positive integer n, trun-
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cate n by deleting the tens and units digits, then double the number that

remains and add to it the two-digit number that was truncated. The result is

divisible by 7 if and only if n is divisible by 7. Repeat the process until

divisibility or nondivisibility by 7 is obvious. Consider n � 13 295 476. We

have

2(132 954)� 76 � 265 984,

2(2659)� 84 � 5402,

2(54)� 02 � 110:

Since 110 is not divisible by 7, 13 295 476 is not divisible by 7.

Example 5.7 (A divisibility rule for 13) Given a positive integer n,

truncate n by deleting the units digit. Four times the units digit added to

the remaining number is divisible by 13 if and only if n is divisible by 13.

Repeat the process until divisibility or nondivisibility by 13 is obvious.

Consider n � 53 699 139; we have

5 369 913� 4(9) � 5 369 949,

536 994� 4(9) � 537 030,

53 703� 4(0) � 53 703,

5370� 4(3) � 5382,

538� 4(2) � 546,

54� 4(6) � 78,

7� 4(8) � 39:

Since 39 is divisible by 13, 53 699 139 is divisible by 13.

The process of casting out nines can be traced to the tenth century Islamic

physician and philosopher, Avicenna [AVE eh SEN ah]. It was popular in

medieval schools as a check of arithmetical calculations and is based on

properties of digital roots. For instance, the digital root of 9785 is 2 and the

digital root of 4593 is 3. Hence, the digital root of their sum must be 5.

That is, r(9785)� r(4593) � 2� 3 � 5 � r(14 378). Analogously, using

congruence notation, we have 9785 � 2 (mod 9) and 4593 � 3 (mod 9),

and 9785� 4593 � 14 378 � 5 (mod 9). The technique of casting out

nines is most bene®cial in ®nding errors in addition and multiplication.

In a number of medieval schools a method called the cross bones check,

based on digital roots, was employed. For example, suppose we wish to

multiply 3253, whose digital root is 4, by 4912, whose digital root is 7. We

160 Modular arithmetic



begin by making a cross and placing a 4 in the west position and a 7 in the

east position. Since 4 . 7 � 28 has digital root 1, we put a 1 in the north

position. If after calculating, we found the product to be 15 978 836, we put

its digital root 2 in the south location, as shown in Figure 5.1. However, the

2 in the south position does not equal the 1 in the north position indicating

we have made a mistake in our calculation. The process of casting out

nines and the cross bones check are equivalent and both will pick up errors,

but neither will guarantee calculations are error free.

Exercises 5.2

1. Prove that if 7 divides 100a� b, then 7 divides 2a� b. Is the converse

true?

2. Show that if the sum of the digits of a number is subtracted from the

number, then the difference is always divisible by 9.

3. Without performing the indicated operations determine the digit x in

each of the following calculations.

(a) (65 248) . (124 589) � 8 1x9 183 07x.

(b) (x12) . (1 9x3 12x) � 1 000 000 000.

(c) 6 x56 681 � (3(843 � x))2.

4. Show that 9jRn if and only if 9jn, where Rn � (10n ÿ 1)=9.

5. Show that 11 divides Rn if and only if n is even.

6. Use the divisibility rule outlined in Example 5.6 to check if

691 504 249 989 is divisible by 7.

7. Use the divisibility rule outlined in Example 5.7 to check if

67 911 603 138 353 is divisible by 13.

8. Use the cross bones check to show that 125 696 times 458 does not

equal 57 569 585.

9. We can check the divisibility by 7 of a positive integer having more

than two digits by deleting the units digit of the number and subtract-

ing twice the units digit from what remains. The result is divisible by 7

if and only if the original number is divisible by 7. We can check the

divisibility by 13 of a positive integer having more than three digits by

deleting the units digit of the number and subtracting 9 times the units

4 7

1

2

Figure 5.1
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digit from what remains. The result is divisible by 13 if and only if the

original number is divisible by 13. Devise a similar rule for divisibility

by 17.

10. Show that when 7 . 541 is written out decimally at least one digit

appears more than three times.

5.3 Euler's phi-function

We now introduce a very important and useful number theoretic function.

For any positive integer n, the Euler phi-function represents the number of

positive integers not exceeding n that are coprime to n, where by conven-

tion ö(1) � 1. For example, ö(12) � 4, since 1, 5, 7, and 11 are the only

integers that are positive, less than 12, and coprime to 12. Properties of the

function were ®rst investigated by Euler in 1760, who at one time used

ð(n) to denote the function. In Disquisitiones Gauss introduced the

notation ö(n).

Euler's phi-function has many interesting properties. For example,

except for n � 1 and 2, ö(n) is even. Except when gcd(n, 10) 6� 1 the

periods of the base 10 decimal expansions of the unit fractions 1=n are

divisors of ö(n). In addition, ó (n)� ö(n) � n . ô(n) is a necessary and

suf®cient condition for n to be prime. In 1857, Liouville showed that

æ(sÿ 1)

æ(s)
�
X1
n�1

ö(n)

ns
,

where s . 1 and æ denotes the real Riemann zeta-function. Bounds for the

phi-function are given by ���
n
p
2

,ö(n) <
n

eã . lnln(n)
,

where ã denotes the Euler±Mascheroni number. The average value of the

®rst n values for ö(n) can be approximated, for large values of n, by

6n=ð2. De la ValleÂe-Poussin showed that if a and b are coprime positive

integers and Ða,b(x) denotes the number of primes of the form a . k � b

less than or equal to x, for k a positive integer, then

lim
x!1

Ða,b(x)

x . ln(x)
� 1

ö(a)
:

In 1950, H. Gupta showed that for all k > 1 there is a positive integer n

such that ö(n) � k! There are several open questions concerning the phi-

function. For example, in 1922 Carmichael asked, if given a natural

number n does there exist another natural number m such that
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ö(m) � ö(n)? In 1994, A. Shala¯y and S. Wagon showed that given a

positive integer n, if ö(m) 6� ö(n) for all m 6� n, then n . 1010 000 000. In

1932, D.H. Lehmer asked, if ö(n) divides nÿ 1 does that always imply

that n is prime? Lehmer showed that if such a composite positive integer n

existed it would be odd, squarefree, and ù(n) > 7.

Let î(n) denote the number of positive integers k, 1 < k < n, such that

k is not a divisor of n and gcd(k, n) 6� 1. For example, î(n) � 0, for n � 1,

and î(n) � 1, for n � 6 and 9, and î( p) � 0 whenever p is prime. By

construction, n � ô(n)� ö(n)� î(n)ÿ 1. From the MoÈbius inversion for-

mula, if ÷(n) �Pdjnî(n), then î(n) �Pdjnì(d)÷(n=d). Several number

theoretic functions are related by the identity

÷(n) � ó (n)� ô(n)ÿ 1

2

� �ù(n) Yù(n)

r�1

(ái � 2)!

ái!
ÿ n,

where n �Qr
i�1 pái

i .

The subset of the least residue system modulo n consisting of only those

integers which are less than n and are coprime to n is called a reduced

residue system modulo n. For example, the set f1, 5, 7, 11g forms the

reduced residue system modulo 12. For any positive integer n, the set

fx: 1 < x < n, gcd(x, n) � 1g forms a multiplicative group with ö(n)

elements.

Theorem 5.9 If fa1, a2, . . . , aö(m)g is a reduced residue system modulo

m, and gcd(c, m) � 1, then fca1, ca2, . . . , caö(m)g is also a reduced

residue system modulo m.

Proof Let fa1, a2, . . . , aö(m)g be a reduced residue system modulo m,

and gcd(c, m) � 1. Since gcd(c, m) � 1 and gcd(ai, m) � 1, it follows

from Theorem 2.8 that gcd(cai, m) � 1, for i � 1, 2, . . . , ö(m). If

cai � caj (mod m), for some 1 < i , j < ö(m), it follows from the

corollary to Theorem 5.6 that ai � aj, contradicting the fact that

fa1, a2, . . . , aö(m)g is a set of ö(m) distinct elements. Therefore,

fca1, ca2, . . . , caö(m)g is a set of ö(m) incongruent integers coprime to

m. j

One of the most important properties concerning the phi-function is its

multiplicativity.

Theorem 5.10 The Euler phi-function is multiplicative, that is, if

gcd(m, n) � 1, then ö(mn) � ö(m)ö(n).
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Proof Since g(n) � n is multiplicative and n �Pdjnö(n), it follows from

the corollary to Theorem 3.13 that the phi-function is multiplicative. j

Gauss based his proof of the multiplicativity of ö on the fact that if a is

any one of the ö(m) positive integers less than m and coprime to m, and b

is any one of the ö(n) positive integers less than n and coprime to n, then

there is exactly one positive integer x less than mn, such that x � a

(mod m) and x � b (mod n). Since x is coprime to m and to n, it is

coprime to mn. Thus, there are ö(m) choices for a and ö(n) choices for b

and each pair of choices uniquely determines a value for x that is coprime

to mn. Therefore, Gauss reasoned, there are ö(m) . ö(n) choices for x.

We now use the multiplicative property of the Euler phi-function to

develop a method to calculate ö(n) for any given positive integer n.

Theorem 5.11 If p is a prime and á is a positive integer then ö( pá) �
pá( pÿ 1)= p � páÿ1( pÿ 1).

Proof Among the pá positive integers less than or equal to pá, those páÿ1

which are not coprime to pá are exactly p, 2 p, . . . , ( páÿ1 ÿ 1) p, páÿ1 p.

That is, they are precisely the páÿ1 multiples of p which are less than or

equal to pá. Hence, the number of positive integers less than pá and

coprime to pá is given by

pá ÿ páÿ1 � pá 1ÿ 1

p

� �
� pá( pÿ 1)

p
� páÿ1( pÿ 1): j

Corollary If n �Qr
i�1 p

ái

i , then

ö(n) � n .
Yr

i�1

pi ÿ 1

pi

� �
:

For example,

ö(304 920)

� ö(23 . 32 . 5 . 7 . 112)

� 23 . 32 . 5 . 7 . 112 .
2ÿ 1

2

� �
3ÿ 1

3

� �
5ÿ 1

5

� �
7ÿ 1

7

� �
11ÿ 1

11

� �
� 22 . 3 . 11 . 2 . 4 . 6 . 10 � 63 360:

One of the most elegant results concerning the Euler phi-function, due to

Gauss, is that ö(d) summed over all the divisors d of a positive integer n

equals n.
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Theorem 5.12 (Gauss) For any positive integer n,
P

djnö(d) � n.

Proof Let nd denote the number of elements in f1, 2, . . . , ng having a

greatest common divisor of d with n; then

n �
X
djn

nd �
X
djn

ö
n

d

� �
�
X
djn

ö(d): j

In June of 1640, Fermat wrote to Mersenne that if p is prime and divides

2q ÿ 1, then q divides pÿ 1. In a letter to Frenicle, in October 1640,

Fermat claimed that he could prove that if p is prime with 0 < a , p, then

p divides ap ÿ a; however, he added, the proof was too long to be included

in the letter.

About 30 years later, in an unpublished manuscript discovered in 1863,

Leibniz used the fact that if p is prime then p divides the binomial

coef®cient (
p
k ) to show that if p is prime then p divides (a1 � a2 �

� � � � an) p ÿ (a
p
1 � a

p
2 � � � � � a p

n ). Letting ai � 1, for i � 1, 2, . . . , n,

Leibniz showed that p divides np ÿ n, for any positive integer n. The ®rst

published proof of the corollary to Theorem 5.13, Fermat's Little Theorem,

was given by Euler in 1736. Euler proved the generalized result, the

Euler±Fermat Theorem, in 1760.

Theorem 5.13 (Euler±Fermat Theorem) If gcd(a, m) � 1, then aö(m) �
1 (mod m).

Proof Let a1, a2, . . . , aö(m) form a reduced residue system modulo m.

Since gcd(a, m) � 1, it follows from Theorem 5.9 that the products

a . a1, a . a2 . . . , a . aö(m) also form a reduced residue system modulo m.

Thus, for each i, 1 < i < ö(m), there is an integer j, 1 < j < ö(m), such

that a . ai � aj (mod m). Thus,
Qö(m)

i�1 a . ai �
Qö(m)

j�1 aj (mod m), or

aö(m)
Qö(m)

i�1 ai �
Qö(m)

j�1 aj (mod m). Since gcd(ai, m) � 1, for 1 <

i < ö(m), we cancel
Qö(m)

k�1 ak from both sides of the equation to obtain

aö(m) � 1 (mod m). j

Corollary (Fermat's Little Theorem) If p is a prime, and gcd(a, p) � 1,

then a pÿ1 � 1 (mod p).

Since 1, 5, 7, and 11 are coprime to 12 and ö(12) � 4, the Euler±Fermat

Theorem implies that 14, 54, 74, and 114 are all congruent to 1 modulo 12.

In addition, since, a pÿ1 ÿ 1 � (a( pÿ1)=2 ÿ 1)(a( pÿ1)=2 � 1), an immediate

consequence of Fermat's Little Theorem is that if p is an odd prime and
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gcd(a, p) � 1, then a( pÿ1)=2 � �1 (mod p). The converse of Fermat's

Little Theorem is false since a560 � 1 (mod 561) for all a such that

gcd(a, 561) � 1, yet 561 � 3 . 11 . 17 is not prime. The contrapositive of

Fermat's Little Theorem may be used as a primality test. That is, if for

some positive integer a less than n, we ®nd that anÿ1 6� 1 (mod n) then n

is not prime. For example, 22146 � 662 (mod 2147), hence, 2147 is not

prime. A primality test devised by Lucas, based on Fermat's Little

Theorem, states that if m is a positive integer such that amÿ1 � 1 (mod m)

and a(mÿ1)= p � 1 (mod m) for every prime divisor p of mÿ 1, then m is

prime.

Example 5.8 Let us apply the Euler±Fermat Theorem to solve the linear

equation x341 � 127 (mod 893). We have ö(893) � ö(19 . 47) � 18 . 46

� 828. From either the Euclidean or the Saunderson algorithm, we ®nd

that gcd(828, 341) � 1 and (ÿ7) . 828� 17 . 341 � 1. Hence, (x341)17 �
x1�828.7 � x(x828)7 � x . (1)7 � x. Using the binary-square method and the

fact that 17 � 16� 1 we obtain

1272 � 55 (mod 893),

1274 � 346 (mod 893),

1278 � 54 (mod 893),

12716 � 237 (mod 893):

Therefore, x � (x341)17 � (127)17 � 12716 . 1271 � 237 . 127 � 630 (mod

893).

Example 5.9 Recall that a composite positive integer n is called a

Carmichael number if an � a (mod n), whenever a is less than and

coprime to n. Suppose 1 , a , 561 � 3 . 11 . 17 and gcd(a, 561) � 1. We

have a561 ÿ a � a(a560 ÿ 1) � a[(a10)56 ÿ 156] � a[(a10 ÿ 1) . f (a)],

where f (a) is a polynomial in a. Since 11 divides a10 ÿ 1, 11 divides

a561 ÿ a. In addition, a561 ÿ a � a[(a16)35 ÿ 135] � a(a16 ÿ 1) . g(a) and

a561 ÿ a � a[(a2)280 ÿ 1280] � a(a2 ÿ 1) . h(a), where g(a) and h(a) are

polynomials in a. Since 17 divides a16 ÿ 1 and 3 divides a2 ÿ 1, it follows

that 561 divides a561 ÿ a whenever gcd(a, 561) � 1. Therefore, 561 is a

Carmichael number.

The set of Farey fractions F n of order n consist of the ascending sequence

of irreducible fractions between 0 and 1 whose denominators do not

exceed n. That is, k=m is in F n if and only if 0 < k < m < n, and k and
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m are coprime. For example F 1 � f0
1
, 1

1
g, F 2 � f0

1
, 1

2
, 1

1
g. The middle term

of F n is always 1
2
, since the number of irreducible fractions with

denominator m is given by ö(m), the number of Farey fractions of order n,

the number of irreducible fractions 0 < k=m < 1, with 0 < m , n, isPn
k�1ö(k). Two fractions a=b and c=d in F n are called complementary if

their sum is unity. The two fractions adjacent to 1
2

are complementary. If

a=b and c=d are complementary and a=b , c=d, the fractions preceding

a=b and following c=d are complementary. In 1883, J.J. Sylvester proved

that the sum of the Farey fractions of order n is 1
2

Pn
k�1ö(k). For large

values of n, the sum can be approximated by 3(n=ð)2. To illustrate this

consider F 6 � f0
1
, 1

6
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 5

6
, 1

1
g, as shown in Figure 5.2.

Note that 1
2

P6
k�1ö(k) � 13 � 10:943 � 3(6=ð)2.

In 1802, C.H. Haro discovered several basic properties of Farey frac-

tions. In 1816, those and other properties appeared in an article by J. Farey.

That same year Cauchy offered proofs to most of the results mentioned by

Haro and Farey. A pair of Farey fractions (a=b, c=d) is said to be a Farey

pair if bcÿ ad � 1. Adjacent Farey fractions are examples of Farey pairs.

The mediant of a Farey pair (a=b, c=d) is given by (a� c)=(b� d). The

mediant of two Farey fractions of order n is a Farey fraction of order n� 1.

Exercises 5.3

1. Find ö(n) for the following values of n.

(a) 406; (b) 756; (c) 1228; (d) 7642.

1
5

5
5

6
6

1
6

1
4

2
6

1
3

2
5

1
2

2
4

3
6

1
1

2
3

3
5

2
2

3
4

4
6

3
3

4
5

4
4

5
6

φ (6) 5 2

φ (5) 5 4

φ (4) 5 2

φ (3) 5 2

φ (2) 5 2

φ (1) 5 1

Figure 5.2
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2. Find the reduced residue system modulo 18.

3. Show that ö(25 930) � ö(25 935) � ö(25 940) � ö(25 942).

4. If p and p� 2 are twin primes, show that ö( p� 2) � ö( p)� 2.

5. Show that (ö(n)ó (n)� 1)=n is an integer if n is prime.

6. If p is prime then show that 1� ö( p)� ö( p2) � � � � � ö( pn) � pn.

7. Show that f (n) � ö(n)=n is strongly multiplicative. That is, show that

f ( pk) � f ( p), where p is prime and k is a positive integer.

8. Give a characterization of n if

(a) ö(n) is odd,

(b) ö(n) � nÿ 1,

(c) ö(n) divides n,

(d) 4 divides ö(n),

(e) ö(n) � 2k , for some positive integer k,

(f) ö(n) � n=2,

(g) ö(n) � n=4,

(h) 2k divides ö(n) for some positive integer k.

9. Show that ö(n2) � nö(n), for n > 1.

10. Show that if n � 11k . p, where k > 1 and p is prime, then 10jö(n).

Hence, there are in®nitely many positive integers for which 10 divides

ö(n).

11. Show that if n � 22k�1, where k > 1, then ö(n) is square. Hence,

there are in®nitely many integers n for which ö(n) is square.

12. Determine the possible remainders when the hundredth power of an

integer is divided by 125.

13. Estimate upper and lower bounds for ö(n) when n � 100 and

n � 1000.

14. Find the average value of ö(n), for 1 < n < 100. How does the

average value compare with 6 . 100=ð2?

15. If n > 2 then show that X
gcd(x,n)�1

x , n

x � n . ö(n)

2
:

16. Show that ö(n) < nÿpn if n is composite.

17. Show for any positive integer n that
Pn

k�1ö(k) . ��n=k�� � n(n� 1)=2.

[Dirichlet 1849]

18. Evaluate
P

d136ö(d).

19. Show that ö( pá)� ó ( pá) > 2 pá where p is prime and á a positive

integer.

20. Find all positive integers n such that ö(n)� ó (n) � 2n.
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21. Show that f (n) � ó (n) . ö(n)=n2 is multiplicative.

22. If p is prime then show that p divides (
p
k ), where 1 < k < pÿ 1.

23. If p is an odd prime, then show that

(a) 1 pÿ1 � 2 pÿ1 � � � � � ( pÿ 1) pÿ1 � (ÿ1) (mod p), and

(b) 1 p � 2 p � � � � � ( pÿ 1) p � 0 (mod p).

24. If gcd(m, n) � 1 show that mö(n) � nö(m) � 1 (mod mn).

25. Use the Euler±Fermat Theorem to solve for x if 41x � 53 (mod 62).

26. Show that 6601 is a Carmichael number.

27. Verify the Ramanujan sum

X
djgcd(m,n)

d . ì
n

d

� �
�

ì
n

gcd(m, n)

� �
. ö(n)

ö
n

gcd(m, n)

� � ,

for the case when m � 90 and n � 105.

28. Show that
P

djnö(d) . ô(n=d) � ó (n).

29. Show that
P

djnö(d) . ó (n=d) � n . ô(n).

30. Prove that n is prime if and only if ó (n)� ö(n) � n . ô(n).

31. For n � 12, show that n � ô(n)� ö(n)� î(n)ÿ 1.

32. For n � 12, show that

÷(n) � ó (n)� ô(n)ÿ 1

2

� �ù(n) Yù(n)

i�1

(ái � 2)!

ái!
ÿ n,

where n �Qr
i�1 p

ái

i .

33. For n � 12, show that î(n) �Pdjnì(d)÷(n=d).

34. Prove that X
dj pá

ì2(d)

ö(d)
� pá

ö( pá)
,

where p is prime and á a positive integer.

35. Compare the values of 1
2

P10
k�1ö(k) and 3(10=ð)2.

36. Determine F 7.

37. If a=b and c=d are two successive terms of F n, show that bc ÿ
ad � 1. [Haro]

38. If a=b and c=d are any two fractions such that a=b , c=d, show that

a

b
,

a� c

b� d
,

c

d
:

39. If (a=b, c=d) is a Farey pair, the closed interval [a=b, c=d] is called a

Farey interval. Show that the length of a Farey interval is 1=bd.

40. If x=y � (a� c)=(b� d), then a=b , x=y , c=d, with bxÿ ay �
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cyÿ dx � 1. Find x=y such that a=b , x=y , c=d, bxÿ ay � m and

cyÿ dx � n.

5.4 Conditional linear congruences

The object of this section and the next chapter will be to develop

techniques to enable us to solve integral polynomial congruences in one

variable. More precisely, if f (x) is a polynomial whose coef®cients are

integers, we say that a is a root of the conditional congruence f (x) � 0

(mod m) if f (a) � 0 (mod m). Since f (a) � f (b) (mod m) if a � b (mod

m), all solutions of the conditional congruence f (x) � 0 (mod m) will be

known provided we ®nd all the solutions in any complete residue system

modulo m. Therefore, we restrict ourselves to ®nding solutions to f (x) � 0

(mod m) in the least residue system modulo m, f0, 1, . . . , mÿ 1g. We say

that f (x) � 0 (mod m) has r incongruent solutions modulo m, when

exactly r elements in the set f0, 1, . . . , mÿ 1g are solutions to f (x) � 0

(mod m).

Diophantus's name is immortalized in the designation of indeterminate

integral equations, even though he considered only positive rational solu-

tions to equations and, long before his time, the Pythagoreans and

Babylonians found positive integral solutions to x2 � y2 � z2. Neverthe-

less, we call an integral equation from which we require only integer

solutions a Diophantine equation.

In 1900, at the International Congress of Mathematicians in Paris, one of

the 23 problems posed by David Hilbert of GoÈttingen to challenge

mathematicians in the twentieth century asked if there were any uniform

method for solving all Diophantine equations. In 1970, Yuri Matiasevich,

of the Steklov Institute of Mathematics, using earlier results of Martin

Davis, Hillary Putnam, and Julia Robinson, answered Hilbert's query in the

negative. Robinson of the University of California at Berkeley was the ®rst

woman to serve as president of the American Mathematical Society.

Let us consider solutions to the simplest polynomial congruences,

namely, linear congruences of the form ax � b (mod m). The following

result was established by Bachet in 1612.

Theorem 5.14 (Bachet's Theorem) If a and b are integers, m is a positive

integer, and gcd(a, m) � 1, then a unique solution to ax � b (mod m)

exists. If gcd(a, m) � d and djb, then d incongruent solutions exist. If

d 6 jb, then no solution exists.
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Proof Suppose ax � b (mod m) and djb, then there exists an integer t

such that td � b. Since gcd(a, m) � d, there exist integers r and s such

that d � ar � ms. Thus, b � td � tar � tms, so a(tr) � b (mod m) and tr

is a solution to the congruence ax � b (mod m). Suppose that x0 is such

that ax0 � b (mod m), hence, ax0 ÿ b � km for some integer k. Since dja
and djm it follows that djb. By contraposition, if d 6 jb, then no solution

exists to ax � b (mod m). Thus if x0 is a solution to ax � b (mod m), so is

x0 � k(m=d), since dja and a(x0 � k(m=d)) � ax0 � km(a=d) � ax0 � b

(mod m), for k � 1, 2, . . . , d ÿ 1. j

The proof of Theorem 5.14 is constructive and implies that if x0 is a

solution to ax � b (mod m), then so is x0 � k(m=d), for k � 1, 2, . . . ,

d ÿ 1. In order to obtain solutions to linear equations a combination of

brute force and cleverness must often be applied. The three possible cases

for a ®rst order linear congruence are illustrated in the following example.

Example 5.10 Solve for x if

(a) 22x � 4 (mod 29),

(b) 51x � 21 (mod 36), and

(c) 35x � 15 (mod 182).

Solutions:

(a) 22x � 4 (mod 29), divide both sides by 2 to obtain 11x � 2 (mod 29),

multiply both sides by 8 to obtain 88x � 16 (mod 29), reduce modulo

29 to obtain x � 16 (mod 29).

(b) 51x � 21 (mod 36), reduce modulo 36 to obtain 15x � 21 (mod 36),

divide by 3 to obtain 5x � 7 (mod 12), multiply both sides by 5 to

obtain 25x � 35 (mod 12), reduce modulo 12 to obtain x � 11 (mod

12), hence x � 11� 12t, which implies that the answers to the original

congruence are x � 11 (mod 36), x � 23 (mod 36) and x � 35 (mod

36).

(c) 35x � 15 (mod 182), since gcd(35, 182) � 7 and 76 j15 the congruence

has no solutions.

Around 1900, the Russian mathematician Georgi Voroni devised a formula

to solve ®rst order linear congruences, namely if gcd(a, m) � 1, the

solution to ax � 1 (mod m) is given by x � (3ÿ 2a� 6
Paÿ1

k�1��mk=a��2)

(mod m). Voroni's formula works best when a is small and m is large. For

example, the solution to 4x � 1 (mod 37) is given by x � 3ÿ 8 �
6(��37

4
��2 � ��74

4
��2 � ��111

4
��2) (mod 37) � 6799 (mod 37) � 28 (mod 37). Ac-
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cording to the next result, our knowledge of ®rst order linear congruences

may be applied to solve linear Diophantine equations of the form

ax� by � n.

Theorem 5.15 The Diophantine equation ax� by � n is solvable if and

only if d divides n, where d � gcd(a, b), and if (x0, y0) is any solution,

then every solution is given by

x0 � k
b

d

� �
, y0 ÿ k

a

d

� � !
, where k � 0, �1, �2, . . . :

Proof Solving ax� by � n is equivalent to solving either ax � n (mod b)

or by � n (mod a). A solution to either of these congruences is possible if

and only if djn, where d � gcd(a, b). If x0 is any solution to ax � n (mod

b), every solution to ax � n (mod b) is given by x0 � k(b=d). Hence, if

y0 � (nÿ ax0)=b, y � y0 ÿ k(a=d) and x � x0 � k(b=d). Therefore,

nÿ ax � nÿ a x0 � k
b

d

� �� �
� b

nÿ ax0

b
ÿ k

a

d

� �� �
� b y0 ÿ k

a

d

� �� �
� by: j

For example, in order to ®nd integral solutions to the linear equation

15x� 7y � 110, we solve either 7y � 110 (mod 15) or 15x � 110 (mod

7). Without loss of generality, consider 15x � 110 (mod 7). Reducing

modulo 7, we obtain x � 5 (mod 7). Hence, x � 5� 7k, for k � 0, �1,

�2, . . . : Thus, 15(5� 7k)� 7y � 110 or 75� 15(7k)� 7y � 110. Thus,

7y � 35ÿ 15(7k). It follows that y � 5ÿ 15k, for k � 0, �1, �2, . . . :

We could just as well have used the Euclidean algorithm to obtain integers

a and b such that 15a� 7b � 1 and then multiplied both sides of the

equation by 110. In fact, an alternate technique to solve ax� by � n, with

d � gcd(a, b), noted by P. Barlow in 1811, follows from the fact that, since

djn and gcd(a=d, b=d) � 1, there exist integers x and y such that

(a=d)x� (b=d)y � 1. Therefore, a(nx=d)� b(ny=d) � n and all solutions

are given by x � nx=d � k(b=d), and y � ny=d � k(a=d), for k an integer.

In 1826, generalizing Theorem 5.15 to higher order linear equations of

the form ax� by� cz � d, Cauchy showed that if the greatest common

divisor of a, b, c is unity, every integral solution to ax� by� cz � 0 is of

the form x � bt ÿ cs, y � cr ÿ at, and z � asÿ br. In 1859, V.A. Le-

besgue showed that if the greatest common divisor of a, b, c is unity then

every integral solution to ax� by� cz � d is given by x � deg
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� ces� bt=D, y � dfg � cfuÿ at=D, and z � dhÿ Ds, where s and t are

arbitrary, D � gcd(a, b), ae� bf � D, and Dg � ch � 1. Thus, in order

to ®nd integral solutions to the equation ax� by� cz � n, let

ax� by � nÿ cz, solve for z where cz � n (mod d) and d � gcd(a, b),

and plug the solution back into the original equation. In 1774, T. Moss

listed 412 solutions to 17x� 21y� 27z� 36w � 1000 in the Ladies'

Diary. In 1801, Gauss noted that if the greatest common divisor of the

coef®cients of ax� by� cz� dw � e divides e then an integral solution

exists.

Example 5.11 Let us determine a solution to the linear equation

6x� 8y� 5z � 101. Since gcd(6, 8) � 2, 5z � 101 (mod 2), implying that

z � 1 (mod 2) z � 1� 2t. Substituting, we obtain 6x� 8y� 5� 10t

� 101 or 6x� 8y� 10t � 96. Hence, 3x� 4y� 5t � 48. Considering the

equation modulo 3, we obtain 4y� 5t � 48 (mod 3), implying that

y � ÿ2t (mod 3) or y � ÿ2t � 3s. Thus, 6xÿ 16t � 24s� 5� 10t �
101 or x � 16� t ÿ 4s. Therefore, the complete solution is given by

x � 16� t ÿ 4s, y � ÿ2t � 3s, and z � 1� 2t.

Astronomical problems dealing with periodic motions of celestial bodies

have been prevalent throughout history. One method for solving such

problems originated in China. Master Sun's Mathematical Manual written

in the late third century repeats many of the results found in the earlier

Nine Chapters on the Mathematical Art, but presents in verse a new rule

called `the great generalization' for determining, in particular, a number

having the remainders 2, 3, 2 when divided by 3, 5, 7 respectively. The

method was clearly outlined and disseminated in the Sichuan mathemati-

cian±astronomer Qin Jiushao's Mathematical Treatise in Nine Sections in

1247. Quite remarkably, as an indication of the transmission of knowledge

in the ancient world, Nicomachus included the same example in his

Introduction to Arithmetic. The rule, known as the Chinese Remainder

Theorem, offers a practical method for determining the solution of a set of

®rst order linear congruences. We credit the ®rst modern statement of the

theorem to Euler. Gauss discovered the result independently around 1801.

In 1852, the method was popularized in a treatise, Jottings on the Science

of Chinese Arithmetic, by Alexander Wylie.

Theorem 5.16 (Chinese Remainder Theorem) If m1, m2, . . . , mk are gi-

ven moduli, coprime in pairs, then the system of linear congruences x � ai

(mod mi), for 1 < i < k, has a unique solution modulo m �Qk
i�1 mi.
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Proof In order to solve the system x � ai (mod mi), for i � 1, 2, . . . , k,

let Mi � m=mi, where m �Qk
i�1 mi, and bi be such that Mibi � 1 (mod

mi). We have mjjMi and gcd(mi, mj) � 1 for i 6� j. Since gcd(mi, Mi) � 1,

the congruence Miy � 1 (mod mi) has a unique solution bi, for 1 < i < k.

Hence, for each i there exists an integer bi such that Mibi � 1 (mod mi).

Let x0 �
Pk

i�1 Mibiai (mod m). Since aiMibi � ai (mod mi) and Mi � 0

(mod mj), for i 6� j, it follows that x0 � ai (mod mi), for i � 1, 2, . . . , k.

Hence, x0 is a solution of the system of linear congruences. Suppose that

x1 is any other solution of the system. We have x0 � x1 � ai (mod mi), for

i � 1, 2, . . . , k. Hence, mij(x1 ÿ x0), for i � 1, 2, . . . , k. Since gcd(mi,

mj) � 1, for i 6� j, it follows that mj(x1 ÿ x0), and thus x1 � x0 (mod m).

Therefore, if a solution exists, it is unique modulo m. j

Example 5.12 Let us use the Chinese Remainder Theorem to solve the

system

x � 2 (mod 3),

x � 3 (mod 5),

x � 2 (mod 7):

Let m � 3 . 5 . 7 � 105, then

m1 � 3, m2 � 5, m3 � 7,

a1 � 2, a2 � 3, a3 � 2,

M1 � 35, M2 � 21, M3 � 15:

Solve the following congruences for bi, for i � 1, 2, and 3.

35b1 � 1 (mod 3), 21b2 � 1 (mod 5), 15b3 � 1 (mod 7),

2b1 � 1 (mod 3), b2 � 1 (mod 5), b3 � 1 (mod 7),

b1 � 2 (mod 3), b2 � 1 (mod 5):

Therefore, x �P3
i�1 Mibiai � 35 . 2 . 2� 21 . 1 . 3� 15 . 1 . 2 � 233 �

23 (mod 105).

Simultaneous ®rst order linear equations encountered in Chinese remain-

der-type problems may be solved directly (and often more ef®ciently) using

brute force. For example, suppose we are given the following system of

linear equations:

x � 3 (mod 2),

x � 1 (mod 5),

x � 2 (mod 7):

From the ®rst equation x � 3� 2k, for some integer k. Substituting into
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the second equation for x yields 3� 2k � 1 (mod 5) or 2k � 3 (mod 5) so

k � 4 (mod 5) or k � 4� 5r, for some integer r. Substituting, we obtain

x � 3� 2k � 3� 2(4� 5r) � 11� 10r. Substituting into the third equa-

tion for x yields 11� 10r � 2 (mod 7), implying that 3r � 5 (mod 7) or

r � 4 (mod 7). Hence, r � 4� 7s, for some integer s. Substituting, we

obtain x � 11� 10r � 11� 10(4� 7s) � 51� 70s. Therefore, x � 51

(mod 70).

The Chinese Remainder Theorem is a special case of a more general

result, illustrated by the Buddhist monk Yi Xing around 700, which states

that the system x � ai (mod mi), for i � 1, 2, . . . , k, is solvable if and only

if gcd(mi, mj)j(aj ÿ ai), for 1 < i < j < k, and, if a solution exists, it is

unique modulo m � lcm (m1, m2, . . . , mk). Qin Jiushao outlined a method

for solving such problems by ®nding integers c1, c2, . . . , ck which are

coprime in pairs such that ci divides mi, for i � 1, 2, . . . , k, and

lcm(c1, c2, . . . , ck) � lcm(m1, m2, . . . , mk). He let Mi � m=ci and bi be

such that Mibi � 1 (mod ci); then a solution is given by x �Pk
i�1 Mibici

(mod m).

Example 5.13 Using Qin Jiushao's method, let us solve the system

x � 1 (mod 4),

x � 5 (mod 6),

x � 4 (mod 7):

We have m � lcm(4, 6, 7) � 84. Hence

a1 � 1, a2 � 5, a3 � 4,

m1 � 4, m2 � 6, m3 � 9,

c1 � 4, c2 � 3, c3 � 7,

N1 � 21, N2 � 28, N3 � 12:

21b1 � 1 (mod 4), 28b2 � 1 (mod 3), and 12b3 � 1 (mod 7) imply that

b1 � 1 (mod 4), b2 � 1 (mod 3), and b3 � 1 (mod 7). Hence, x �Pk
i�1 Nibiai � 21 . 1 . 1� 28 . 1 . 5� 12 . 4 . 3 � 305 � 53 (mod 84).

The following problem has a long history. It appears in the work of the

sixth century Indian mathematician Bhaskara and the eleventh century

Egyptian mathematician al-Hasan. In 1202, Fibonacci included it in his

Liber abaci.

Example 5.14 A woman went to market and a horse stepped on her basket

and crushed her eggs. The rider offered to pay her for the damage. He
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asked her how many she had brought. She did not know, but when she took

them out two at a time there was one left. The same thing happened when

she took them out 3, 4, 5, and 6 at a time, but when she took them out 7 at

a time there were none left. What is the smallest number that she could

have had? In essence we are being asked to solve the system of

congruences

x � 1 (mod 2),

x � 1 (mod 3),

x � 1 (mod 4),

x � 1 (mod 5),

x � 1 (mod 6),

x � 0 (mod 7):

The system is redundant and reduces to the equivalent system

x � 1 (mod 12),

x � 1 (mod 5),

x � 0 (mod 7),

with solution x � 301 (mod 420).

Methods for solving systems of linear Diophantine equations for integral

solutions date to at least the ®fth century when the `hundred fowl' problem

appeared in Zhang Quijian's Mathematical Manual which appeared around

475. Speci®cally, the problem asks how one can use exactly 100 coins to

purchase 100 fowl, where roosters cost 5 coins, hens cost 3 coins, and one

coin will fetch 3 chickens. The problem is equivalent to solving the

equations 5x� 3y� 1
3
z � 100 and x� y� z � 100. Multiplying the ®rst

equation by 3 and subtracting the second equation leads to the equation

7x� 4y � 100. Among the solutions to the system are x � 4, y � 18,

z � 78; x � 8, y � 11, z � 81; and x � 12, y � 4, z � 84.

In 800, Alcuin (Flaccus Albinus) authored a book of exercises and

included the problem: if one distributes 100 bushels evenly among 100

people such that men get 3, women get 2, and children get half a bushel,

how many people are there of each kind? Around 1211, Abu Kamil ibn

Aslam found positive integral solutions to a set of equations that date back

to the second century, namely, x� y� z � 100 and 5x� y=20� z � 100.

He determined almost a hundred solutions to the system x� y �
z� w � 100 and 4x� y=10� z=2� w � 100.

In 1867, extending an 1843 result of De Morgan, A. Vachette showed
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that one of n2, n2 ÿ 1, n2 ÿ 4, n2 � 3 is divisible by 12 and the quotient is

the number of positive solutions of x� y� z � n. In 1869 V. Schlegel

proved that the number of positive integral solutions to x� y� z � n,

where x < y� z, y < x� z, z < x� y, is (n2 ÿ 1)=8 or (n� 2)(n� 4)=8

according as n is odd or even.

A method, known to Islamic and Hindu mathematicians, called the rule

of the virgins, can be employed to determine the number of nonnegative

integral solutions to a system of linear equations. According to the rule, the

number of such solutions to the equations
Pk

i�1aixi � m andP
k
i�1bixi � n is given by the coef®cient of xmyn in the expansion ofQ
k
i�1(1ÿ xai ybi )ÿ1.

Exercises 5.4

1. Solve the following linear congruences:

(a) 16x � 27 (mod 29),

(b) 20x � 16 (mod 64),

(c) 131x � 21 (mod 77),

(d) 22x � 5 (mod 12),

(e) 17x � 6 (mod 29):

2. Find all solutions to 4x� 51y � 9.

3. Find all solutions to 2x� 3y � 4.

4. Someone wishes to purchase horses and cows spending exactly $1770.

A horse costs $31 and a cow $21. How many of each can the person

buy? [Euler 1770]

5. A person pays $1.43 for apples and pears. If pears cost 17¢ and apples

15¢, how many of each did the person buy?

6. Divide 100 into two parts, one divisible by 7 and the other divisible by

11.

7. Use Voroni's formula to solve for x if 5x � 1 (mod 61).

8. If one distributes 100 bushels evenly among 100 people such that men

get 3, women get 2, and children get half a bushel, how many people

are there of each kind? [Alcuin c. 800]

9. A duck costs 5 drachmas, a chicken costs 1 drachma, and 20 starlings

cost 1 drachma. With 100 drachmas, how can one purchase 100 birds?

[c. 120]

10. A group of 41 men, women, and children eat at an inn. The bill is for

40 sous. Each man pays 4 sous, women 3 sous, and three children eat

for a sou. How many men, women, and children were there? [Bachet]
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11. Show that the system 3x� 6y� z � 2 and 4x� 10y� 2z � 3 has no

integral solutions.

12. Solve the following system:

x� y� z � 30,
x

3
� y

2
� 2z � 30:

[Fibonacci 1228]

13. Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3,

6, 12 respectively. [Yi Xing c. 700]

14. Find an integer having the remainders 5, 4, 3, 2 when divided by 6, 5,

4, and 3 respectively. [Brahmagupta, Bhaskara, and Fibonacci]

15. Find a number with remainders of 3, 11, and 15, when divided by 10,

13, and 17, respectively. [Regiomontanus]

16. US Senator Riley was ®rst elected in 1982. Her reelection is assured

unless her campaign coincides with an attack of the seven-year itch

such as hit her in 1978. When must she worry ®rst? [For non-American

readers: US Senators are elected for a ®xed term of six years.]

17. A band of 17 pirates upon dividing their gold coins found that three

coins remain after the conis have been apportioned evenly. In an

ensuing brawl, one of the pirates was killed. The wealth was again

redistributed equally, and this time ten coins remained. Again an

argument broke out and another pirate was killed. This time the

fortune was distributed evenly among the survivors. What was the least

number of gold coins the pirates had to distribute?

18. According to the biorhythm theory, a person has a physical cycle of 23

days, with a maximum after 5.75 (6) days; an emotional cycle of 28

days, with a maximum after 7 days; and an intellectual cycle of 33

days, with a maximum after 8.25 (8) days. When does a person ®rst

have all the maxima on the same day, and after how many days will

that occur again?

19. Find a nonzero solution to 49x� 59y� 75z � 0. [Euler 1785]

20. Find a solution to 5x� 8y� 7z � 50. [Paoli 1794]

21. Find a solution to the system x� y� z � 240 and 97x� 56y �
3z � 16 047. [Regiomontanus]

22. Find a ®ve-digit number n with the property that the last ®ve digits of

n2 are exactly the same and in the same order as the last ®ve digits

of n.

23. According to the rule of the virgins, how many nonnegative integral

solutions should the system 2x� y � 2 and x� 3y � 7 have?
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5.5 Miscellaneous exercises

1. According to the Dirichlet principle if n boxes contain n� 1 items,

then one box must contain at least two items. Given any set S of n

integers, use the Dirichlet principle to prove that for pairs of integers

selected from S, n divides either the sum or the difference of two

numbers. (Hint: Let the integers be a1, . . . , an and consider a1 � a2,

a1 � a3, . . . , a1 � an modulo n.)

2. Given n integers a1, a2, . . . , an, use the Dirichlet principle to prove

that there exists a nonempty subset whose sum is a multiple of n.

[Hint: Let the integers be a1, a2, . . . , an and consider a1 � a2,

a1 � a2 � a3, . . . , a1 � a2 � � � � � an.]

3. Show that if a1, a2, . . . , aö(m) and b1, b2, . . . , bö(n) are reduced

residue systems modulo m and n respectively with gcd(m, n) � 1,

then T � fnai � mbj: 1 < i < ö(m) and 1 < j < ö(n)g is a set of

ö(m)ö(n) integers forming a reduced residue system modulo mn.

4. With T de®ned as in the previous exercise, show that no two elements

in T can be congruent. Hence, every integer coprime to mn is counted

exactly once, hence, ö(m)ö(n) � ö(mn).

5. Show that

ö(2n) � ö(n) if n is odd,

2 . ö(n) if n is even:

�
6. Show that

ö(3n) � 3 . ö(n) if 3jn,

2 . ö(n) if 36 jn:
�

7. Carmichael's lambda function Ëc(n) is de®ned as follows:

Ëc(1) � Ëc(2) � 1,

Ëc(4) � 2,

Ëc(2r) � 2rÿ2, for r > 3,

Ëc( pk) � ö( pk) if p is an odd prime, and

Ëc(2r pá1

1 . . . pá r

r ) � lcm(ö(2k), ö( pá1

1 ), . . . , ö( pá r

r )):

A composite number n is called a Carmichael number if and only

Ëc(n) divides nÿ 1. Find

(a) Ëc(24),

(b) Ëc(81),

(c) Ëc(341),

(d) Ëc(561),

(e) Ëc(26 . 34 . 52 . 7 . 19).
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8. Find a solution to 7x� 5y� 15z� 12w � 149.

9. Solve 27x� 33y� 45z� 77w � 707.

10. Solve 10x� 11y� 12z � 200. [The Gentleman's Diary, 1743]

11. A farmer buys 100 birds for $100. If chickens cost $0.50 each, ducks

$3 each, and turkeys $10 each, and the farmer buys at least one bird of

each type, how many of each type did he buy?

12. Show that 42 divides n7 ÿ n for any integer n.

13. For any positive integer n, prove thatX
djn

d . ö(d) . ó
n

d

� �
�
X
djn

d2: [Liouville 1857]

14. For any positive integer n, prove thatX
djn

ì(d) . ö(d) �
Y
pjn

(2ÿ p),

where p is prime.

15. Prove that if 264 � 1 is divisible by 1071 . 28 � 1, then

10712 � 16 777 2162, 10714 � 2564, and 10718 � 18 are composite.

[Hint: show that if (ÿ1071)n � 264ÿ8n � 0 (mod 1071 . 28 � 1), then

(ÿ1071)n�1 � 264ÿ8(n�1) � 0 (mod 1071 . 28 � 1).] This problem ap-

peared in The Educational Times, in 1882, and was solved by Sarah

Marks (Hertha Ayrton), of Girton College, Cambridge. Ayrton, an

English experimenter, was the ®rst woman nominated to be a Fellow of

the Royal Society. She was ruled ineligible since she was a married

woman and, hence, had no rights of her own under English law. She

was awarded the Hughes Medal from the Society for her work with

electric arcs and determining the cause of sand ripples on the seashore.

She remains the only woman to be awarded a medal from the Royal

Society in her own right.

16. A nonempty set G on which there is de®ned a binary operation,

denoted by juxtaposition, is called a group if G is closed, associative,

there is an element e (the identity) such that for all a in G,

ea � ae � e, and for each element a in G there is an element aÿ1 in G

such that aaÿ1 � aÿ1a � e. In addition, if G is commutative then it is

called an Abelian group. The order of a group is the number of

elements in the group. The least residue system modulo m,

f0, 1, 2, . . . , mÿ 1g, under the operation of addition modulo m,

denoted by Zm, is an Abelian group of order m. Find the inverse for

each element in Z10.

17. If p is a prime, the least residue system modulo p, less zero, denoted
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by Z�p, is an Abelian group of order pÿ 1 under multiplication

modulo p. Find the inverse of each element in Z�11.

18. The reduced residue system modulo m, fa1, a2, . . . , aö(m)g, forms an

Abelian group of order ö(m) under multiplication modulo m. Find the

inverse of each element in Z�12.

19. A subgroup H of a group G is a nonempty subset of G that is a group

under the same operation. Show that H is a subgroup of G if, for all a

and b in H, abÿ1 is in H.

20. Describe all the subgroups of Zm.

21. A ring is a nonempty set with two binary operations, called addition

and multiplication, that is an Abelian group under addition and is

closed and associative under multiplication. If a ring is commutative

under multiplication it is called a commutative ring. If there is a

multiplicative identity it is called a ring with unity. The least residue

system modulo m, f0, 1, 2, . . . , mÿ 1g, denoted also by Zm, under

addition and multiplication modulo m is a commutative ring with

unity. Which elements in Z6 fail to have multiplicative inverses?

22. A ®eld is a nonempty set with two binary operations, say addition and

multiplication, that is distributive, an Abelian group under addition,

and whose nonzero elements form an Abelian group under multi-

plication. For p a prime, Zp under the operations of addition and

multiplication modulo p is an example of a ®nite ®eld. Find the

multiplicative inverses for all nonzero elements in Z1.

23. If 0 , a, b , m, gcd(a, m) � 1 and x runs through a complete residue

system modulo m, then show that ax� b runs through a complete

residue system modulo m.
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6

Congruences of higher degree

Never send to know for whom the bell tolls; it tolls for

thee.

John Donne

6.1 Polynomial congruences

We now develop techniques, introduced by Gauss in Disquisitiones, for

solving polynomial congruences of the form f (x) � 0 (mod m), where

f (x) is a polynomial with integer coef®cients of degree greater than one

whose solutions come from the least residue system {0, 1, . . . , mÿ 1g. In

the late eighteenth century, Lagrange developed techniques to solve poly-

nomial equations where m was prime. Polynomial equations with nonprime

moduli can be solved using the Chinese Remainder Theorem.

Theorem 6.1 If m �Qk
i�1 mi and gcd(mi, mj) � 1, for 1 < i , j < k,

then any solution of f (x) � 0 (mod m) is simultaneously a solution of the

system f (x) � 0 (mod mi), for i � 1, 2, . . . , k, and conversely.

Proof Suppose f (x0) � 0 (mod m). Since mijm, f (x) � 0 (mod mi), for

i � 1, 2, . . . , k. Hence, any solution of f (x) � 0 (mod m) is a solution to

the system of equations f (x) � 0 (mod mi), for i � 1, 2, . . . , k. Con-

versely, suppose that f (x0) � 0 (mod mi), for i � 1, 2, . . . , k. Then,

mij f (x0) for i � 1, 2, . . . , k. Since gcd(mi, mj) � 1, for i 6� j, from the

corollary to Theorem 2.8, mj f (x0). Therefore, f (x0) � 0 (mod m). j

If f (x) � 0 (mod pái

i ) has ni solutions, for i � 1, . . . , k, from the multi-

plication principle, f (x) � 0 (mod n), where n �Qk
i�1 pái

i has at mostQk
i�1 ni solutions. According to Theorem 6.1, in order to solve the poly-

nomial equation f (x) � 0 (mod n), where n �Qk
i�1 p

ái

i , where ái > 1,

for i � 1, 2, . . . , k, we ®rst solve the equations f (x) � 0 (mod pái

i ), for

i � 1, . . . , k. Then use the Chinese Remainder Theorem or brute force to

obtain the solution modulo n. In either case, we need a technique to solve
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polynomial congruences of the form f (x) � 0 (mod pá), where p is prime

and á > 2 is a natural number. The next result shows that solutions to

f (x) � 0 (mod pá) are generated from solutions to f (x) � 0 (mod páÿ1).

Theorem 6.2 Let f (x) be a polynomial with integral coef®cients, p a

prime, and á > 1 an integer. If xá�1 � xá � kpá, where xá is a solution to

f (x) � 0 (mod pá), and k is a solution to ( f (xá)=pá)� k . f 9(xá) � 0

(mod p) where 0 < xá , pá, 0 < k , p, and f 9(x) denotes the derivative

of the function f (x), then xá�1 is a solution to f (x) � 0 (mod pá�1).

Proof For p a prime, if pá�1ja then pája. Hence, each solution of

f (x) � 0 (mod pá�1) is also a solution of f (x) � 0 (mod pá). More

precisely, if f (xá�1) � 0 (mod pá�1), then there exists an xá such that

f (xá) � 0 (mod pá) with xá�1 � xá (mod pá) or, equivalently, xá�1 �
xá � kpá. Using a Taylor expansion, f (xá�1) � f (xá � kpá) � f (xá) �
kpá f 9(xá)� k2 N , where N is an integer divisible by pá�1. Thus,

f (xá)� kpá f 9(xá) � 0 (mod pá�1). Since f (xá) � 0 (mod pá),

f (xá)=pá � M is an integer. Thus, f (xá) � Mpá, implying that

Mpá � kpá f 9(xá) � 0 (mod pá�1). Upon division by pá, it follows that

M � kf 9(xá) � 0 (mod p). j

Example 6.1 In order to solve 53x � 282 modulo 1331 � 113, set

f (x) � 53xÿ 282. Thus, f 9(x) � 53. Any solution to 53x � 282

(mod 112) will be of the form x1 � x0 � k . 11, where 53x0 � 282

(mod 11) and f (x0)=11� 53k � 0 (mod 11). The only solution to

53x0 � 282 (mod 11) is given by x0 � 2 (mod 11). Since f (2) �
53(2)ÿ 282 � ÿ176, we obtain ÿ176=11� 53k � ÿ16� 53k � 0

(mod 11), implying that k � 3 (mod 11). Therefore, a solution to

53x � 282 (mod 112) is given by x1 � x0 � k . 11 � 2� 3 . 11 � 35. A

solution to 53x � 282 (mod 113) is given by x2 � x1 � r112, where

f (35)=112 � 53r � 1537=112 � 53r � 13� 53r � 0 (mod 11), implying

that r � 1 (mod 11). Therefore, x2 � x1 � r . 112 � 35� 1 . 112 � 156 is

a solution to 53x � 282 (mod 113).

With Theorems 6.1 and 6.2 established, we now restrict ourselves to

methods of solving polynomial congruences of the form f (x) � 0

(mod p), where p is prime. When Euler accepted Catherine the Great's

offer and moved to St Petersburg, Joseph Louis Lagrange succeeded him in

Berlin. Even though they probably never met, there was an extensive

correspondence between the two mathematicians. Lagrange's most produc-
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tive period with respect to number theory was the period from 1766 to

1777, the time he spent in Berlin. Lagrange's works are very readable and

are noted for their well-organized presentation and the clarity of their style.

Lagrange in the late eighteenth century determined an upper limit on the

number of solutions to polynomial equations as a function of the degree of

the polynomial. In particular, he established that a polynomial equation can

have at most p solutions modulo p, namely 0, 1, 2, . . . , and pÿ 1.

According to Fermat's Little Theorem, xp ÿ x � 0 (mod p) has exactly p

solutions. Hence, Lagrange's Theorem is a best possible result.

Theorem 6.3 (Lagrange's Theorem) The number of incongruent solutions

of the polynomial equation f (x) � 0 (mod p) is never more than the

degree of f (x).

Proof Given f (x) � 0 (mod p), where p is prime and n denotes the

degree of f (x), we reason inductively. If n � 1, consider congruences of

the form ax� b � 0 (mod p), where a 6� 0 (mod p) so ax � ÿb (mod p).

Since gcd(a, p) � 1, Theorem 5.14 implies that the equation has exactly

one solution. Suppose the theorem is true for all polynomials of degree less

than or equal to n. Consider f (x) � 0 (mod p), with p prime and

deg( f (x)) � n� 1. Suppose further that f (x) has n� 2 incongruent roots

modulo p, and r is one of those roots. It follows that f (x) � g(x)(xÿ r),

where deg(g(x)) � n. If s is any other root of f (x) � 0 (mod p), then

f (s) � g(s)(sÿ r) � 0 (mod p). Now sÿ r 6� 0 (mod p), since

gcd(sÿ r, p) � 1, and p is prime. Hence, g(s) � 0 (mod p), and s is a

root of g(x) � 0 (mod p). Thus g(x) � 0 (mod p), a polynomial equation

of degree n, has n� 1 roots, contradicting the induction assumption. j

If n . 4 is composite then n divides (nÿ 1)! or, equivalently, (nÿ 1)! � 0

(mod n). In 1770, in Meditationes algebraicae, Edward Waring stated that

one of his students, John Wilson, had conjectured that if p is a prime then

it divides ( pÿ 1)!� 1, but the proof seemed dif®cult due to a lack of

notation to express prime numbers. In 1761, Wilson, like Waring, before

him, was Senior Wrangler at Cambridge. Wilson, however, left mathe-

matics quite early to study law, became a judge, and was later knighted.

Leibniz conjectured the result as early as 1683, but was also unable to

prove it. Having been sent a copy of Meditationes algebraicae by Waring,

Lagrange gave the ®rst proof of the theorem and its converse in 1771.

Gauss reportedly came up with the gist of a proof in ®ve minutes while
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walking home one day. His classic riposte to Waring's comment was that

proofs should be `drawn from notions rather than from notations'.

Since

sin
(nÿ 1)!� 1

n

� �
ð � 0

if and only if n is prime, Wilson's Theorem provides an interesting but not

very practical criterion for determining whether or not a number is prime.

The proof shown below is due to the Russian mathematician Pafnuti Cheby-

shev, propounder of the law of large numbers. We noted earlier that it is an

open question whether n!� 1 is prime for in®nitely many values of n. The

next result shows that n!� 1 is composite for in®nitely many values of n.

Theorem 6.4 (Wilson's Theorem) The natural number n is prime if and

only if (nÿ 1)! � ÿ1 (mod n).

Proof Suppose that p is prime. By Fermat's Little Theorem solutions to

g(x) � x pÿ1 ÿ 1 � 0 (mod p) are precisely 1, 2, . . . , pÿ 1. Consider

h(x) � (xÿ 1)(xÿ 2) � � � (xÿ ( pÿ 1)) � 0 (mod p), whose solutions by

construction are the integers 1, 2, . . . , pÿ 1. Since g(x) and h(x) both

have degree pÿ 1 and the same leading term, f (x) � g(x)ÿ h(x) � 0

(mod p) is a congruence of degree at most pÿ 2 having pÿ 1 incon-

gruent solutions, contradicting Lagrange's Theorem. Hence, every coef®-

cient of f (x) must be a multiple of p, and thus deg( f (x)) � 0. However,

since f (x) has no constant term, f (x) � 0 (mod p) is also satis®ed by

x � 0 (mod p). Therefore, 0 � f (0) � g(0)ÿ h(0) � ÿ1ÿ (ÿ1) pÿ1

( pÿ 1)! (mod p). If p is an odd prime, then (ÿ1) pÿ1 � 1 (mod p), and if

p � 2, then (ÿ1) pÿ1 � ÿ1 � 1 (mod 2). Hence, for any prime p, we have

( pÿ 1)! � ÿ1 (mod p). Conversely, if n is composite, then there exists an

integer d, 1 , d , n, such that djn. Hence, dj(nÿ 1)!, and (nÿ 1)! � 0

(mod d), implying that (nÿ 1)! 6� ÿ1 (mod n). j

Let f (x, y) � 1
2
(yÿ 1)[jA2 ÿ 1j ÿ (A2 ÿ 1)]� 2, where A � x(y� 1) ÿ

(y!� 1), x and y are positive integers. If p is an odd prime, x0 �
[( pÿ 1)!� 1]=p and y0 � pÿ 1, then,

A � 1

p
[( pÿ 1)!� 1][ pÿ 1� 1]ÿ [( pÿ 1)!� 1] � 0:

Hence,

f (x0, y0) � ( pÿ 1)ÿ 1

2
[j1j ÿ j ÿ 1j]� 2 � p:
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Hence, f (x, y) is an example of a prime generating function.

Exercises 6.1

1. Solve for x

(a) 2x9 � 2x6 ÿ x5 ÿ 2x2 ÿ x � 0 (mod 5),

(b) x4 � x� 2 � 0 (mod 7).

2. Solve for x

(a) x3 � 3x2 � 31x� 23 � 0 (mod 35),

(b) x3 � 2xÿ 3 � (mod 45),

(c) x3 ÿ 9x2 � 23xÿ 15 � 0 (mod 77).

3. Use Theorem 6.2 to solve for x

(a) x2 � 8 � 0 (mod 121),

(b) 5x3 ÿ 2x� 1 � 0 (mod 343),

(c) x2 � x� 7 � 0 (mod 81).

4. Solve the modular system

5x2 � 4xÿ 3 � 0 (mod 6),

3x2 � 10 � 0 (mod 17):

�
5. Use Wilson's Theorem to show that 17 is prime.

6. Find the remainder when 15! is divided by 17.

7. Show that 18! � ÿ1 (mod 437).

8. For any odd prime p, show that 12 . 32 � � � ( pÿ 2)2 � 22 . 42 � � �
( pÿ 1)2 � (ÿ1)( p�1)=2 (mod p).

9. If p is an odd prime, show that x2 � 1 (mod p) has exactly two

incongruent solutions modulo p.

10. Modulo 101, how many solutions are there, to the polynomial equation

x99 � x98 � x97 � � � � � x� 1 � 0? [Hint: multiply the polynomial by

x(xÿ 1).]

11. Use the fact that Z�p, the nonzero residue classes modulo a prime p, is

a group under multiplication to establish Wilson's Theorem. [Gauss]

12. Prove that if p . 3 is a prime then

1� 1
2
� 1

3
� � � � � 1

pÿ 1
� 0 (mod p).

[J. Wolstenholme 1862]

13. If p is prime Wilson's Theorem implies that ( pÿ 1)!� 1 � kp for

some k. When does k � 1 and when does k � p?

6.2 Quadratic congruences

In the previous section, we showed that solutions to ax2 � bx� c � 0
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(mod m) depend on the solution to ax2 � bx� c � 0 (mod p), where p is

a prime and pjm. If p is an odd prime with gcd(a, p) � 1, then

gcd(4a, p) � 1. Multiplying both sides of ax2 � bx� c � 0 (mod p) by

4a we obtain 4a2x2 � 4abx� 4ac � 0 (mod p) or (2ax� b)2 �
(b2 ÿ 4ac) (mod p). Therefore, to solve the quadratic equation

ax2 � bx� c � 0 modulo a prime p, we need only ®nd solutions to

(2ax� b) � y (mod p),

where y is a solution to

y2 � (b2 ÿ 4ac) (mod p):

Since gcd(2a, p) � 1, the ®rst of these equations always has a unique

solution. Hence, as Gauss realized, a solution to the original problem

depends solely on solving congruences of the form x2 � k (mod p).

Example 6.2 In order to solve 3x2 � 15x� 9 � 0 (mod 17) we ®rst solve

y2 � b2 ÿ 4ac � 225ÿ 108 � 117 � 15 (mod 17). Since 72 � 102 � 15

(mod 17), we obtain the solutions y � 7 (mod 17) and y � 10 (mod 17). If

y � 7 (mod 17) then 2ax� b � 6x� 16 � 7 (mod 17), implying that

x � 10 (mod 17). If y � 10 (mod 17) then 2ax� b � 6x� 15 � 10

(mod 17), implying that x � 2 (mod 17). Therefore, the solutions to

3x2 � 15x� 9 � 0 (mod 17) are given by x � 2 (mod 17) and x � 10

(mod 17).

Our goal at this point is twofold. We aim to determine which equations of

the form x2 � a (mod p) have solutions, for p an odd prime, and to ®nd a

technique to obtain such solutions. If the equation x2 � a (mod p) has a

solution then a is called a quadratic residue (QR) of p, otherwise a is

called a quadratic nonresidue (QNR) of p. The integer 0 is usually

excluded from consideration since it is a trivial quadratic residue of p, for

every prime p. Since ( pÿ b)2 � b2 (mod p), if b is a QR of p, then pÿ b

is a QR of p.

For example, modulo 17, we ®nd that

12 � 1, 22 � 4, 32 � 9, 42 � 16,

52 � 8, 62 � 2, 72 � 15, 82 � 13,

92 � 13, 102 � 15, 112 � 2, 122 � 8,

132 � 16, 142 � 9, 152 � 4, 162 � 1:

Therefore, the quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15, and 16. The

quadratic nonresidues of 17 are 3, 5, 6, 7, 10, 11, 12 and 14. Euler,
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Lagrange, Legendre, and Gauss developed the theory of quadratic residues

in attempting to prove Fermat's Last Theorem.

For convenience, we introduce the Legendre symbol (a
p
), which is

de®ned as follows: for p an odd prime, and a an integer with

gcd(a, p) � 1,

a

p

� �
� 1 if a is a quadratic residue of p,

ÿ1 if a is a quadratic nonresidue of p:

�
Adrien Marie Legendre studied mathematics at ColleÁge Mazarin in Paris.

He taught for ®ve years with Laplace at the Ecole Militaire in Paris. His

treatise on ballistics was awarded a prize from the Berlin Academy.

Legendre was ®nancially independent but lost a fortune during the French

Revolution. In 1798, Legendre introduced the symbol (a
p
) in Essai sur la

theÂorie des nombres. In Essai, the ®rst modern work devoted to number

theory, Legendre mentioned many of the number theoretic contributions of

Euler and Lagrange. In the next theorem, we show that modulo an odd

prime p half the integers between 1 and pÿ 1 are quadratic residues and

half are quadratic nonresidues.

Theorem 6.5 If p is an odd prime, then there are precisely ( pÿ 1)=2

incongruent quadratic residues of p given by

12, 22, . . . ,
pÿ 1

2

� �2

Proof Let p be an odd prime. We wish to determine the values for a,

1 < a < pÿ 1, for which the equation x2 � a (mod p) is solvable. Since

x2 � ( pÿ x)2 (mod p), squares of numbers in the sets {1, 2,

. . . , ( pÿ 1)=2g and f( pÿ 1)=2� 1, . . . , pÿ 1g are congruent in pairs.

Thus, we need only consider values of x for which 1 < x < ( pÿ 1)=2. But

the squares 12, 22, . . . , (( pÿ 1)=2)2 are all incongruent modulo p, other-

wise x2 � a (mod p) would have four incongruent solutions, contradicting

Lagrange's Theorem. Thus, the ( pÿ 1)=2 quadratic residues of p are

precisely the integers

12, 22, . . . ,
pÿ 1

2

� �2

: j

According to Theorem 6.5, the quadratic residues of 19 are given by 12, 22,

32, 42, 52, 62, 72, 82, and 92. Modulo 19, they are respectively, 1, 4, 9, 16,

6, 17, 11, 7 and 5. Knowing that half the numbers are quadratic residues of

a prime, we still need to ®nd an ef®cient method to distinguish between
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QRs and QNRs for large primes. One of the ®rst such methods was devised

by Euler in 1755. Before establishing Euler's method to determine whether

an integer is a quadratic residue of a prime, we establish the following

result.

Lemma If p is an odd prime and gcd(a, p) � 1, then either a( pÿ1)=2 � 1

or a( pÿ1)=2 � ÿ1 modulo p.

Proof From Fermat's Little Theorem, if p is an odd prime and

gcd(a, p) � 1, then a pÿ1 ÿ 1 � (a( pÿ1)=2 ÿ 1)(a( pÿ1)=2 � 1) � 0 (mod p).

Hence, either a( pÿ1)=2 � 1 or a( pÿ1)=2 � ÿ1 (mod p). j

Theorem 6.6 (Euler's criterion) If p is an odd prime and gcd(a, p) � 1,

then

a

p

� �
� a( pÿ1)=2 (mod p):

Proof Suppose p is an odd prime, gcd(a, p) � 1, and 1 < r < pÿ 1.

Since rx � a has a unique solution modulo p there is exactly one element

s, 1 < s < pÿ 1, such that rs � a (mod p). If a is a QNR modulo p,

(a
p
) � ÿ1, then r 6� s (mod p) and the elements 1, 2, . . . , pÿ 1 can be

grouped into pairs risi, such that risi � a (mod p), for i � 1, 2,

. . . , ( pÿ 1)=2. Thus, from Wilson's Theorem,

ÿ1 � ( pÿ 1)! �
Ypÿ1

2

i�1

risi � a( pÿ1)=2 (mod p):

If a is a QR modulo p, (a
p
) � 1, there exists an integer b such that b2 � a

(mod p). By Fermat's Little Theorem, a( pÿ1)=2 � b pÿ1 � 1 (mod p).

Therefore, in either case, it follows that

a

p

� �
� a( pÿ1)=2 (mod p): j

Corollary If p is an odd prime with gcd(a, p) � 1, gcd(b, p) � 1, and

a � b (mod p), then

a

p

� �
� b

p

� �
:

For example, according to Euler's criterion,

3

31

� �
� 3(31ÿ1)=2 � 315 � ÿ1 (mod 31):
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Hence, the equation x2 � 3 (mod 31) has no solution. Since

6

29

� �
� 6(29ÿ1)=2 � 614 � 1 (mod 29),

the equation x2 � 6 (mod 29) has a solution. The next result was con-

jectured by Fermat around 1630 and proven by Euler in 1750.

Theorem 6.7 If p is an odd prime,

ÿ1

p

� �
� 1 if p � 1 (mod 4),

ÿ1 if p � 3 (mod 4):

�
Proof If p � 4k � 1, then

ÿ1

p

� �
� (ÿ1)( pÿ1)=2 � (ÿ1)2k � 1:

If p � 4k � 3, then

ÿ1

p

� �
� (ÿ1)( pÿ1)=2 � (ÿ1)2k�1 � ÿ1: j

The next result can be used to simplify computations with Legendre

symbols.

Theorem 6.8 If p is an odd prime and p does not divide ab, then

ab

p

� �
� a

p

� �
b

p

� �
:

Proof We have

ab

p

� �
� (ab)( pÿ1)=2 � a( pÿ1)=2b( pÿ1)=2 � a

p

� �
b

p

� �
(mod p):

Since the only possible values for (a
p
), (b

p
), and (ab

p
) modulo p are �1, an

examination of the various cases establishes that

ab

p

� �
� a

p

� �
b

p

� �
: j

Corollary If p is an odd prime with gcd(n, p) � 1 and n �Qr
i�1 pái

i ,

then

n

p

� �
�
Yr

i�1

pái

i

p

� �
�
Yr

i�1

pi

p

� �ái

:

For example, since
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24

31

� �
� 2

31

� �3
3

31

� �
� 13(ÿ1) � ÿ1,

24 is a quadratic nonresidue of 31. Hence, the equation x2 � 24 (mod 31)

has no solution. The next result was obtained by Gauss in 1808. It leads to

the third proof of his celebrated quadratic reciprocity law, an extremely

ef®cient method for determining whether an integer is a quadratic residue

or not of an odd prime p.

Theorem 6.9 (Gauss's Lemma) If p is an odd prime with gcd(a, p) � 1,

then (a
p
) � (ÿ1s), where s denotes the number of elements fa, 2a, 3a,

. . . , 1
2
( pÿ 1)ag that exceed p=2.

Proof Let S denote the set of least positive residues modulo p of the set

fa, 2a, 3a, . . . , 1
2
( pÿ 1)ag. Let s denote the number of elements of S that

exceed p=2 and r � ( pÿ 1)=2ÿ s. Relabel the elements of S as a1, a2,

. . . , ar, b1, b2, . . . , bs, where ai , p=2, for i � 1, 2, . . . , r, and bj . p=2,

for j � 1, 2, . . . , s. Since the elements are the least positive residues of a,

2a, . . . , 1
2
( pÿ 1)a,Yr

i�1

ai

 ! Ys

j�1

bj

 !
� n( pÿ1)=2 pÿ 1

2

� �
! (mod p):

Consider the set T consisting of the ( pÿ 1)=2 integers a1, a2, . . . , ar,

pÿ b1, pÿ b2, . . . , pÿ bs. Since p=2 , bj , p, for j � 1, 2, . . . , s,

0 , pÿ bj , p=2, all the elements of T lie between 1 and ( pÿ 1)=2. In

addition, if ai � pÿ bj (mod p), for any 1 < i < r and 1 < j < r, then

0 � p � ai � bj � ha� ka � (h� k)a (mod p), for 1 < h , k <

( pÿ 1)=2. Hence, p divides (h� k)a. Since gcd( p, a) � 1, p must divide

h� k, but that is impossible since 0 , h� k , p. Thus the elements of T

are distinct and, hence, must consist precisely of the integers 1, 2,

. . . , ( pÿ 1)=2. Thus,

pÿ 1

2

� �
! �

Yr

i�1

ai

 ! Ys

j�1

( pÿ bj)

 !
� (ÿ1)s

Yr

i�1

ai

 ! Ys

j�1

bj

 !

� (ÿ1)s n( pÿ1)=2 pÿ 1

2

� �
! (mod p):

Cancelling (( pÿ 1)=2)! from both sides of the congruence yields 1 �
(ÿ1)sn( pÿ1)=2 (mod p). Therefore, from Euler's criterion,

n

p

� �
� (ÿ1)s (mod p): j
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For example, if p � 31 amd a � 3, then, with respect to the multiples of 3,

we have 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45 � 3, 6, 9, 12,

15, 18, 21, 24, 27, 30, 2, 5, 8, 11, 14 (mod 31), respectively. Hence, s � 5

and

3

11

� �
� (ÿ1)5 � ÿ1:

Therefore, the congruence x2 � 3 (mod 31) has no solution. The next

result, established by Legendre in 1775, gives an ef®cient way to evaluate

the Legendre symbol when the numerator equals 2.

Theorem 6.10 If p is an odd prime, then

2

p

� �
� 1 if p � �1 (mod 8),

ÿ1 if p � �3 (mod 8):

�
Proof Let s denote the number of elements 2, 4, 6, . . . , 2(( pÿ 1)=2) that

exceed p=2. A number of the form 2k is less than p=2 whenever k < p=4.

Hence, s � ( pÿ 1)=2ÿ ��p=4��. If p � 8k � 1, then s � 4k ÿ ��2k � 1
4
��

� 4k ÿ 2k � 0 (mod 0). If p � 8k � 3, then s � 4k � 1ÿ ��2k � 3
4
�� �

4k � 1ÿ 2k � 1 (mod 2). If p � 8k � 5, then s � 4k � 2ÿ ��2k � 1� 1
4
��

� 2k � 1 � 1 (mod 2). If p � 8k � 7, then s � 4k � 3ÿ ��2k � 1� 3
4
�� �

2k � 2 � 0 (mod 2). j

Since ( p2 ÿ 1)=8 satis®es the same congruences as does s in the proof of

Theorem 6.10, we obtain the following formula which can be used to

determine for which primes 2 is a QR and for which it is a QNR.

Corollary If p is an odd prime, then

2

p

� �
� (ÿ1)( p2ÿ1)=8:

It is often dif®cult and sometimes nearly impossible to credit a mathema-

tical result to just one person, often because there is a person who ®rst

stated the conjecture, one who offered a partial proof of the conjecture, one

who proved it conclusively, and one who generalized it. The quadratic

reciprocity law,

if p and q are odd primes then
p

q

� �
� � q

p

� �
,

is no exception. It was mentioned in 1744 by Euler who estabished several

special cases of the law in 1783. In 1785, Legendre stated and attempted to
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prove the Loi de reÂciprociteÂ in Recherches d'analyse indeÂtermineÂe and

again in a 1798 paper. In both attempts, he failed to show that for each

prime p � 3 (mod 4) there exists a prime q � 3 (mod 4) such that

( p
q
) � ÿ1:

Gauss gave the ®rst complete proof in 1795 just prior to his 18th

birthday and remarked that the problem had tormented him for a whole

year. In 1801, he published his ®rst proof of the quadratic reciprocity law

in Disquisitiones. He wrote, `engaged in other work I chanced upon an

extraordinary arithmetic truth . . . since I considered it to be so beautiful in

itself and since I suspected its connections with even more profound

results, I concentrated on it all my efforts in order to understand the

principles on which it depends and to obtain a rigorous proof'. Gauss

eventually devised eight proofs for the quadratic reciprocity law.

Theorem 6.11 allows us to ef®ciently determine whether or not an

integer is a quadratic residue modulo a prime. In essence, the quadratic

reciprocity law states that if p and q are prime then, unless both are

congruent to 3 modulo 4, x2 � p (mod q) and x2 � q (mod p) are

solvable. In the case that p � 3 (mod 4) and q � 3 (mod 4), one of the

equations is solvable and the other is not. The geometric proof offered

below is due to Ferdinand Eisenstein, Gauss's pupil, who published it in

1840. Eisenstein discovered a cubic reciprocity law as well.

Theorem 6.11 (Gauss's quadratic reciprocity law) If p and q are distinct

odd primes, then

p

q

� �
q

p

� �
� (ÿ1)

1
2
( pÿ1)1

2
(qÿ1):

Proof Let p and q be distinct odd primes. Consider the integers qk and rk,

where kp � pqk � rk , and 1 < rk < pÿ 1, for k � 1, 2, . . . , ( pÿ 1)=2.

Hence, qk � ��kq=p��, and rk is the least residue of kq modulo p. As in the

proof of Gauss's Lemma, we let a1, a2, . . . , ar denote those values of rk

which are less than p=2, and b1, b2, . . . , bs denote those values of rk

which are greater than p=2. Hence, a1, a2, . . . , ar, pÿ b1, pÿ b2,

. . . , pÿ bs are just the integers 1, 2, . . . , ( pÿ 1)=2 in some order and

q

p

� �
� (ÿ1)s:

Let
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a �
Xr

i�1

ai and b �
Xs

j�1

bj,

so

a� b �
Xpÿ1

2

k�1

rk :

Therefore,

(�) a� spÿ b �
Xr

i�1

ai �
Xs

j�1

( pÿ bj) �
Xpÿ1

2

k�1

k � p2 ÿ 1

8
:

Moreover, if we let

u �
Xpÿ1

2

k�1

qk �
Xpÿ1

2

k�1

��
kq

p

��
and sum the equations kq � pqk � rk , for 1 < k < ( pÿ 1)=2, we have

(��) pu� a� b � p
Xpÿ1

2

k�1

qk

0@ 1A� a� b

�
Xpÿ1

2

k�1

( pqk � rk) �
Xpÿ1

2

k�1

kq � p2 ÿ 1

8

� �
q:

Subtracting (�) from (��), we obtain

pu� 2bÿ sp � p2 ÿ 1

8

� �
(qÿ 1):

Since p � q � 1 (mod 2), u � s (mod 2). Therefore,

q

p

� �
� (ÿ1)s � (ÿ1)u:

Repeating the above process with the roles of p and q interchanged and

with

v �
Xqÿ1

2

j�1

��
jp

q

��
,

we obtain

p

q

� �
� (ÿ1)v:

Therefore,
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(���) p

q

� �
q

p

� �
� (ÿ1)u�v:

We need only show that

u� v � pÿ 1

2

� �
qÿ 1

2

� �
:

Consider all the lattice points (i, j), in the Cartesian plane, such that

1 < i < ( pÿ 1)=2 and 1 < j < (qÿ 1)=2. If the lattice point (i, j) lies on

the line l: py � qx, then pj � qi (see Figure 6.1). However, p and q are

coprime implying that p divides i, which is impossible since

1 < i < ( pÿ 1)=2. Thus, each such lattice point lies either above l or

below l. If (i, j) is a lattice point below l, then pj , qi, so j , qi=p. Thus,

for each ®xed value for i, 1 < j < ��qi=p�� whenever (i, j) is below l.

Therefore, the total number of lattice points below l is given by

Xpÿ1
2

i�1

��
qi

p

��
� u:

Similarily, the total number of lattice points above l is given by

Xqÿ1
2

j�1

��
jp

q

��
� v:

py 5 qx

q 2 1
2

(0, 0) p 2 1
2

Figure 6.1
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Since each one of the ( pÿ1
2

)(qÿ1
2

) must lie above or below l,

u� v � pÿ 1

2

� �
qÿ 1

2

� �
:

Therefore, from (���), it follows that

p

q

� �
q

p

� �
� (ÿ1)

1
2
( pÿ1)1

2
(qÿ1): j

For example, 283 � 17 (mod 19), and 19 � 2 (mod 17); using Theorem

6.8 and the quadratic reciprocity law in the form

p

q

� �
� q

p

� �
(ÿ1)

1
2
( pÿ1)1

2
(qÿ1),

we obtain

19

283

� �
� 283

19

� �
(ÿ1)

18
2

282
2

or

ÿ 17

19

� �
� ÿ 19

17

� �
(ÿ1)

16
2

18
2

or

ÿ 2

17

� �
� ÿ1:

Therefore, x2 � 19 (mod 283) has no solutions.

Quartic and higher order reciprocity laws have been developed. The

construction of such criteria now belongs to the branch of number theory

called class ®eld theory which was introduced by David Hilbert in 1898. A

general law of reciprocity was established by Emil Artin in 1927.

It is possible to generalize Legendre's symbol for cases in which the

denominator is composite. If we let a 6� 0 and m be positive integers with

canonical representation m �Qr
i�1 p

ái

i , then the Jacobi symbol ( a
m

), which

®rst appeared in Crelle's Journal in 1846, is de®ned by

a

m

� �
�
Yr

i�1

a

pi

� �ái

,

where ( a
pi

), with pi prime, represents the Legendre symbol.

Unlike the Legendre symbol the Jacobi symbol may equal unity without

the numerator being a quadratic residue modulo m. For example,

2

9

� �
� 2

3

� �2

� 1,

but x2 � 2 (mod 9) is not solvable! However, if
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a

m

� �
� ÿ1,

for a composite positive integer m, then the equation x2 � a (mod m) has

no solution. For example,

21

997

� �
� 3

997

� �
7

997

� �
� (1)(ÿ1) � ÿ1:

Hence, x2 � 21 (mod 997) has no solution.

Important properties of the Jacobi symbol, whose proofs follow from the

de®nition and properties of the Legendre symbol, include the following:

(a) a � b (mod p) implies that
a

m

� �
� b

m

� �
,

(b)
a

mn

� �
� a

m

� �
a

n

� �
,

(c)
ab

m

� �
� a

m

� �
b

m

� �
,

(d)
ÿ1

m

� �
� (ÿ1)(mÿ1)=2, if m is odd,

(e)
2

m

� �
� (ÿ1)(m2ÿ1)=8,

(f)
n

m

� �
m

n

� �
� (ÿ1)

1
2
(nÿ1)1

2
(mÿ1), for m and n odd and gcd(m, n) � 1.

Exercises 6.2

1. Find all the quadratic residues modulo 29.

2. Evaluate the following Legendre symbols:

(a)
2

29

� �
, (b)

ÿ1

29

� �
, (c)

5

29

� �
, (d)

11

29

� �
,

(e)
2

127

� �
, (f)

ÿ1

127

� �
, (g)

5

127

� �
, (h)

11

127

� �
.

3. Which of the following quadratic congruences have solutions?

(a) x2 � 2 (mod 29), (e) x2 � 2 (mod 127),

(b) x2 � 28 (mod 29), (f) x2 � 126 (mod 127),

(c) x2 � 5 (mod 29), (g) x2 � 5 (mod 127),

(d) x2 � 11 (mod 29), (h) x2 � 11 (mod 127).

4. Determine whether or not the following quadratic congruences are

solvable. If solvable ®nd their solutions.

(a) 5x2 � 4x� 7 � 0 (mod 19).
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(b) 7x2 � x� 11 � 0 (mod 17).

(c) 2x2 � 7xÿ 13 � 0 (mod 61).

5. Evaluate the following Jacobi symbols:

(a)
21

221

� �
, (b)

215

253

� �
, (c)

631

1099

� �
,

(d)
1050

1573

� �
, (e)

89

197

� �
.

6. If p is an odd prime show thatXpÿ1

a�1

a

p

� �
� 0:

7. If p is an odd prime and gcd(a, p) � gcd(b, p) � 1, show that at least

one of a, b and ab is a quadratic residue of p.

8. If p is an odd prime use Euler's criterion to show that ÿ1 is a quadratic

residue of p if and only if p � 1 (mod 4).

9. If p and q are odd primes with p � 2q� 1, use the quadratic

reciprocity law to show that

p

q

� �
� ÿ1

p

� �
:

10. If p and q are distinct primes with p � 3 (mod 4) and q � 3 (mod 4),

then use the quadratic reciprocity law to show that p is a quadratic

residue modulo q if and only if q is a quadratic nonresidue modulo p.

11. Prove that 19 does not divide 4n2 � 4 for any integer n.

12. If p is a prime and h� k � pÿ 1, show that h! . k! � (ÿ1)k�1

(mod p).

13. If p is an odd prime with p � 1� 4r use the previous exercise, with

h � k � 2r, to show that 2r! is a solution to x2 � ÿ1 (mod p).

14. Prove that if p . 3 is a prime then

1� 1

22
� 1

32
� � � � � 1

( pÿ 1)2
� 0 (mod p):

[J. Wolstenholme 1862].

6.3 Primitive roots

We now describe a general method to solve polynomial congruences of

higher degree modulo a prime. We begin by considering fundamental

congruences of the type xm � a (mod p), where p is an odd prime, a . 2,

and gcd(a, p) � 1. If xm � a (mod p) is solvable, we say that a is an mth
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power residue of p. If n is a positive integer and gcd(a, n) � 1, the least

positive integer k such that ak � 1 (mod n) is called the order of a modulo

n and is denoted by ordn(a). For any positive integer n, aö(n) � 1. Thus, the

Euler±Fermat Theorem, implies that ordn(a) is well-de®ned and always

less than ö(n). Gauss showed that if m � 2á5â, then the period of the

decimal expansion for m=pn is the order of 10 modulo pn.

Theorem 6.12 If ordn(a) � k then ah � 1 (mod n) if and only if k divides h.

Proof Suppose gcd(a, n) � 1, ordn(a) � k, and ah � 1 (mod n). The

division algorithm implies there exist integers q and s such that h �
kq� s, with 0 < s , k. Thus ah � akq�s � (ak)qas. Since ak � 1 (mod n),

it follows that as � 1 (mod n), so s 6� 0 would contradict the fact that k is

the least positive integer with the property that ak � 1 (mod n). Hence,

s � 0 and k divides h. Conversely, if kjh, then there is an integer t such

that kt � h. Since ordn(a) � k, ah � akt � (ak) t � 1 (mod n). j

If we know the order of a modulo n, with a little more effort, we can

determine the order of any power of a modulo n as illustrated in the next

result.

Theorem 6.13 If ordn(a) � k then ordn(am) � k=gcd(m, k).

Proof Let ordn(a) � k, ordn(am) � r, d � gcd(m, k), m � bd, k � cd,

and gcd(b, c) � 1. Hence, (am)c � (abd)c � (acd)b � (ak)b � 1 (mod n).

Theorem 6.12 implies that rjc. Since ordn(a) � k, (amr) � (am)r � 1

(mod n). Hence, Theorem 6.12 implies that kjmr. Thus, cdj(bd)r, inplying

that cjbr. Since b and c are coprime, c divides r. Hence, c equals r.

Therefore, ordn(am) � r � c � k=d � k=gcd(m, k). j

From Theorem 6.12, it follows that the order of every element modulo a

prime p is a divisor of pÿ 1. In addition, Theorem 6.13 implies that if d is

a divisor of pÿ 1 then there are exactly ö(d) incongruent integers modulo

p having order d. For example, if p � 17, 8 is a divisor of pÿ 1. Choose

an element, say 3, that has order 16 modulo 17. In Theorem 6.17, we show

that this can always be done. For example, the ö(8) � 4 elements k with

1 < k < 16 such that gcd(k, 16) � 2 are 2, 6, 10, 14. The four elements of

order 8 modulo 17 are 32, 36, 310, and 314.

The following corollaries follow directly from the previous two theorems

and the de®nition of the order of an element. We state them without proof.
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Corollary 6.1 If ordn(a) � k, then k divides ö(n).

Corollary 6.2 If ordn(a) � k, then ar � as (mod n) if and only if r � s

(mod k).

Corollary 6.3 If k . 0 and ordn(a) � hk, then ordn(ah) � k.

Corollary 6.4 If ordn(a) � k, ordn(b) � h, and gcd(h, k) � 1, then

ordn(ab) � hk.

We use the order of an element to establish the following primality test

devised by the nineteenth century French mathematician J.F.T. Pepin.

Theorem 6.14 (Pepin's primality test) For n > 1, the nth Fermat number

Fn is prime if and only if 3(Fnÿ1)=2 � ÿ1 (mod Fn).

Proof If Fn is prime, for n > 1, Fn � 2 (mod 3). Hence, from the

quadratic reciprocity law,

3

Fn

� �
Fn

3

� �
� 3

Fn

� �
2

3

� �
� 3

Fn

� �
(ÿ1) � 1:

Thus,

3

Fn

� �
� ÿ1:

From Euler's criterion, 3(Fn)=2 � ÿ1 (mod Fn). Conversely, suppose that

3(Fnÿ1)=2 � ÿ1 (mod Fn). If p is any prime divisor of Fn then 3(Fnÿ1)=2 �
ÿ1 (mod p). Squaring both sides of the congruence, we obtain 3Fnÿ1 � 1

(mod p). If m is the order of 3 modulo p, according to Theorem 6.12, m

divides Fn ÿ 1. That is, m divides 22n

. Hence, m � 2r, with 0 < r < 2n. If

r � 2n ÿ s, where s . 0, then 3(Fnÿ1)=2 � 322 nÿ1 � 32 r�sÿ1 � (32 r

)2sÿ1 � 1.

A contradiction, since we assumed 3(Fnÿ1)=2 � ÿ1 (mod p). Thus, s � 0

and 3 has order 22 n

modulo p. From Theorem 6.12, 22 n

divides pÿ 1.

Hence, 22 n

< pÿ 1 implying that Fn < p. Therefore, if p is a prime

divisor of Fn, then Fn � p. That is, Fn is prime. j

For some positive integers n, there is a number q, 1 , q < nÿ 1, such that

powers of q generate the reduced residue system modulo n. That is, for

each integer r, 1 < r < nÿ 1, with gcd(r, n) � 1 there is a positive

integer k for which qk � r. In this case, q can be used to determine the

order of an element in Z�n and to determine the QRs and NQRs of n as
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well. The existence of such a number is crucial to the solutions of

polynomial congruences of higher degree. We call a positive integer q a

primitive root of n if ordn(q) � ö(n). We now show that primitive roots of

n generate the reduced residue system modulo n.

Theorem 6.15 If q is a primitive root of n, then q, q2, . . . , qö(n) form a

reduced residue system modulo n.

Proof Since q is a primitive root of n, ordn(q) � ö(n), implying that

gcd(q, n) � 1. Hence, gcd(qi, n) � 1, for i � 1, 2, . . . , ö(n). The ele-

ments q, q2, . . . , qö(n) consist of ö(n) mutually incongruent positive

integers. If qi � qj (mod n), for 1 < i , j < ö(n), then, from Corollary

6.2, i � j (mod ö(n)). Hence, ö(n) divides jÿ i, which is impossible since

0 , jÿ i ,ö(n). Hence, qi 6� qj (mod ö(n)), for 1 < i , j < ö(n), and q,

q2, . . . , qö(n) form a reduced residue system modulo n. j

Theorem 6.16 (Lambert) If p is an odd prime, h a positive integer, and q

a prime such that qh divides pÿ 1, then there exists a positive integer b

such that ord p(b) � qh.

Proof By Lagrange's Theorem and the fact that p > 3, the equation

x( pÿ1)=q � 1 (mod p) has at most ( pÿ 1)=q solutions where

pÿ 1

q
<

pÿ 1

2
< pÿ 2:

Therefore, at least one element, say a, with 1 < a < pÿ 1, and

gcd(a, p) � 1, is not a solution. Hence, a( pÿ1)=q 6� 1 (mod p). Let

b � a( pÿ1)=qh

and suppose that ord p(b) � m. Since bqh � a pÿ1 (mod p),

Theorem 6.12 implies that m divides qh. Suppose m , qh. Since q is

prime, m divides q hÿ1 and there is an integer k such that mk � q hÿ1. Thus,

a( pÿ1)=q � bq hÿ1 � (bm)k � 1k � 1 (mod p), contradicting our assump-

tion. Hence, qh � m � ord p(b). j

In 1769, in connection with his work on decimal expansions of 1= p, where

p is an odd prime, J.H. Lambert established Theorem 6.16 and claimed that

primitive roots of p exist for every prime p. Euler introduced the term

`primitive root' in 1773 when he attempted to establish Lambert's con-

jecture. Euler proved that there are exactly ö( pÿ 1) primitive roots of p.

At age 11, Gauss began working with primitive roots attempting to

determine their relation to decimal expansions of fractions. He was able to

show that if 10 is a primitive root of a prime p, then the decimal expansion
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of 1=p has period pÿ 1. Gauss proved that primitive roots exist modulo n

for n � 2, 4, p, pk , and 2 pk, where p is an odd prime and k is a positive

integer. In addition, he proved that if q is a primitive root of an odd prime

p, then qp ÿ p, qp ÿ qp, and at least one of q and q� p is a primitive root

of p2; if r is a primitive root of p2, then r is a primitive root of pk , for

k > 2; and if s is a primitive root of pk and s is odd then s is a primitive

root of 2 pk , if s is even then s� pk is a primitive root of 2 pk . Gauss also

proved that if m and n are coprime positive integers both greater than 3

there are no primitive roots of mn. For a positive integer n . 2, there are no

primitive roots of 2n, as shown in the next result.

Theorem 6.17 There are no primitive roots of 2n, for n . 2.

Proof We use induction to show that if gcd(a, 2n) � 1, for n . 2, then

ord2n (a) � 2nÿ2. Hence, a cannot be a primitive root of 2n. If n � 3 and

gcd(a, 23) � 1, then a � 1, 3, 5, 7, (mod 8). In addition, 12 � 32 �
52 � 72 � 1 (mod 8). Hence, if gcd(a, 23) � 1, then ord8(a) � 2 � 23ÿ2.

Let k . 3 and suppose that if gcd(m, 2k) � 1, for some positive integer m,

then ord2 k (m) � 2kÿ2. That is, m2 kÿ2 � 1 (mod 2k) with ms 6� 1 (mod 2k)

for 1 < s , 2kÿ2. Let b be such that gcd(b, 2k�1) � 1. Hence,

gcd(b, 2k) � 1 and, from the induction assumption, it follows that

ord2 k (b) � 2kÿ2. Thus there is an integer r such that b2 kÿ2 � 1� r . 2k . In

addition b2 kÿ1 � (b2 kÿ2

)2 � (1� 2r . 2k � r2 . 22k) � 1 (mod 2k�1). Sup-

pose there is an integer s such that bs � 1 (mod 2k�1) for 1 < s , 2kÿ1.

We have bs � 1� t . 2k�1 � 1� 2t . 2k , implying that bs � 1 (mod 2k), a

contradiction . Therefore, gcd(b, 2k�1) � 1 implies that ord2 k�1 (b) � 2kÿ1

and the result is established. j

Finding primitive roots even of a prime is not an easy task. In 1844, A.L.

Crelle devised an ef®cient scheme to determine whether an integer is a

primitive root of a prime. The method works well for small primes. It uses

the property that, if 1 < a < pÿ 1, si is the least residue of a . i modulo

p, and tj is the least residue of aj, for 1 < i, j < pÿ 1, then tk � st kÿ1

(mod p), for 1 < k < pÿ 1. Crelle's algorithm follows since a jÿ1 . a � aj

(mod p), for 1 < a < pÿ 1.

Example 6.3 If p � 17, and a � 3, then we generate the powers of 3 using

the multiples of 3, as shown in Table 6.1. In particular, suppose the rows

for k and 3k have been completed and we have ®lled in 30 � 1, 31 � 3 and

32 � 9 on the bottom row. In order to determine 33 modulo 17, go to
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column 9 (since 32 � 9 (mod 17)), to ®nd that 33 � 3 . 9 � 10 (mod 17).

Hence, 33 � 10 (mod 17). To determine 34 modulo 17, go to column 10

(since 33 � 10 (mod 17)) to ®nd that 34 � 3 . 10 � 13 (mod 17). Hence,

34 � 13 (mod 17). To determine 35 (mod 17), go to column 13 (since

34 � 3 . 10 � 13 (mod 17)) to ®nd that 35 � 3 . 13 � 5 (mod 17). Hence,

35 � 5 (mod 17), and so forth. The smallest value for k, 1 < k < 16, for

which 3k � 1 (mod 17) is 16. Hence, 3 is primitive root modulo 17.

Theorem 6.18 If p is an odd prime, then there exist ö( pÿ 1) primitive

roots modulo p.

Proof If pÿ 1 �Qr
i�1 pái

i , where ái > 1, for i � 1, 2, . . . , r, is the

canonical representation for pÿ 1, by Theorem 6.16, there exist integers

ni such that ord p(ni) � pi, for 1 < i < r. By a generalization of Corollary

6.4, if m � Qr
i�1 ni, then ord p(m) �Qr

i�1 p
ái

i � pÿ 1, and m is the

desired primitive root. From Theorem 6.13, if q is a primitive root of p and

gcd(r, pÿ 1) � 1 then qr is a primitive root of p. Therefore, there are

ö( pÿ 1) primitive roots of p. j

Hence if q is a primitive root of p, then the ö( pÿ 1) incongruent primitive

roots of p are given by qá1 , qá2 , . . . , qáö( pÿ1), where á1, á2, . . . , áö( pÿ1)

are the ö( pÿ 1) integers less than pÿ 1 and coprime to pÿ 1. For

example, in order to determine all the primitive roots of 17, we use the fact

that 3 is a primitive root of 17 and ö(16) � 8. The eight integers less than

16 and coprime to 16 are 1, 3, 5, 7, 9, 11, 13, and 15. In addition, 31 � 3,

33 � 10, 35 � 5, 37 � 11, 39 � 14, 311 � 7, 313 � 12, and 315 � 6

(mod 17). Therefore, the primitive roots of 17 are 3, 5, 6, 7, 10, 11, 12, and

14. If gcd(q, m) � 1, then q is a primitive root of m if and only if

qö(m)= p 6� 1 (mod m) for all prime divisors p of ö(m). In general, if a

primitive root exists for m, then there are ö(ö(m)) incongruent primitive

roots of m.

Theorem 6.19 If q is a primitive root of a prime p, the quadratic residues

Table 6.1.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3k 0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14
3k 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

6.3 Primitive roots 203



of p are given by q2k and the quadratic nonresidues by q2kÿ1, where

0 < k < ( pÿ 1)=2.

Proof Using Euler's criterion, if gcd(a, p) � 1, then

(q2k)( pÿ1)=2 � (q pÿ1)k � 1 (mod p)

and

(q2kÿ1)( pÿ1)=2 � (q pÿ1)k . (q( pÿ1)=2)ÿ1 � (q( pÿ1)=2)ÿ1 � ÿ1 (mod p):

Conversely, if a is a QR of p then a � (qk)2 � q2k and if a is a QNR of p

then a � (q2)k . q � q2k�1 where 0 < k < ( pÿ 1)=2. j

For example, since 3 is a primitive root of 17, the quadratic residues of 17

are 30, 32, 34, 36, 38, 310, 312, 314, and 316.

Gauss thought that 10 was a primitive root for in®nitely many primes. In

1920, Artin conjectured that there are in®nitely many primes p with the

property that 2 is a primitive root. Artin's conjecture has been generalized

to state that if n is not a kth power then there exist in®nitely many primes

p such that n is a primitive root. In 1927, Artin conjectured further that

every positive nonsquare integer is a primitive root of in®nitely many

primes. There are in®nitely many positive integers for which Artin's

conjecture is true and a few for which it fails.

According to Euler's criterion x2 � a (mod p) is solvable if and only if

a( pÿ1)=2 � 1 (mod p). A necessary condition that xm � a (mod p) be

solvable is that a( pÿ1)=d � 1 (mod p), with d � gcd(m, pÿ 1). In order to

see this, suppose gcd(a, b) � 1 and b is a solution of xm � a (mod p).

Fermat's Little Theorem implies that a( pÿ1)=d � b( pÿ1)m=d � (b pÿ1)r � 1

(mod p), with r � m=d. The next result generalizes Euler's criterion for

mth power residues of a prime. The proof is constructive and will enable

us to determine where polynomial congruences of the form xm � a

(mod p) have solutions.

Theorem 6.20 Let p be an odd prime with gcd(a, p) � 1, then xm � a

(mod p) is solvable if and only if a( pÿ1)=d � 1 (mod p), where d �
gcd(m, pÿ 1).

Proof We need only establish the necessity. Suppose that a( pÿ1)=d � 1

(mod p) where gcd(a, p) � 1, d � gcd(m, pÿ 1), and q is a primitive

root modulo p. There exists an integer s such that a � qs. Hence,

qs( pÿ1)=d � a( pÿ1)=d � 1 (mod p). Since q is a primitive root of p,

ord p(q) � pÿ 1. Thus, s=d � k is an integer and a � qkd (mod p). Since

d � gcd(m, pÿ 1), there are integers u and v such that d � um �
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v( pÿ 1). Thus, a � qkd � q kum�kv( pÿ1) � q kumq( pÿ1)kv � q(ku)m . 1 �
q(ku)m. Therefore, qku is a solution to xm � a (mod p). j

For example, the equation x7 � 15 (mod 29) is not solvable since

1528=7 � 154 � ÿ9 6� 1 (mod 29). The equation x16 � 8 (mod 73) has a

solution since gcd(16, 72) � 8 and 872=8 � 89 � 1 (mod 73).

Given a ®xed value for m, it is possible to ®nd that all the mth power

residues modulo a prime as illustrated in the next result.

Theorem 6.21 If p is an odd prime, q is a primitive root of p, and

d � gcd(m, pÿ 1), then the mth power residues of p are given by qd, q2d ,

. . . , qd( pÿ1)=d .

Proof Let p be an odd prime, q a primitive root of p, and d �
gcd(m, pÿ 1). From the proof of Theorem 6.20, each element in the set

fqd , q2d , . . . , qd( pÿ1)=dg is an mth power residue of p. In addition,

they are incongruent modulo p, for if qid � qjd (mod p), for some

1 < i , j < ( pÿ 1)=d, from Corollary 6.2 pÿ 1 divides d( jÿ i), which

is impossible since 0 , d( jÿ i) , pÿ 1. Suppose a is an mth power

residue of p. Hence, there is an element b, 1 < b < pÿ 1, such that

bm � a (mod p). There is an integer k, 1 < k < pÿ 1, such that b � qk

(mod p), hence, a � bm � qkd (mod p). Let, r, s, t, u, be such that

ud � m, td � pÿ 1, uk � st � r with 0 < r , t. So a � qmk � qukd

� q(st�r)d � q( pÿ1)sqrd � qrd (mod p). Therefore, a is included in the set

fqd , q2d , . . . , qd( pÿ1)=dg. j

For example, in order to ®nd the 12th power residues of 17, we use

pÿ 1 � 16, m � 12, d � gcd(12, 16) � 4 and the fact that 3 is a primitive

root of 17. Hence, the 12th power residues of 17 are 34 � 13, 38 � 16,

312 � 4, and 316 � 1. Therefore, x12 � a (mod 17) is solvable if and only

if a � 1, 4, 13, or 16.

There is a relationship between primitive roots and quadratic nonresi-

dues of odd primes. In particular, if p is an odd prime and a is a quadratic

residue of p, then there exists an element b, 1 < b < pÿ 1, such that

b2 � a (mod p), Hence, a( pÿ1)=2 � b(( pÿ1)=2)2 � b pÿ1 � 1 (mod p).

Therefore, for an odd prime p, every primitive root of p is a quadratic

nonresidue of p. In addition, we have the following result.

Theorem 6.22 If p is an odd prime, every quadratic nonresidue of p is a

primitive root of p if and only is p � 2k � 1, for k a positive integer.
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Proof There are ( pÿ 1)=2 quadratic nonresidues of p and ö( pÿ 1)

primitive roots of p. Every quadratic nonresidue of p is a primitive root of

p if and only if ö( pÿ 1) � ( pÿ 1)=2, but ö(n) � n=2 if and only if

n � 2k . Therefore, p � 2k � 1. j

Gauss introduced a method to solve a number of polynomial congruences

of higher degree modulo a prime. In particular, if p is an odd prime and q

is a primitive root of p, we say that r is an index of n to the base q modulo

p and write r � Iq(n) (mod p) if and only if n � qr (mod p) and

0 < r , pÿ 1. Note that q I q(n) � n (mod p). If p and q are known and

the context is clear we simply write I(n) to denote the index of n to the

base q modulo p. In 1839, Jacobi published a table of indices for all

primes less than a thousand in his Canon arithmeticus. In 1968, Western

and Miller published a table of indices for all primes less than 50 021. A

table of indices for the primitive root 3 modulo 17 can be generated from

Table 6.1 by dropping the second row, rewriting the third row in ascending

order, and interchanging the third row with the ®rst row as shown in Table

6.2.

Indices are not additive but act like and play a role similar to that of

logarithms. The next result provides us with enough machinery to solve a

number of polynomial congruences of higher degree as well as other

problems in modular arithmetic.

Theorem 6.23 If p is an odd prime, q a primitive root of p, m and n

integers such that gcd(m, p) � gcd(n, p) � 1, and r and k are positive

integers, then

(a) m � n (mod p) if and only if I(m) � I(n) (mod pÿ 1),

(b) I(qr) � r (mod pÿ 1),

(c) I(1) � 0 and I(q) � 1,

(d) I(mn) � I(m)� I(n) (mod pÿ 1),

(e) I(nk) � k . I(n) (mod pÿ 1).

Proof Since q is a primitive root modulo p, ord p(q) � pÿ 1. Let

r � I(m) and s � I(n); hence, qr � m (mod p) and qs � n (mod p).

Table 6.2.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I(k) 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8
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(a) m � n (mod p) if and only if qr � qs (mod p) if and only if r � s

(mod pÿ 1) if and only if I(m) � I(n) (mod pÿ 1). j

(b) Since qr � m (mod p) it follows from (a) that I(qr) � I(m) � r

(mod pÿ 1). j

(c) 1 � q0 (mod p) and q � q1 (mod p). Hence, I(1) � 0 and I(q) � 1. j

(d) q r�s � qrqs � mn (mod p). Hence, from (a), we have I(mn) � r �
s � I(m)� I(n) (mod pÿ 1). j

(e) qst � nt (mod p). Hence, from (a), we have I(nt) � ts � t . I(n)

(mod pÿ 1). j

Example 6.4 We use indices, the fact that 3 is a primitive root of 17, and

Table 6.2, to solve 11x � 9 (mod 17).

I(11x) � I(9) (mod 16),

I(11)� I(x) � I(9) (mod 16),

7� I(x) � 2 (mod 16),

I(x) � 11 (mod 16),

x � 7 (mod 17):

Example 6.5 Solve x3 � 6 � 0 (mod 17). We have

x3 � ÿ6 � 11 (mod 17),

I(x3) � I(11) (mod 16),

3(I(x)) � 7 (mod 16),

I(x) � 77 � 13 (mod 16),

x � 12 (mod 17),

and

x � 8, 11, or 7 (mod 13):

Example 6.6 Evaluate 1134729 . 43297 modulo 17. We have x � 1134729 .

43297 � 12729 . 797 (mod 17). In addition, I(x) � 729 . I(12)� 97 . I(7) �
9 . 13� 1 . 11 � 0 (mod 16). Therefore, x � 1 (mod 17).

Exercises 6.3

1. Determine all positive integers that have exactly one primitive root.

2. Show that 3(F3ÿ1)=2 � ÿ1 (mod F3), where F3 � 223 � 1.
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3. Use Crelle's method to show that 2 is a primitive root modulo 29.

4. Use Crelle's method to show that 5 is not a primitive root modulo 29.

5. Find all ö(28) primitive roots modulo 29.

6. Use 2 as a primitive root to construct a table of indices modulo 29.

7. Find the fourth and seventh power residues modulo 29.

8. Find all noncongruent solutions to x7 � 12 (mod 29).

9. Find all solutions to x9 � 12 (mod 29).

10. Use Table 6.2 to solve the following congruences.

(a) 7x � 5 (mod 17).

(b) x7 � 5 (mod 17).

(c) x8 � 8 (mod 17).

11. Construct a table of indices modulo 11 and use it to solve the

following congruences.

(a) 7x3 � 3 (mod 11).

(b) 3x4 � 5 (mod 11).

(c) x8 � 10 (mod 11).

12. Use indices to ®nd the remainder when 324 . 513 is divided by 17.

13. Use indices to ®nd the remainder when x � 434 421919 . 3415783 is

divided by 29.

14. Prove that the product of all the primitive roots of a prime p . 3 is

congruent to 1 modulo p.

15. Prove that if p � 3 (mod 28), then (7
p
) � 1.

16. Show that (3
p
) equals 1 if p � �1 (mod 12) and ÿ1 if p � �5

(mod 12).

17. Show that (5
p
) equals 1 if p � �1 (mod 10) and ÿ1 if p � �3

(mod 10).

6.4 Miscellaneous exercises

1. In 1879, in The Educational Times, Christine Ladd showed that no

power of 3 is of the form 13nÿ 1 and found the lowest power of 3 of

the form 29nÿ 1. Duplicate her feat. Ladd received a PhD from Johns

Hopkins in 1926, 44 years after she completed the requirements for

the degree. Her advisors were J.J. Sylvester and C.S. Peirce. She is the

only person ever to have received an honorary degree from Vassar

College.

2. If p is an odd prime and d divides pÿ 1, show that xd ÿ 1 � 0

(mod p) has exactly d incongruent solutions modulo p.

3. If p is an odd prime and d divides pÿ 1, determine the d incongruent

solutions to xd ÿ 1 � 0 (mod p).
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4. If p is a Sophie Germain prime of the form 2q� 1, where q is a prime

of the form 4k � 1, show that 2 is a primitive root of p.

5. If p is a Sophie Germain prime of the form 2q� 1, where q is a prime

of the form 4k � 3, show that ÿ2 is a primitive root of p.

6. If p � 4q� 1 and q � 3r � 1 are prime then show that 3 is a primitive

root of p.

7. If p is a prime show that the sum of the primitive roots is 0.

8. Fill in the values of ( p
q
) in Table 6.3, where p and q are distinct odd

primes with 3 < p < q < 29.

9. A group G is called cyclic if it contains an element a, called a

generator, such that for every element g in G there is an integer k such

that g � ak . That is, every element of G can be represented as a power

of a. Show that, for p a prime, Z�p is a cyclic of order pÿ 1.

10. Find all the generators of Z�13.

11. Every subgroup of a cyclic group is cyclic. Determine all the sub-

groups of Z�13.

Table 6.3.

p

q 3 5 7 11 13 17 19 23 29
3
5
7

11
13
17
19
23
29
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7

Cryptology

I have resumed the study of mathematics with great avidity. It

was ever my favourite one . . . where no uncertainties remain on

the mind; all is demonstration and satisfaction.

Thomas Jefferson

7.1 Monoalphabetic ciphers

Crypto is from the Greek kryptos, meaning hidden or secret. Cryptology is

the study of secrecy systems, cryptography, the design and implementation

of secrecy systems, and cryptanalysis, the study of systems or methods of

breaking ciphers. The message to be altered into secret form, the message

we want to send, is called the plaintext. The message we actually send is

called the ciphertext. The device used to transform the plaintext into the

ciphertext is called a cipher. Plaintext and ciphertext may be composed of

letters, numbers, punctuation marks, or other symbols. Encryption or

enciphering is the process of changing plaintext into ciphertext. Decryption

or deciphering is the process of changing ciphertext back into plaintext. In

order to make decryption more dif®cult, plaintext and ciphertext are often

broken up into message units of a ®xed number of characters. The

enciphering transformation can be thought of as a one-to-one function that

takes plaintext message units into corresponding ciphertext message units.

The process or method used in going from the plaintext to ciphertext and

back to the plaintext is called a cryptosystem. A cipher is called mono-

alphabetic if it uses only one cipher alphabet.

Encryption or decryption is often mistaken for encoding or decoding,

respectively. A code, however, is a system used for brevity or secrecy of

communication, in which arbitrarily chosen words, letters, or phrases are

assigned de®nite symbols. In most cases a code book is necessary to

decode coded messages.

The demand for and use of cryptography are directly proportional to the

literacy and paranoia of the peoples involved. The history of cryptology

has Babylonian, Egyptian, and Hindu roots. A Babylonian cuneiform

tablet, dating from about 1500 BC, contains an encrypted recipe for

making pottery glaze. Al-Khalil, an eighth century philologist, wrote the

210



Book of Secret Language, in which he mentions decoding Greek crypto-

grams. Homer's works were originally passed on from generation to

generation orally. One of the earliest references to Greek writing is found

in Book 6 of the Iliad when King Proetus sends Bellerophon to Lycia with

a document containing secret writing. In Book 5 of The History, Herodotus

remarked that Histiaeus, the despot of Miletus who was being held by

Darius, shaved and tattooed a message to revolt against the Persians on the

head of a trusted slave. After waiting for the hair to grow in again,

Histiaeus sent the slave to his son-in-law Aristagoras in Miletus who

shaved the head and found the message. The History also includes an

account of a very subtle secret message. Thrasybulus, despot of Miletus,

gives no written or verbal message to a messenger from Periander, tyrant

of Corinth and one of the seven sages of the ancient world, but while

walking through a ®eld of corn with him, cuts down any corn that was

growing above the rest. This act of removing the fairest and strongest is

related to Periander by the messenger and he interprets it as having to

murder the most eminent citizens of Corinth.

The Spartans are credited with the ®rst system of military cryptography.

They enciphered some messages by wrapping a strip of papyrus or

parchment helically around a long cylindrical rod called a skytale. The

message was written lengthwise down the cylinder. The paper was un-

wound and sent. Given a rod of the same radius and length, the strip could

be wound around it helically and the message deciphered. One of the

earliest known works on cryptanalysis was Aeneas the Tactician's On the

Defense of Forti®ed Places which includes a clever method of hidden

writing whereby holes are pricked in a document or page of a book directly

above the letters in the secret message to be sent. A variation of this method

was used by the Germans in World War II.

Polybius, the second century BC Greek politician, diplomat, and histor-

ian, devised a cryptographic system that replaced plaintext letters with a

pair of symbols as shown in Table 7.1, where we have used the English

alphabet and the numerals 1, 2, 3, 4, 5. According to Polybius's method,

the message

let none enter ignorant of geometry

would be sent as

31 15 44 33 34 33 15 15 33 44 15 42 24 22 33

34 42 11 33 44 34 21 22 15 34 32 15 44 42 54,

where the ®rst numeral indicates the location of the row and the second the

column of the plaintext letter.
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Character ciphers are systems based on transforming each letter of the

plaintext into a different letter to produce the ciphertext, that is, each letter

is changed by substitution. Character ciphers can be traced back to the

Romans. Valerius Probus, a grammarian, wrote a treatise on the ciphers

used by Julius Caesar. Suetonius, the Roman historian, wrote that Caesar

used a cipher which simply replaced each letter in the alphabet by the letter

three letters to the right, with the stipulation that X, Y, and Z were replaced

by A, B, and C respectively, as shown in Table 7.2, where we use the

English rather than the Latin alphabet and have preserved the natural

lengths of words. The plaintext message

boudicca has burned londinium

would be enciphered using Caesar's cipher into the ciphertext

erxglffd kdv exuqhg orqglqlxp:

Augustus (Gaius Julius Caesar Octavianus (Octavian)) used a much

simpli®ed version of his uncle's cipher in which he transformed plaintext

to ciphertext by merely substituting, with the exception of writing AA for

X, the next letter of the alphabet. One can hardly fail to get a feeling for the

dearth of literacy during this period of Roman history.

We can generalize character ciphers mathematically by translating the

letters of the alphabet of any plaintext into numerical equivalents, for

example, using Table 7.3. Let the letter P denote the numerical equivalent

of a letter in the plaintext and the letter C denote the numerical equivalent

Table 7.1.

1 2 3 4 5

1 a b c d e
2 f g h ij k
3 l m n o p
4 q r s t u
5 v w x y z

Table 7.2.

a b c d e f g h i j k l m n o p q r s t u v w x y z

d e f g h i j k l m n o p q r s t u v w x y z a b c
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of the corresponding letter in the ciphertext. Caesar's cipher would then be

represented by the transformation C � P� 3 (mod 26) and its inverse by

P � C ÿ 3 (mod 26). Any cipher of the form C � P� k (mod 26), with

0 < k < 25, is called a shift transformation, where k, the key, represents

the size of the shift. Accordingly, the corresponding deciphering transfor-

mation is given by P � C ÿ k (mod 26). If we include the case where

k � 0, where the letters of the plaintext are not altered at all, there are 26

possible shift transformations. For example, consider the shift transform-

tion with key k � 17 and the plaintext message

thomas jefferson lives:

We use the cipher C � P� 17 (mod 26) to transform the numerical

plaintext

19 7 14 12 0 18 9 4 5 5 4 17 18 14 13 11 8 21 4 18

into the ciphertext

10 24 5 3 17 9 0 21 22 22 21 8 9 5 4 2 25 12 21 9

and send the message as

kyfdrj avwwvijfe czmvj:

The major dif®culty with shift transformations is their vulnerability to

being deciphered easily using the relative frequency of the letters. In a

relatively long sample of English text, the most frequently occurring letter

will normally be e, followed by t, n, i, r, o and a, respectively. Table 7.4

exhibits the percent frequency of the occurrence of letters in a standard

English text, where an asterisk is used to denote that the normal occurrence

of the letter is less than one percent.

Similar tables exist for most major languages. However, we cannot

always assume that the natural frequency prevails in the plaintext, for it is

not impossible to circumvent the natural frequencies of a language as well.

Table 7.3.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 7.4.

a b c d e f g h i j k l m n o p q r s t u v w x y z

7 1 3 4 13 2 2 6 8 � 1 4 2 8 7 2 � 8 6 9 3 1 2 � 2 �
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La Disparition, a novel written in 1969 by George Perec, included over

85 000 words and not one of them contained the letter `e'. Nevertheless,

using the information in Table 7.4, we may be able to decipher a long

ciphertext which has been encoded using a shift transformation by

frequency analysis as illustrated in the next example.

Example 7.1 Suppose that we wish to decipher the ciphertext

urutm hqeqq zmxuf fxqrm dftqd ftmza ftqde ufuen qomge
qutmh qefaa pazft qetag xpqde arsum zfejj

given that a shift transformation was used to encipher the plaintext

message. The encipherer has divided the ciphertext into a uniform set of

letters, quintuplets in this case, to disguise any natural lengths that may be

apparent in the plaintext. The frequency of letters for our ciphertext is

given in Table 7.5. Since the letter that occurs most frequently is q, we

assume that e was sent as q. Hence, k � 12. The plaintext message

expressed in quintuplets would read

ifiha vesee nalit tlefa rther thano thers itisb ecaus eihav
estoo donth eshou lders ofgia ntsxx,

or with natural word length

if i have seen a little farther than others it is because i
have stood on the shoulders of giants,

a quote attributed to Isaac Newton.

Ciphers of the form C � aP� b (mod 26), where 0 < a,b < 25, and

gcd(a, 26) � 1, are called af®ne ciphers. Shift ciphers are af®ne ciphers

with a � 1. There are ö(26) � 12 choices for a and 26 choices for b,

hence, 312 possible af®ne ciphers. The deciphering transformation for an

af®ne cipher is given by P � aÿ1(C ÿ b) (mod 26), where 0 < P < 25

and aaÿ1 � 1 (mod 26). For convenience, Table 7.6 gives the inverses of

positive integers less than and coprime to 26 modulo 26.

Table 7.5.

a b c d e f g h i j k l m n o p q r s t u v w x y z

6 0 0 4 8 9 2 2 0 2 0 0 7 1 1 2 11 3 1 7 7 0 0 3 0 4
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Example 7.2 We encode the plaintext

shakespeare was a pen name for edward de vere the
earl of oxford,

using the af®ne transformation C � aP� b, with a � 5 and b � 8. From

Table 7.3, the numerical equivalent of the plaintext is given by

18 7 0 10 4 18 15 4 0 17 4 22 0 18 0 15 4 13

13 0 12 4 6 14 17 4 3 22 0 17 3 3 4 21 4 17

5 19 7 4 4 0 17 11 14 5 14 23 5 14 17 3:

Applying the cipher C � 5P� 8 (mod 26), we obtain

20 17 8 6 2 20 5 2 8 15 2 14 8 20 8 5 2 21 21

8 16 2 12 0 15 2 23 0 8 15 23 23 2 9 2 15 2 25

17 2 2 8 15 11 0 7 0 19 7 0 15 23:

Transforming from numerical to alphabetic quintuplet ciphertext we obtain

urigc ufcip coiui fcvvi qcmap cxaip xxcjc pczrc cipla
hatha pxttt,

where we have added xxx to the end of the plaintext message to preserve

the quintuplicate nature of the ciphertext and to make the message more

dif®cult to decipher.

Nevertheless, a deciphering technique using the relative frequency of

letters can be used to decipher most af®ne transformations as illustrated in

the next example.

Example 7.3 Albeit the message

fjjif jliio jflih yjjyj ginjq yjpql zgzgz

is relatively short, we can use frequency analysis to decipher it. From Table

7.7, we see that the letter j appears eleven times and the letter i six times.

Suppose e corresponds to j and t corresponds to i. Let C � aP� b (mod

26). With C � 9 when P � 4 and C � 8 when P � 14, we obtain

9 � 4a� b (mod 26)

Table 7.6.

a 1 3 5 7 9 11 15 17 19 21 23 25

aÿ1 1 9 21 15 3 19 7 23 11 5 17 25
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and

8 � 19a� b (mod 26):

Subtracting the ®rst equation from the second, we obtain 15a � ÿ1 � 25

(mod 26). Multiplying both sides of the congruence by 7, the inverse of 15

modulo 26, we get a � 19 (mod 26). Substituting the value a � 19 into the

®rst equation, we ®nd that b � 11 (mod 26). Thus, the message was

enciphered using the af®ne transformation C � 19P� 11 (mod 26).

Applying the inverse transformation, P � 11C � 9 (mod 26), to the

numerical ciphertext, we recover the plaintext message:

meet me at the matinee next wednesday:

In Europe, the period from about 400 to about 800, following the collapse

of the Roman Empire, is referred to by many historians as the Dark Ages.

The barbarians were at the gates, culture and literacy went seriously into

decline, and with them went cryptography. In 529, after existing for over

nine centuries, Plato's Academy was closed. Almost singlehandedly, Bene-

dictine monasteries continued to serve as effective educational institutions

throughout the Dark Ages. According to conservative estimates over 90

percent of the literate men between 600 and 1100 received their instruction

in a monastic order. Very few scienti®c commentaries appeared and many

of those that did were woefully primitive. People had a rough time just

making ends meet. Most began looking for a better life in the hereafter.

As with mathematics and science, cryptology developed in India and

Islamic countries during the European Dark Ages. The Kamasutra, written

sometime between the third and ®fth centuries and attributed to Vatsyaya-

na, lists secret writing as one of the arts a woman should understand and

practice. One ancient Hindu cipher consisted of substituting a set of letters

of the Hindu alphabet in the plaintext for each other and leaving the

remaining letters unaltered. In 855, Abu Bakr Ahmad included several

ciphers in Book of the Frenzied Devotee's Desire to Learn about the

Riddles of Ancient Scripts. Ibn Khaldun's Muqaddimah describes several

codes used by Islamic tax and military bureaucrats. A compilation of

Islamic knowledge of cryptography was included in a compendium of all

branches of knowledge useful to civil servants written by al-Qulqashandi

Table 7.7.

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 0 0 0 0 3 3 1 5 9 0 3 0 1 1 1 2 0 0 0 0 0 0 0 3 3
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in 1412. As with Euclid's Elements, much of the content of al-Qulqa-

shandi's book was based on works of his predecessors, the chapter on

cryptology being no exception for much of it came from a fourteenth

century treatise by al-Duraihim. Many of the cryptographic methods

mentioned in al-Duraihim's work were quite sophisticated, for example,

letter substitution using numeric as well as symbolic substitution and a

method whereby vowels were deleted and the letters of each word were

reversed.

For example, let us look at some of the more fundamental ways a

message can be altered using transpositions. We could send the plaintext

burn all your codes

using a simple transposition cipher as follows:

b r a l o r o e
u n l y u c d s

and send it as

bral oroe unly ucds:

We could have written the plaintext in columns±

b
u
r
n

a
l
l
y

o
u
r
c

o
d
e
s

±and sent the message as

bouu rrnc aold leys:

We could have written the message in a matrix as

b a o o

u l u d

r l r e

n y c s

and sent it as

baoo ulud rlre nycs:

The few European ciphertext manuscripts that exist from the period from

400 to 1400 employ very primitive encryption systems, for example,
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transposition ciphers with k � 1, simple letter substitution using foreign

alphabets or symbols, dots substituted for vowels, and phrases written

backwards or vertically. There were a few notable exceptions. Gerbert,

Pope Sylvester II, used a shorthand encryption system to record important

notes and messages. Hildegard von Bingen, a twelfth century Benedictine

abbess and composer of liturgical music, used a cipher alphabet consisting

of a mixture of German and Latin, which came to her in a vision. Roger

Bacon, an English Franciscan scholar, wrote a treatise, Secret Works of Art

and the Nullity of Magic, in the mid thirteenth century, in which he listed a

number of primitive encryption systems. Geoffrey Chaucer, using a simple

alphabet substitution, enciphered a few lines of the The Equatorie of the

Planets. The earliest known manuscript devoted entirely to cryptanalysis,

including rules for deciphering simple substitution ciphers where word

order has been preserved, was written in 1747 by Cicco Simonetta, a

Milanese civil servant.

Exercises 7.1

1. Use Polybius's method to encipher the message

no man is an island:

2. Decipher the message

24 44 43 22 42 15 15 25 44 34 32 15

given that it was enciphered using Table 7.1 and Polybius's method.

3. Using the Caesar cipher, encipher the following messages:

(a) i have a secret;

(b) sic sempertyrannis;
(c) send help.

4. Decipher the following messages assuming that each has been en-

ciphered using the Caesar cipher.

(a) dooph qduhp ruwdo;

(b) shulf xoxpl qprud;

(c) lqylwr sdwuh vlghudyhuvr.

5. Use frequency analysis and the knowledge that the message was

enciphered using a shift transformation to decode

pxahe wmaxl xmknm almhu xlxey xobwx gmmat mteef xgtkx
vkxtm xwxjn temat mmaxr tkxxg whpxw urmax bkvkx tmhkp
bmavx kmtbg ngteb xgtue xkbza mlmat mtfhg zmaxl xtkxe

byxeb uxkmr tgwma xinkl nbmhy atiib gxllq

6. Encipher the message
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there is a mole in the office
using the af®ne transformation C � 7P� 4 (mod 26).

7. Decipher the message

whsnk fglnj elhfy jqtgx yzgi,
which was enciphered using the af®ne transformation C � 11P� 6

(mod 26).

8. If the most common letter in a long ciphertext, enciphered by a shift

transformation C � P� k (mod 26), is s, what is the most likely value

for k?

9. Decipher the ciphertext

yfxmp cespz cjtdf dpqfw qzcpy ntasp ctyrx pddlr pd,

given that it was enciphered using a shift transformation.

10. If the two most common letters in a long ciphertext enciphered by an

af®ne transformation C � aP� b (mod 26) are p and c respectively,

then what are the two most likely values for a and b?

11. Decipher the following ciphertext given that the message was enci-

phered using an af®ne transformation in which e and t were enci-

phered as l and u, respectively.

bslgu slrgl hyltu jpryl yprvl jurvt yztht
dgjux rfygt vlusl vtyzd djgru wrybs luslr
xrfbr grykr jubfu srbxr fcktx lausl htvlm

12. Decipher the following cipher given that the message was enciphered

using a simple transposition cipher.

d e s d o h n n s r s e t t e i e

13. Decipher the following cipher given that the message was enciphered

using a simple transposition column cipher.

t e w e e s n k t i y d t d h o r o

14. Decipher the following cipher given that the message was enciphered

using a simple transposition matrix cipher.

nacbnf eshyye vsostw eowoow rmemss wudaoc

7.2 Polyalphabetic ciphers

In an attempt to hinder decryption by frequency analysis, a method was

introduced in the early ®fteenth century whereby simple substitution is

used to alter consonants and multiple substitution to alter vowels. Around

1467, Leon Battista Alberti, the Italian artist and author of the ®rst printed

book on architecture, wrote a treatise on cryptanalysis, which was pub-
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lished posthumously in 1568. The treatise included instruction on how to

construct a cipher disk. This was the earliest appearance of a polyalpha-

betic cipher, one involving two or more cipher alphabets, and forms the

basis for modern cryptograms, and secret decoder rings as well. Alberti's

cipher disk was made from two copper disks of unequal size with a pin

through their centers to hold them together. A cipher disk using modern

English letters, where the letters y and z have been omitted, is shown in

Figure 7.1. Alberti divided each disk into 24 equal parts listing the

plaintext consisting of 20 letters of the Italian alphabet and the ®rst 4

natural numbers on the larger outer disk. The numbers on the outer disk

were used in pairs, triples, or taken 4 at a time to represent encoded words

or phrases which he inserted into the ciphertext. After enciphering (and/or

encoding) part of the plaintext, the inner disk was rotated and another part

of the message enciphered using a different cipher. The process was

repeated until the complete message was enciphered. Besides the ability to

encode as well as to encipher messages, the main advantage of Alberti's

cipher disk was that the word the in the plaintext may be encoded as pwr
in one part of the message and as uva in another.

Example 7.4 Suppose we wished to encipher the message

eat more broccoli:

One option would be to encipher the ®rst two words using the cipher disk

as shown in Figure 7.1, where a is encoded as q, then rotating the inner

disk counterclockwise seven positions so a is encoded as w, as shown in

Figure 7.2. The ciphertext message would appear as

X A B
C

D
E

F
G

H
I

J
K

LMN
O

P
Q

R
S

T

V
W

Q E
X

K
R

A
L

W
H

S
BOUG

M

C
T

I
F

P
U

D

V
N J

Figure 7.1.
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rqpum irhqv ssvfc:

In 1499, Johannes Trithemius wrote a trilogy on communicating with

spirits called Steganographia, Greek for `hidden writing'. The text was

criticized by Protestants. It was included, along with the works of Coperni-

cus, Kepler, and Galileo, on the Index librorum prohibitorum, a list of

books Roman Catholics were forbidden to read. The third volume, on

occult astrology, consisted mainly of tables of numbers that many believed

contained secret incantations for conjuring up spirits. In 1676, Wolfgang

Ernst Heidel, a lawyer from Mainz, claimed to have deciphered Trithe-

mius's passages, but he wrote his solution with a secret cipher that no one

could decipher. In 1996, Thomas Ernst of La Roche College in Pittsburgh

and, independently two years later, Jim Reeds of AT&T Labs in Florham

Park, New Jersey, deciphered Johannes Trithemius's third volume. Disap-

pointingly, the messages turned out to be mainly trite sayings. Ernst turned

his attention to Heidel and deciphered his manuscript. He found that Heidel

had in fact deciphered the secret passages in Trithemius's third volume.

The ®rst printed book on cryptography, Polygraphia, appeared in 1518.

It had been written by Trithemius about 10 years earlier. The bulk of the

text is taken up with hundreds of columns of Latin words each preceded by

a letter. The book's most important innovation in cryptology was the

transformation of the wheel cipher into an alphabetic square to encode

plaintext shown in Table 7.8. Rows corresponded to key letters and

columns to plaintext letters. Ciphertext letters are found at the intersections

of rows and columns. For example, to encode the word deus with

X A B
C

D
E

F
G

H
I

J
K

LMN
O

P
Q

R
S

T

V
W

W H
S

B
O

U
G

M
C

T
IFPD

V

N
J

Q
E

X
U

K

R
A L

Figure 7.2.
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Trithemius's cipher, we leave the 1st letter unaltered. We replace the 2nd

letter by f, the letter under e in the 3rd row. We replace the 3rd letter by w,

the letter under u in the 4th row. Finally, we replace the 4th letter by v, the

letter under s in the 5th row. The ciphertext obtained is dfwv. For long

messages, the 26th row is followed by the 1st row and the process cycles.

In 1553, Giovan Batista Belaso introduced a polyalphabetic cipher

similar to Trithemius's cipher where a key phrase is used to indicate the

column by which successive letters are enciphered. For example, using the

key phrase

sic semper tyrannis et mures xx,

using Table 7.8, we encipher

the tree of liberty

as

Table 7.8.

a b c d e f g h i j k l m n o p q r s t u v w x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z
b c d e f g h i j k l m n o p q r s t u v w x y z a
c d e f g h i j k l m n o p q r s t u v w x y z a b
d e f g h i j k l m n o p q r s t u v w x y z a b c
e f g h i j k l m n o p q r s t u v w x y z a b c d
f g h i j k l m n o p q r s t u v w x y z a b c d e
g h i j k l m n o p q r s t u v w x y z a b c d e f
h i j k l m n o p q r s t u v w x y z a b c d e f g
i j k l m n o p q r s t u v w x y z a b c d e f g h
j k l m n o p q r s t u v w x y z a b c d e f g h i
k l m n o p q r s t u v w x y z a b c d e f g h i j
l m n o p q r s t u v w x y z a b c d e f g h i j k
m n o p q r s t u v w x y z a b c d e f g h i j k l
n o p q r s t u v w x y z a b c d e f g h i j k l m
o p q r s t u v w x y z a b c d e f g h i j k l m n
p q r s t u v w x y z a b c d e f g h i j k l m n o
q r s t u v w x y z a b c d e f g h i j k l m n o p
r s t u v w x y z a b c d e f g h i j k l m n o p q
s t u v w x y z a b c d e f g h i j k l m n o p q r
t u v w x y z a b c d e f g h i j k l m n o p q r s
u v w x y z a b c d e f g h i j k l m n o p q r s t
v w x y z a b c d e f g h i j k l m n o p q r s t u
w x y z a b c d e f g h i j k l m n o p q r s t u v
x y z a b c d e f g h i j k l m n o p q r s t u v w
y z a b c d e f g h i j k l m n o p q r s t u v w x
z a b c d e f g h i j k l m n o p q r s t u v w x y
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lpg lvqt sf mgseegg:

The s̀' column is used to encipher t as l, the `i' column is used to encipher

h as p, the c̀' column is used to encipher e as g, and so forth.

In 1550, Girolamo Cardano, the physician±mathematician and author of

the ®rst text on probability, devised a technique whereby a mask with

windows was placed over a piece of paper and the message written in the

windows. The mask was then removed and the rest of the paper ®lled with

words and phrases. When the mask was placed over the document the

message was revealed. Several sixteenth and seventeenth century diplomats

made use of Cardano's system.

Cardano described an innovative but incomplete autokey cipher system,

where the message itself is used as the key phrase. The earliest valid

autokey system was formulated in 1563 by Giovanni Battista Porta who

invented the camera obscura. In De furtivis literarum notis, Porta included

the cryptographic contributions of Alberti, Trithemius, Belaso, and Carda-

no. He described numerous cipher systems and suggested making deliber-

ate misspellings, transposing letters, and using nonsense words as keys in

enciphering plaintext. De furtivis included a pair of cipher disks and a

cipher whereby a 26 by 26 matrix consisting of 676 distinct symbols was

used to encipher and decipher messages. Each symbol in the matrix

represented a pair of letters. For example, if the symbol h in the 3rd

column and 9th row represented the letter pair ci and the symbol _ in the

1st row and 14th column represented the pair ao, then h_ stands for ciao.

Giordano Bruno, a peripatetic Dominican friar, resided at the home of

the French ambassador in London from 1583 to 1585. He used the alias

Henry Fagot when he sent messages back to France. He devised a cipher

where each vowel is exchanged with the next letter of the alphabet. Hence,

alliswell

would be sent as

blljswfll:

Bruno was the ®rst modern European to profess belief that the universe is

in®nite and that the stars are suns. Bruno was brought before the Inquisi-

tion for his beliefs, not his espionage, and burned at the stake in 1600.

Ironically, the English and French term for the bundles of wood used to

kindle the ¯ames when Bruno and other heretics were burned at the stake

is fagots.

In the early seventeenth century, Matteo Argenti, a cryptologist for

several popes, wrote a primer on Renaissance ciphers, many of which he

and his uncle, also a papal cryptologist, had devised. They were the ®rst to
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use a mnemonic key to encipher an alphabet. One, for example, is shown

in Table 7.9 using the modern Italian alphabet with key enrico. To

discourage decryption by frequency analysis the Argentis suggested using

several numbers, for example 5, 7, and 9, interspersed frequently through-

out the text, representing nulls. They also stressed multiple vowel substitu-

tion and deleting the second member of a double letter consonant

combinations. For example, mezo for mezzo and mile for mille. As a

further hindrance to would-be cryptanalysis, they used other numbers to

represent often used words such as `and', `this', `that', `which' and `what'.

Cryptanalysts had their hands full when attempting to decipher an Argenti

ciphertext.

Philip II of Spain used both multiple vowel and multiple consonant

substitutions in his ciphers. FrancËois VieÁte [vee ET], a lawyer by profession

whose mathematical work revolutionized algebra, worked as a cryptanalyst

at the court of Henry IV, King of France. The Cambridge educated

mathematician, John Wallis, deciphered messages for Charles I, Charles II,

and William and Mary. In 1641, John Wilkins, ®rst secretary of the Royal

Society, introduced the words cryptographia (secret writing) and cryptolo-

gia (secret speech) into the English language.

In 1586, using an array similar to that shown in Table 7.8, Blaise de

VigeneÁre [VEE zhen AIR], a French author, diplomat, and cryptanalyst for

Charles IX of France, devised a number of polyalphabetic ciphers that

appear in his TraicteÂ des chiffres. Two of the autokey ciphers he devised

deserve note. In one, the plaintext is the key and in another the ciphertext

is the key, where the ®rst key letter is known to both the encipher and the

decipher. For example, suppose we received the ciphertext message

cwrqpafvqabrc,

and were told the ®rst key letter was k, and that the ®rst letter of the

plaintext message was s. According to this cipher, s would be the second

letter in the key, as shown in Table 7.10. Using Table 7.8, now known as

the VigeneÁre tableau, the second letter in the plaintext is e, and it becomes

the third letter in the key, and so forth. Thus, the plaintext message is

send more money:

Table 7.9.

e n r i c o a b d f g h l m p q s t u v z

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Suppose we are given the ciphertext

cqeocwp
and know that r is the ®rst letter of the key and the ciphertext has been

used as the key. We ®ll in the rest of the code as shown in Table 7.11 and

use Table 7.8 to recover the plaintext message,

look out:

VigeneÁre ciphers employ an alphabetic matrix, as shown in Table 7.8,

and use a simple key word that is repeated. For example, let us encipher

the message

oh to be in england now that aprils there

using the key word voila. Use column `v' to encipher o as j. Use column

ò' to encipher h as v. Use column `i' to encipher t as b, and so forth.

voila voila voila voila voila volia voila
ohtob einen gland nowth atapr ilsth erexx

The ciphertext, in quintuplets, would appear as

jvbzb zwvpn bziyd iceeh vhiar dzaeh zfmix
This VigeneÁre cipher can be broken much more easily than his autokey

ciphers using a method developed successfully by F. W. Kasiski in 1863. In

our example, once the cryptanalyst knows that the key has ®ve letters,

frequency analysis may be often employed on successive sets containing

every ®fth letter. In 1925, the American cryptanalyst, William Friedman,

developed a method that would determine the length of the key word in

any VigeneÁre cipher.

Unfortunately, VigeneÁre's work had relatively little in¯uence on his

contemporaries. VigeneÁre tableaux were rediscovered by a number of

cryptanalysts including the English mathematician and author Charles

Dodgson (Lewis Carroll). A similar array, known as a Beaufort tableau,

Table 7.10.

Key k s e n d m o r e m o n e
Plaintext s e n d m o r e m o n e y
Ciphertext c w r q p a f v q a b r c

Table 7.11.

Key r c q e o c w
Plaintext l o o k o u t
Ciphertext c q e o c w p
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was published in 1857 by Sir Francis Beaufort, Rear-Admiral of the Royal

Navy, inventor of the Beaufort wind scale ranging from 0 (calm) to 12

(hurricane). Beaufort's alphabetic array contains 22 rows and 22 columns,

key letters and plaintext were denoted on the rows, the ciphertext letters on

the columns. Nevertheless, Beaufort's tableaux had been used to encipher

plaintext by Giovanni Sestri as early as 1710.

Charles Babbage, whose analytic engine was the precursor of our

modern computers, constructed a 26-volume code breaking dictionary. He

deciphered a message sent by Henrietta Maria, queen to Charles I, personal

advertisements found in The Times, and a number of VigeneÁre ciphers. He

served as a cryptographical advisor to Beaufort during the Crimean War.

Babbage wrote that deciphering is a fascinating art and one which he had

wasted more time on than it deserved. He thought, as did many cryptana-

lysts, that he was capable of constructing a cipher that no one else could

break. Unfortunately, the cleverer the person the more deep-seated was the

conviction. He was particularly adept at deciphering digraphic ciphers,

where letters are paired and encoded together. These ciphers were devised

in 1854 by Charles Wheatstone, inventor of the Wheatstone bridge, a

circuit used in physics. There are many variations of Wheatstone's cipher,

one, in particular, with keyword cambridge is shown in Table 7.12.

To encipher messages using Wheatstone's cipher, letters were paired up.

Paired letters on the same row or column were encoded cyclically. Hence,

aq and wz would be enciphered as dw and xv, respectively. Similarly, no
and en would be enciphered as oh and nt, respectively. If the two letters

are not on the same row or column then they form opposite vertices of a

rectangle and are replaced by the two letters forming the other two vertices

of the rectangle with the proviso that letters on the same row replace each

other. For example, dn and os were replaced by ek and lu, respectively.

The letters i and j were considered identical and double letters were

separated by an x. Hence,

william tell

Table 7.12.

c a m b r
ij d g e f
h k l n o
p q s t u
v w x y z
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would be enciphered as if it were

wilxliam telxl:

Using the Wheatstone cipher shown in Table 7.12, the message

always deny it

would be sent as

mkadxt gftb ep:

When serving as Secretary of State for George Washington in the 1790s,

Thomas Jefferson devised a wheel cipher. His cipher was about six inches

long and consisted of 36 wooden disks each about 1
6

of an inch thick held

together with a bolt and nuts on each end, similar to that shown in Figure

7.3. The outer rim of each disk was divided into 26 equal parts where the

letters of the alphabet appeared in random order. To encipher a message,

the wheels were rotated until the message to be sent appeared and then one

of the remaining 25 jumbled lines sent as the ciphertext. Jefferson did not

recommend his method to his successors and it was forgotten. Several

years later, when he was President, he chose a VigeneÁre cipher as the

of®cial method for Meriweather Lewis and William Clark to encipher their

messages to him during their expedition to explore the Louisiana Territory

in 1802±4. Wheel ciphers were rediscovered by the US Army in 1922 and

were used by the US Navy up to 1960.

Figure 7.3.
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Exercises 7.2

1. Use the disk cipher shown in Figure 7.1 to encipher

rumplestiltskin:

2. Decipher

fdiirgkri wx vdso

assuming the ®rst word was enciphered using Figure 7.1 and the last

words using Figure 7.2.

3. Encipher

make my day

using Trithemius's cipher.

4. Decipher

hftha jgymw yemsf pyulh zjhim vtigw vzzoe qocqi sgyke tsgax
bmosv rpjxh bnocd bfpic hgavo oczsp plwkx lmcyn azppjzl

given that it was enciphered using Trithemius's cipher.

5. Encipher

meet me tonight at midnight

using Belaso's cipher with key phrase

arivederci roma arivederci:

6. Decipher

ffypgwzfwt

given it was enciphered using Belaso's cipher with key

fourscore and seven years ago.

7. Decipher

jljmp ortfd fchfr chfrt pvjpv rslbv frjtf

given it was enciphered using Bruno's cipher.

8. Decipher the ciphertext

yvkzr wtzjz xalip pxfqg qhigm alawyq

given it was enciphered with a VigeneÁre autocipher using the plaintext

as key and r is the ®rst letter of the key.

9. Decipher the ciphertext

fpgzt talal gtlyp pwlfa bga

given that it was enciphered with VigeneÁre autocipher using the

ciphertext as key and f is the ®rst letter of the key.
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10. Encipher

the whole nine yards

using the standard VigeneÁre cipher (Table 7.8) with key word maths.
11. Decipher the ciphertext

vlmnr fmpsm itasb hsutv ntmjp

given that it was enciphered with a standard VigeneÁre cipher with key

shazam.

12. Encipher

are we having fun
using the standard VigeneÁre cipher with key word key.

13. Decipher the message

ssahxyoo

given that it was enciphered using standard VigeneÁre cipher with key

word me.

14. Devise a Wheatstone cipher with keyword kelvin and encipher

grantchester:

15. Use Wheatstone's cipher shown in Table 7.12 to decipher

digpk hsogg dfpne hlhon byphu lgrny kcyyn ibfgp ulbgr
hbofg uordu ffdel idgne qkcpe ugufi yfbni lsblgw:

7.3 Knapsack and block ciphers

Knapsack ciphers, like character ciphers, are based on modular arithmetic.

However, numbers not letters are transmitted with knapsack ciphers.

Knapsack ciphers originated from an ancient problem in which a knap-

sack's weight was given together with the weights of the individual objects

before they were placed in the knapsack. The problem was to determine

how many of each type of object were in the knapsack. Modern knapsack

ciphers use superincreasing sequences and binary representations for letters

of the alphabet. Recall that a superincreasing sequence is a sequence

a1, a2, . . . , an, with ak�1 .
Pk

i�1ai, for k � 1, 2, . . . : For example, 1, 2,

4, 8, 16, 32, 64 and 2, 12, 16, 32, 65, 129, 275 are superincreasing

sequences.

Knapsack ciphers can be constructed as follows. Given a superincreasing

sequence a1, a2, . . . , a10 of length 10, choose an integer n such that

n . 2a10 and an integer w such that gcd(w, n) � 1. Form the superincreas-

ing sequence wa1, wa2, . . . , wa10, where the terms are taken modulo n. To

encipher the message, group adjacent letters in pairs and use Table 7.13 to

7.3 Knapsack and block ciphers 229



partition the message into blocks of 10 binary digits. Use vector multi-

plication on the decadal binary blocks and the modi®ed superincreasing

sequence. Knapsack ciphers can be made even more dif®cult to decipher

by multiplying the decadal binary block by a nonzero scalar before the

vector multiplication.

Example 7.5 Given the superincreasing sequence 2, 7, 11, 31, 58, 117,

251, 482, 980, 1943, let us encipher the message

send help:

Choose n � 3891 . 3886 � 2 . 1943 and w � 1001, where gcd(1001,

3891) � 1. Multiplying each term by w and reducing modulo 3891, we

transform the given superincreasing sequence into the sequence 2002,

3116, 3229, 3794, 2014, 387, 2227, 3889, 448, 3334. Partition the message

into blocks of 10 binary digits using Table 7.13.

s
10010

e
00100

n
01101

d
00011

h
00111

e
00100

l
01011

p
01111

We now transform the block corresponding to the combination se under

vector multiplication into 1 . 2002� 0 . 3116� 0 . 3229� 1 . 3794 � � � �
� 0 . 3334 � 9685. The block corresponding to nd under vector multipli-

cation is transformed into 0 . 2002� 1 . 3116� 1 . 3229� 0 . 3794 � � � �
� 1 . 3334 � 12 141. Thus, the resulting ciphertext is given by

9685 12 141 12 926 18 822:

To decipher the message, we ®rst determine, 3650, the inverse of 1001

modulo 3891. Since 3650 . 9685 � 515 (mod 3891) and 515 � 2� 31 �
482, from Table 7.13, we ®nd that 515, in our original superincreasing

sequence, corresponds to 10010 00100. That is, to the pair se.

A block cipher is a polygraphic cipher that substitutes for each block of

Table 7.13.

a 00000 j 01001 s 10010
b 00001 k 01010 t 10011
c 00010 l 01011 u 10100
d 00011 m 01100 v 10101
e 00100 n 01101 w 10110
f 00101 o 01110 x 10111
g 00110 p 01111 y 11000
h 00111 q 10000 z 11001
i 01000 r 10001
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plaintext of a speci®ed length a block of ciphertext of the same length.

Such ciphers act on blocks of letters, and not on individual letters, and,

hence, are not as vulnerable to cryptanalysis based on letter frequency.

Block ciphers were devised in 1929 by Lester Hill at Hunter College.

Hill cipher systems are obtained by splitting the plaintext into blocks of

n letters, translating the letters into their numerical equivalents, and then

forming the ciphertext using the relationship C � AP (mod 26), where A

is an n by n matrix with determinant coprime to 26, C is the 1 by n column

matrix with entries C1, C2, . . . , Cn, and P is the 1 by n column matrix

with entries P1, P2, . . . , Pn, where the Ci are the ciphertext blocks

corresponding to the plaintext blocks Pi, for i � 1, 2, . . . , n. The cipher-

text numbers are then translated back into letters. To decipher a Hill cipher

encoded message use Aÿ1, the inverse of the matrix A, taken modulo 26,

since Aÿ1C � Aÿ1(AP) � (Aÿ1 A)P � P (mod 26). A Hill cipher is called

digraphic if n � 2, trigraphic if n � 3, and polygraphic if n . 3.

Example 7.6 In order to encipher the plaintext

gauss was very bright

using a Hill cipher with

A � 1 2

4 3

� �
,

we partition the plaintext into blocks of length 2 and use Table 7.3 to

translate the blocks into their numerical equivalents:

g
6

a
0

u
20

s
18

s
18

w
22

a
0

s
18

v
21

e
4

r
17

y
24

b
1

r
17

i
8
g
6

h
7

t
19

We have added xx to the end of the message so that the cipher text is

composed of quintuplets. Perform the matrix calculations:

1 2

4 3

� �
6

0

� �
� 6

24

� �
(mod 26),

1 2

4 3

� �
20

18

� �
� 4

4

� �
(mod 26),

1 2

4 3

� �
18

22

� �
� 10

8

� �
(mod 26),

1 2

4 3

� �
0

18

� �
� 10

2

� �
(mod 26),

1 2

4 3

� �
21

4

� �
� 3

18

� �
(mod 26),

1 2

4 3

� �
17

24

� �
� 13

10

� �
(mod 26),

1 2

4 3

� �
1

17

� �
� 9

3

� �
(mod 26),

1 2

4 3

� �
8

6

� �
� 20

24

� �
(mod 26),

1 2

4 3

� �
7

19

� �
� 19

7

� �
(mod 26),

1 2

4 3

� �
23

23

� �
� 17

16

� �
(mod 26):

7.3 Knapsack and block ciphers 231



6
g

24
y

4
e

4
e

10
k

8
i

10
k

2
c

3
d

18
s

13
n

10
k

9
j

3
d

20
u

24
y

19
t

7
h

17
r

16
q

Hence, the resulting ciphertext is

gyeek ikcds nkjdu ythrq:

To decipher the message, the cryptanalyst must determine the inverse of

the enciphering matrix A modulo 26. In general, the inverse of a 2 by 2

matrix

M � a b

c d

� �
is given by

Mÿ1 � 1

ad ÿ bc

d ÿb

ÿc a

� �
:

Hence, in our example, we ®nd that

Aÿ1 � 1 2

4 3

� �ÿ1

� 1

ÿ5

3 ÿ2

ÿ4 1

� �
� 1

21

3 24

22 1

� �
� 5

3 24

22 1

� �
� 15 16

6 5

� �
(mod 26):

In digraphic ciphers, there are 262 � 676 possible blocks of length 2.

However, studies on the relative frequencies of typical English text have

led to methods for deciphering digraphic Hill ciphers. The most common

pair of juxtaposed letters in the English language is th followed closely by

he. In addition, 10 words±the, of, and, to, a, in, that, it, is and I-make up a

quarter of a typical English text.

Example 7.7 Suppose a Hill digraphic cipher system has been employed

and the most common pair of letters in the ciphertext is jx followed by

tm; it is likely that jx corresponds to th and tm corresponds to he.

Therefore, the block
19

7

� �
corresponds to the block

9

23

� �
and the block

7

4

� �
corresponds to the block

19

12

� �
. Let A denote the enciphering

matrix; then

A . 19 7

7 4

� �
� 9 19

23 12

� �
(mod 26):

Since
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19 7

7 4

� �ÿ1

� 4 19

19 19

� �
(mod 26),

we have

A � 9 19

23 12

� �
4 19

19 19

� �
� 7 12

8 15

� �
(mod 26):

Hence,

Aÿ1 � 19 16

2 21

� �
,

and we use P � C . Aÿ1 to decipher the message.

Exercises 7.3

1. Use the superincreasing sequence and n and w from Example 7.5 to

encode the message

nuts:

2. Decode the message

3564 9400 16 703,

given that it was encoded using the superincreasing sequence and n and

w from Example 7.5.

3. Show that

7 12

8 15

� �ÿ1

� 19 16

2 21

� �
(mod 26):

4. Use the digraphic cipher that sends the plaintext blocks P1 and P2 to the

cipherblocks C1 and C2, such that

C1 � 3P1 � 5P2 (mod 26),

C2 � 4P1 � 7P2 (mod 26),

that is,

C1

C2

� �
� 3 5

4 7

� �
P1

P2

� �
(mod 26),

to encipher the message

but who will guard the guards:

5. Decipher the ciphertext message

rr qb iq it uv qo hw zi,

which was enciphered using the digraphic cipher
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C1 � 7P1 � 2P2 (mod 26),

C2 � 8P1 � 3P2 (mod 26):

6. The two most common digraphs in a ciphertext are zi and ug and these

pairs correspond to the two most common pairs in the English text, th
and he. The plaintext was enciphered using a Hill digraphic cipher.

Determine a, b, c, and d if

C1 � aP1 � bP2 (mod 26),

C2 � cP1 � dP2 (mod 26):

7. The three most common triples of letters in a ciphertext are awg, fmd,

and rxj. Suppose these triples correspond to the common triples: the,

and, and there. If the plaintext was enciphered using a Hill trigraphic

cipher described by C � AP (mod 26), then determine the 3 by 3

enciphering matrix A.

7.4 Exponential ciphers

Exponential ciphers are a type of polygraphic cipher developed in 1978 by

Martin Hellman at Stanford. So far, they are relatively resistant to

cryptanalysis. To encipher a plaintext using a digraphic exponential cipher

we ®rst transform pairs of the letters of the plaintext into their numerical

equivalents in sets of four digits using Table 7.14. For example,

send help

would be represented digraphically as

1804 1303 0704 1115:

Choose a prime p such that 2525 , p , 252 525 and a positive integer e,

called the enciphering key, such that gcd(e, pÿ 1) � 1. Encipher each

block P of plaintext into a cipher block C using the exponential congru-

ence C � Pe (mod p), where 0 < C < p. If the enciphering key e and the

prime p are known, then the plaintext P is easily recovered. Since

gcd(e, pÿ 1) � 1 there exists an integer f such that ef � 1 (mod pÿ 1),

Table 7.14.

a b c d e f g h i j k l m n o p q r s t u v w x y z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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so that for some integer k ef � 1� k( pÿ 1) and, from Fermat's Little

Theorem, Cf � (Pe) f � P1�k( pÿ1) � P(P( pÿ1)k) � P (mod p).

In general, with n-ary exponential ciphers, we group the resulting

numerical equivalent of the plaintext into blocks of length 2n, with n

chosen so that the largest integer formed by adjoining n decimal equiva-

lents of plaintext letters is less than p.

Example 7.8 We send the message

wait until the sun shines nellie
using p � 2819 and e � 23. The letters of the plaintext are converted into

their numerical equivalents and then grouped into blocks of length 4 to

obtain

2200 0819 2013 1908 1119

0704 1820 1318 0708 1318

1813 0411 1108 0423

where the letter x has been added at the end of the plaintext to ®ll out the

®nal block of four digits. Encoding the numerical plaintext using the

formula C � P23 (mod 2819), we obtain

602 2242 1007 439 2612

280 1303 1981 1511 1981

233 1013 274 540

Since gcd(2818, 23) � 1, to decipher the ciphertext, we use the Euclidean

algorithm to obtain 23 . 2573ÿ 21 . 2818 � 1. Hence, 2573 is the inverse

of 23 modulo 2818. The deciphering congruence C2573 � P (mod 2819)

will return the message to the plaintext. For example, 6022573 � 2200

(mod 2819).

Exponential ciphers discourage cryptanalysis since the cryptanalyst needs

to determine the prime and exponent involved in enciphering the message,

a formidable task even with a high-speed computer. In a public-key

encryption system, we are given a number of individuals who wish to

communicate with each other. Each person chooses an enciphering key E,

which is published in a book of keys and made available to all users of the

system, and a deciphering key D, whose inverse is E and which is kept

secret. In order to be a secure system, each deciphering key should be

essentially impossible to discover or compute even though the enciphering

key is public knowledge. Suppose individuals A and B wish to commu-

nicate using the system. Since EA and EB are known to all users of the
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system, A can send a message M to B by transmitting EB(M), that is, by

applying EB to M. Since DB(EB(M)) � (DBEB)M � M and only B knows

DB, the deciphering key, only B can compute M and read the message. To

respond to A with message N, B would transmit EA(N ) to A, who would

decipher it using DA. That is, A would compute DA(EA(N )) �
(DAEA)N � N .

If the composition of enciphering and deciphering is commutative, that

is (ED)M � (DE)M � M , for all messages M, then it is possible to send

signed messages, important in such matters as the electronic transfer of

large sums of money. For example, if A wished to send a signed message

M to B, then A, using B's published enciphering key and A's deciphering

key, would compute and send EB(DA(M)). To decipher the message, B

would compute EA(DB(EB(DA(M)))) � (EADA)(EBDB)M and obtain M.

Moreover, if the deciphered message were legible B would know that the

message could only come from someone who knew A's deciphering key,

EA. This does not affect the security of the message since only A knows

DA and only B knows DB. The practicality of such a system eventually

depends on the ability of all parties to be able to calculate ef®ciently with

the enciphering and deciphering keys.

In 1976, a very useful and practical public-key encryption system based

on exponential ciphers was devised independently by W. Dif®e and M.E.

Hellman at Stanford and R.C. Merkle at Berkeley, and implemented at

MIT in 1978 by Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.

The RSA system, as it is known, works as follows. Each individual in the

system chooses two very large primes p and q, say of approximately 100

digits each and calculates r � pq. Each person determines a positive

integer s, such that gcd(s, ö(r)) � 1, and integers t and k such that

st � 1� kö(r). Hence, st � 1 (mod ö(r)). The pair (r, s) forms the

enciphering key and is published in the public register of such keys, but t,

the deciphering key, is kept secret by the individual.

In the RSA system, a message, M, is altered into its numerical equivalent

using Table 7.14 and grouped into blocks of length 2n, as with exponential

ciphers. The successive numerical blocks obtained from the plaintext are

enciphered using s, the receiver's encryption key, and the equation

C � E(P) � P s (mod r), where 0 < C , r, and the numerical ciphertext

is sent. From the Euler±Fermat Theorem, Pö(r) � 1 (mod r). Hence,

D(C) � C t � (P s) t � P st � P1�k.ö(r) � P . Pk.ö(r) � P (mod r) with

0 < P , r. Therefore, the receiver applies the inverse operator and

deciphers the message.

We may choose s to be any prime greater than pq, such that
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2s . r � pq, and it would be virtually impossible to recover the plaintext

block P by simply calculating the sth root of C. Knowledge of the

enciphering key (r, s) does not lead to the deciphering key (t, r). To

determine t, the inverse of s modulo ö(r), one must ®rst determine

ö(r) � ö( pq) � ( pÿ 1) . (qÿ 1), which requires the decipherer to know

the factorization of r, which is virtually impossible without knowing p and

q. For example, when p and q contain 100 decimal digits, r � pq has

around 200 decimal digits. Using the fastest factorization techniques

known would require approximately 3:8 3 109 years of computer time to

factor ö(r). Nevertheless, if r and ö(r) are known then p and q can be

determined using the identity ( pÿ q)2 ÿ ( p� q)2 � ÿ4 pq, since p �
q � pqÿ ö(r)� 1 � r ÿ ö(r)� 1 and pÿ q � [( p� q)2 ÿ 4 pq]1=2 �
[( p� q)2 ÿ 4r]1=2:

p � ( p� q)� ( pÿ q)

2

and

q � ( p� q)ÿ ( pÿ q)

2
:

Example 7.9 Suppose we wish to send the message

vee is for victory
using the RSA system, where p � 61, q � 47, r � pq � 2867, and

ö(r) � 60 . 46 � 2760. If we let s � 17, from the Euclidean algorithm, we

®nd that t, the inverse of 17 modulo 2760, equals 2273. We publish the key

(2867, 17) and keep 2273 hidden. We change the plaintext into its numerical

equivalent, and group the numbers into blocks of size 4 to obtain

2104 0408 1805 1417 2108 0219 1417 2423,

where we have added a 23, an x, at the end of the message to ®ll out the

®nal block of digraphic plaintext. We use the congruence C � P17 (mod

2867) to encipher the numerical plaintext. For example, 210417 � 2458

(mod 2867). We obtain

2458 0300 0778 2732 1827 2608 2732 0129:

To decipher the ciphertext the receiver would use the deciphering congru-

ence C2273 � P (mod 2867). In particular, 24582273 � 2104 (mod 2867).

Dif®e and Hellman devised a technique whereby two participants in a

public-key cipher system are able to share the same key. In particular,

suppose a prime p and a positive integer s , p with gcd(s, pÿ 1) � 1 are
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known to both participants. Let the participants, say A and B, choose

positive integers a , p and b , p, respectively. A and B compute u � sa

(mod p) and v � sb (mod p), respectively. A sends u to B and B sends v
to A. A and B, respectively, compute va (mod p) and ub (mod p). Since,

modulo p, k � ub � (sa)b � sab � (sb)a � va, both A and B use k as their

common key. For example, if p � 9199, s � 13, a � 10 and b � 23, then

their common key would be k � 13230 � 7999 (mod 9199).

Exercises 7.4

1. Using an exponential cipher with p � 2591, e � 5, and n � 2, encipher

have a good day:
2. Using an exponential cipher with p � 3307, e � 17, and n � 2, encipher

happy days are here again:

3. Using an exponential cipher with p � 7193, e � 97, and n � 2, encipher

send help:

4. Decipher the ciphertext message

2771 1794 3187 1013 3228 1259,

given it was enciphered digraphically using an exponential cipher with

p � 3373 and e � 95.

5. Decipher the ciphertext message

1843 0288 2142 2444,

given it was enciphered digraphically using an exponential cipher with

p � 2591 and e � 157.

6. Decipher the ciphertext message

1391 1958 1391 2558 0709 1425 2468

1311 1123 0079 2468 1774 0993 1915

1123 0846

given it was enciphered digraphically using an exponential cipher with

p � 2671 and e � 49.

7. Determine primes p and q used in an RSA cipher given that

r � 4 386 607 and ö(r) � 4 382 136. If s � 5 determine t.

8. Determine primes p and q used in an RSA cipher given that

r � 4 019 651 and ö(r) � 4 015 632. If s � 17 determine t.

9. If p � 8461, s � 61, A chooses a � 17, and B chooses b � 31,

determine a public key k that would be common to A and B.
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8

Representations

When you have eliminated the impossible, whatever remains,

however improbable, must be the truth.

Sherlock Holmes, in The Sign of Four, by Sir Arthur Conan Doyle

8.1 Sums of squares

In this chapter, we make use of several number theoretic tools established

earlier to determine which integers may be represented as sums of squares,

cubes, triangular numbers, and so forth. The branch of number theory

dealing with such integral representation has led to the advances in the

theory of sphere packing, the theory of unique factorization domains, and

ideal theory.

Being able to express a positive integer as the sum of two squares of

nonnegative integers is a problem that had intrigued ancient as well as

modern mathematicians. In an earlier section dealing with Pythagorean

triples, we were able to express certain square numbers as the sum of two

integral squares. Diophantus, in Book II of Arithmetica gave

x � 2am

m2 � 1
and y � a(m2 ÿ 1)

m2 � 1
,

where a is an integer and m a nonzero constant, as rational solutions to the

equation x2 � y2 � a2. In 1225, Fibonacci devoted a good part of Liber

quadratorum to such problems. The speci®c problem of determining

exactly which positive integers can be represented as the sum of two

integral squares was posed ®rst by the Dutch mathematician, Albert

Girand, in 1627 and independently by Fermat a few years later. Methods

for solving Girand's problem can be straightforward but tedious. For

example, given an integer n, we can determine whether or not it can be

represented as the sum of two integral squares be calculating nÿ 12,

nÿ 22, nÿ 32, . . . , nÿ �� ���np =2��2 until we either obtain a square or

exhaust all possibilities. The process may be started from the other

direction by subtracting the square of the greatest integer not greater than
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the square root of n. For example, if the number is 7522, the greatest

integer not greater than
����������
7522
p

is 86. Hence,

7522ÿ 862 � 126,

7522ÿ 852 � 297,

7522ÿ 842 � 466,

7522ÿ 832 � 633,

7522ÿ 822 � 798,

7522ÿ 812 � 961 � 312:

Therefore, 7522 � 812 � 312.

Example 8.1 According to Theorem 2.13, in order to determine if a

number z is the z-component of a primitive Pythagorean triple (x, y, z), the

hypotenuse of a Pythagorean triangle, we need only express z as the sum of

two coprime squares of opposite parity. That is, z � s2 � t2, y � s2 ÿ t2,

and x � 2st, s . t, gcd(s, t) � 1, where one of s and t is even and the other

is odd. For example, if z � 10 394 � 952 � 372, then y � 952 ÿ 372 and

x � 2 . 37 . 95. Thus (7030, 7656, 10 394) is a primitive Pythagorean triple

and, accordingly, 10 394 is the hypotenuse of a Pythagorean triangle.

For each positive integer n, let the function h(n) equal 1 if n can be

represented as the sum of two integral squares and 0 otherwise. The values

of h(n), for 1 < n < 100, are given in Table 8.1. It appears, from Table

8.1, that there are an in®nite number of values for which h(n) � 0. This

indeed is the case and is implied by either of the next two results.

Theorem 8.1 If n � 3 (mod 4), then h(n) � 0.

Proof If h(n) � 1, then there exist integers x and y such that n � x2 � y2.

The integers x and y are congruent to either 0 or 1 modulo 2. Hence,

x2 � y2 can only be congruent to 0, 1, or 2 modulo 4 and the result follows

by contraposition. j

Theorem 8.2 If h(n) � 0, then h(4n) � 0.

Proof The result is established by contraposition. If h(4n) � 1, then

4n � x2 � y2, for some values of x and y. In this case, x and y must both

be even, say x � 2r and y � 2s. We obtain 4n � 4r2 � 4s2 or n �
x2 � y2, hence, h(n) � 1. j
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Theorem 8.3 If an odd prime p can be expressed as the sum of two

integral squares then p � 1, (mod 4).

Proof Suppose p is an odd prime and p � x2 � y2. Since p is odd, we

have a contradiction if either x and y are even or x and y are odd. Suppose

that one is even, the other odd, say x � 2r and y � 2s� 1. Hence,

p � 4r2 � 4s2 � 4s� 1. Therefore, p � 1 (mod 4). j

In 1202, Fibonacci included the identity (a2 � b2)(c2 � d2) � (ad �
bc)2 � (acÿ bd)2 � (ac� bd)2 � (ad ÿ bc)2 in Liber abaci. The identity

had been used implicity by Diophantus in Arithmetica. In 1749, Euler used

the identity to establish the next result.

Theorem 8.4 If h(m) � 1 and h(n) � 1, then h(mn) � 1.

Proof Suppose h(m) � 1 and h(n) � 1, then there exist integers a, b, c, d

Table 8.1.

n h(n) n h(n) n h(n) n h(n)

1 0 26 1 51 0 76 0
2 1 27 0 52 1 77 0
3 0 28 0 53 1 78 0
4 1 29 1 54 0 79 0
5 1 30 0 55 0 80 1
6 0 31 0 56 0 81 1
7 0 32 1 57 0 82 1
8 1 33 0 58 1 83 0
9 1 34 1 59 0 84 0

10 1 35 0 60 0 85 1
11 0 36 1 61 1 86 0
12 0 37 1 62 0 87 0
13 1 38 0 63 0 88 0
14 0 39 0 64 1 89 1
15 0 40 1 65 1 90 1
16 1 41 1 66 0 91 0
17 1 42 0 67 0 92 0
18 1 43 0 68 1 93 0
19 0 44 0 69 0 94 0
20 1 45 1 70 0 95 0
21 0 46 0 71 0 96 0
22 0 47 0 72 1 97 1
23 0 48 0 73 1 98 1
24 0 49 1 74 1 99 0
25 1 50 1 75 0 100 1
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such that m � a2 � b2 and n � c2 � d2. Hence, from Fibonacci's identity,

mn � (a2 � b2)(c2 � d2) � (ad � bc)2 � (acÿ bd)2. Thus, h(mn) � 1

and the result is established. j

In Theorem 8.1, we showed that a number of the form 4n� 3 cannot be

written as the sum of two integral squares. Using Fermat's method of

descent, we now establish a much stronger result.

Theorem 8.5 An integer n can be expressed as a sum of squares if and

only if every prime divisor of n of the form 4k � 3 has even exponent in the

canonical representation of n.

Proof Suppose that n � x2 � y2 and p is a prime divisor of n. Hence,

x2 � ÿy2 (mod p). That is, ÿy2 is a quadratic residue modulo p. It

follows from the theory of quadratic residues that

1 � ÿy2

p

 !
� ÿ1

p

� �
y

p

� �2

� ÿ1

p

� �
� (ÿ1)( pÿ1)=2:

If p � 3 (mod 4), (ÿy2=2) � ÿ1, a contradiction, unless x � y � 0

(mod p). In that case, x � pr, y � ps, and n � p2 m with m � r2 � s2.

Continuing the process, we ®nd that n � p2 tw, for some positive integer t.

Therefore, if p � 3 (mod 4) is prime, it appears in the canonical represen-

tation of n to an even power. Conversely, let p be a prime of the form

4k � 1. Hence,

ÿ1

p

� �
� (ÿ1)( pÿ1)=2 � (ÿ1)2k � 1:

Thus, the equation x2 � ÿ1 (mod p) has a solution, say a, with

1 < a , p=2. Hence, there exists an integer m such that mp � a2 � 1.

Since 0 , mp � a2 � 1 , p2=4� 1 , p2=4� 3 p2=4 � p2, m is a positive

integer such that mp � a2 � 1, with p . m. Let t be the least positive

integer such that tp is the sum of two integral squares. That is, there exist

integers x and y such that tp � x2 � y2, with 0 , t < m , p, and t is the

least positive integer for which this is the case. If t . 1, from the Corollary

to Theorem 2.2, it follows that x � qt � r and y � ut � v, with

ÿjtj=2 , r < jtj=2 and ÿjtj=2 , v < jtj=2. Thus, tp � x2 � y2 � (q2 t2 �
2qrt � r2)� (u2 t2 � 2tuv� v2). If we let w � pÿ q2 t ÿ 2qr ÿ u2 t

ÿ 2uv, wt � r2 � v2 < (t=2)2 � (t=2)2 , t2. Hence, wt is a multiple of t

and 0 < w , t. If w � 0, then r � v � 0, implying that x � qt and y � vt.

Hence, tp� x2 � y2 � t2(q2 � v2). Thus, t divides p, a contradiction

since 1 , t , p and p is prime. Hence, w 6� 0 and wp is a multiple of p
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with 0 , w , t. Since p � t(q2 � u2)� 2(qr � uv)� w, it follows that

wp � wt(q2 � u2) � 2w(qr � uv) � w2 � (w � qr � uv)2 � (qv ÿ ru)2.

However, this contradicts the assumption that tp was the least positive

multiple of p expressible as the sum of two integral squares. Therefore,

t � 1 and p � a2 � 1. That is, p can be expressed as the sum of two

integral squares. Since (4n� 3)2k � ((4n� 3)k)2 � 02, the result follows

from Theorem 8.4. j

Theorem 8.4 and Theorem 8.5 enable us to completely determine which

positive integers can be expressed as a sum of two integral squares. For

example, the only primes of the form 4k � 3 in the canonical representa-

tion of 8820 are 3 and 7 and each appears to an even power. Hence,

according to Theorem 8.5, 8820 can be represented as the sum of two

squares. One useful technique to accomplish this is to factor 8820 into two

components, represent each component as the sum of two squares, and use

Fibonacci's identity. We have 8820 � 22 . 32 . 5 . 72 � (22 . 72)(32 . 5) �
196 . 45 � (142 � 02)(62 � 32) � 842 � 422.

In 1747, in a letter to Goldbach, Euler claimed that every prime divisor

of the sum of two coprime squares is itself the sum of two squares. The

result is implied by the next theorem.

Theorem 8.6 If p is an odd prime that divides a2 � b2, with gcd(a,

b) � 1, then p � 1 (mod 4).

Proof Suppose that p divides (a2 � b2) where gcd(a, b) � 1. If pja, then

pja2 implying that pjb2 and, hence, pjb, a contradiction. Thus, p divides

neither a nor b. Since p divides a2 � b2, ÿa2 � b2 (mod p). Thus,

(ÿa2)( pÿ1)=2 � (b2)( pÿ1)=2 (mod p) or (ÿ1)( pÿ1)=2a pÿ1 � b pÿ1 (mod p).

Since gcd(a, p) � gcd(b, p) � 1, it follows from Fermat's Little Theorem

that a pÿ1 � b pÿ1 � 1 (mod p). Hence, (ÿ1)( pÿ1)=2 � 1 (mod p). There-

fore, p � 1 (mod 4). j

There are an in®nite number of integers that may be expressed as a sum of

two integral squares in more than one way. For example, 50 � 72 �
12 � 52 � 52. In 1621, Bachet noted that 5525 � 552 � 502 � 622 �
412 � 702 � 252 � 712 � 222 � 732 � 142 � 742 � 72. According to The-

orem 8.3, since 1073 � 322 � 72 � 282 � 172 � 72 � 322 � 172 � 282,

5 928 325 � 5525 . 1073 can be expressed as the sum of two squares in at

least 24 ways, albeit they all might not be distinct.

Disregarding order and signs, that is, not counting (ÿ2)2 � 32,
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(ÿ3)2 � (ÿ2)2, or 32 � 22 as being distinct from 22 � 32, 13 can be

represented uniquely as the sum of two squares. Let p be a prime of the

form 4k � 1 having two distinct representations as a sum of integral

squares, p � a2 � b2 � c2 � d2. From the proof of Theorem 8.5, ÿ1 is a

quadratic residue of p. Hence, there is a solution, say w, to the equation

x2 � ÿ1 (mod p). From our assumption, a2 � ÿb2 � w2b2 (mod p) and

c2 � ÿd2 � w2d2 (mod p), hence, a � �wb and c � �wd (mod p).

Thus, ac� bd � w2bd � bd � 0 and ad ÿ bc � �w(bd ÿ bd) � 0

(mod p). Hence, there exist integers m and n such that ac� bd � mp and

ad ÿ bc � np. From Theorem 8.4, p2 � (a2 � b2)(c2 � d2) � (ac �
bd)2 � (ad ÿ bc)2 � (mp)2 � (np)2. Hence, 1 � m2 � n2, but this is the

case only if m or n equals 0, that is, only if ac� bd � 0 or ad ÿ bc � 0.

Since gcd(a, b) � gcd(c, d) � 1, ac� bd � 0 or ad ÿ bc � 0 if and only

if a � �c and b � �d or a � �d and b � �c. In either case, the

representation is unique and we have established Theorem 8.7, a solution

to Girand's problem. The ®rst published proof of the result, due to Euler,

appeared in 1754.

Theorem 8.7 (Girand±Euler Theorem) Disregarding order and signs,

any prime of the form 4k � 1 can be represented uniquely as the sum of

two integral squares.

Let us generalize the square representation function h(n) to the function

f(n) which denotes the number of different representations of n as the

sum of two integral squares, taking signs and order into account. For

example, f (2) � 4, since 2 � 12 � 12 � 12 � (ÿ1)2 � (ÿ1)2 � 12 �
(ÿ1)2 � (ÿ1)2. Table 8.2 illustrates values of f (n) for 1 < n < 100. From

a casual glance at Table 8.2 it appears that f (n) is always a multiple of 4.

This indeed is the case and follows from the fact that solutions of the form

(a, 0) and (a, a) each contribute 4 to the multiplicity of f (n), and solutions

of the form (b, c), where b and c are distinct, contribute 8 to the value of

f (n). In 1829, at age 25, Jacobi established the following result which is

offered without proof; for a proof see [Niven, Zuckerman, and Montgom-

ery].

Theorem 8.8 (Jacobi) If ô(m, n) denotes the number of positive divisors

of n which are congruent to m modulo 4, then f (n) � 4[ô(1, n)ÿ ô(3, n)].

For example, 234 � 2 . 32 . 13, ô(1, 234) � 4, and ô(3, 234) � 2. Hence,

f (n) � 4[4ÿ 2] � 8. Taking order and signs into consideration, the eight
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representations of 234 are 152 � 32, (ÿ15)2 � 32, 152 � (ÿ3)2,

(ÿ15)2 � (ÿ3)2, 32 � 152, (ÿ3)2 � 152, 32 � (ÿ15)2, and (ÿ3)2 � (ÿ15)2.

There are a number of geometric interpretations involving the represen-

tation function. For example, the sum
Pn

i�1 f (i) represents the number of

lattice points in the Cartesian plane satisfying the inequality x2 � y2 < n.

It also represents the area, in square units, of the region K formed by all

unit squares whose centers (x, y) lie inside or on the circle x2 � y2 � n. If

we denote the average value of f (n) by F(n), then

F(n) � 1

n� 1

Xn

i�1

f (i) � 1

n� 1
. (area of region K):

Since the diagonal of a unit square equals
���
2
p

, the region K is completely

contained in the circular disk centered at the origin having radius���
n
p � ���

2
p

=2 and completely contains the circular disk centered at the

origin having radius
���
n
p ÿ ���

2
p

=2, as shown in Figure 8.1. Hence,

Table 8.2.

n f (n) n f (n) n f (n) n f (n)

1 4 26 8 51 0 76 0
2 4 27 0 52 8 77 0
3 0 28 0 53 8 78 0
4 4 29 8 54 0 79 0
5 8 30 0 55 0 80 8
6 0 31 0 56 0 81 4
7 0 32 4 57 0 82 8
8 4 33 0 58 8 83 0
9 4 34 8 59 0 84 0

10 8 35 0 60 0 85 16
11 0 36 4 61 8 86 0
12 0 37 8 62 0 87 0
13 8 38 0 63 0 88 0
14 0 39 0 64 4 89 8
15 0 40 8 65 16 90 8
16 4 41 8 66 0 91 0
17 8 42 0 67 0 92 0
18 4 43 0 68 8 93 0
19 0 44 0 69 0 94 0
20 8 45 8 70 0 95 0
21 0 46 0 71 0 96 0
22 0 47 0 72 4 97 8
23 0 48 0 73 8 98 8
24 0 49 4 74 8 99 0
25 12 50 12 75 0 100 12
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ð

n� 2

���
n
p ÿ

���
2
p

2

� �2

, F(n) ,
ð

n� 1

���
n
p �

���
2
p

2

� �2

:

Letting n approach in®nity, we obtain one of the most elegant results

(Theorem 8.9) concerning the sums of two squares. It was originally

established by Gauss and was discovered among his unpublished manu-

scripts after his death in 1855.

Theorem 8.9 If

F(n) � 1

n� 1

Xn

i�1

f (i)

then limn!1F �n� � ð.

Diophantus considered the problem of representing integers as sums of

more than two squares. In the process, he realized that it is not possible to

express all integers as the sum of three integral squares. In 1636, in a letter

to Mersenne, Fermat conjectured that no number of the form 8k � 7 can be

expressed as a sum of three integral squares. Two years later, Descartes

veri®ed Fermat's conjecture. The result follows from the fact that the

square of any integer is congruent to 0, 1, or 4 modulo 8.

The conjecture was generalized in the eighteenth century to state that

any positive integer can be expressed as a sum of three nonzero integral

squares if and only if it is not of the form 4n(8k � 7), where n and k are

nonnegative integers. A proof of the conjecture was offered by Legendre in

1798 assuming that if gcd(a, b) � 1, then in®nitely many terms of the

sequence a, a� b, a� 2b, . . . were prime. In 1837, Dirichlet completed

y

x

Figure 8.1
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Legendre's proof. Gauss offered a different proof in 1801. The suf®ciency

is dif®cult to establish and is beyond the scope of this text, but the

necessity follows from the fact that if 4m(8k � 7), where n � mÿ 1 and k

are nonnegative integers, is expressible as the sum of three integral squares

then so is 4mÿ1(8k � 7) and, hence, so is 8k � 7, a contradition . Hence, no

integer of the form 4n(8k � 7), where n and k are positive integers, can be

represented as the sum of three nonzero integral squares. In 1785,

Legendre was able to show that if a, b, c are squarefree, not all positive or

all negative, abc 6� 0, and gcd(a, b) � gcd(a, c) � gcd(b, c) � 1, then

ax2 � by2 � cz2 � 0, has a nontrivial solution, that is, with

(a, b, c) 6� (0, 0, 0), if and only if, using the Jacobi symbol,

ÿab

jaj
� �

� ÿbc

jbj
� �

� ÿca

jcj
� �

� 1,

where, a, b, c are not equal to 1.

Using the previous results, we can show that the equation

x2 � y2 � z2 � x� y� z � 1 has no integral solution (x, y, z). If (r, s, t)

were a solution, then we could multiply both sides of the equation by 4 and

complete the square, to obtain (2r � 1)2 � (2s� 1)2 � (2t � 1)2 �
8 . 0� 7, a contradiction. Since each number of the form 8n� 3 can be

written as the sum of three integral squares and each summand must be the

square of an odd number, we have 8n� 3 � (2r � 1)2 � (2s� 1)2 �
(2t � 1)2. Expanding and collecting terms, we obtain n � r(r � 1)=2 �
s(s� 1)=2� t(t � 1)=2, establishing Gauss's result that every positive

integer is the sum of three or fewer triangular numbers. For example,

59 � 8 . 7 � 3 � 72 � 32 � 12 � (2 . 3� 1)2 � (2 . 1� 1)2 � (2 . 0� 1)2.

Hence, 7 � 3(3� 1)=2� 1(1� 1)=2� 0(0� 1)=2 � 6� 1� 0.

A number of interesting identities occur when numbers are represented

as sums of squares. For example, if n . 1 and m � n(2n� 1), then m2 �
(m � 1)2 � � � � � (m � n)2 � (m � n � 1)2 � (m � n � 2)2 � � � �
� (m� 2n)2. If n � 1, we obtain 32 � 42 � 52. If n � 3, we have

212 � 222 � 232 � 242 � 252 � 262 � 272.

There are many unanswered questions regarding sums of squares, in

particular, whether there are in®nitely many primes that can be represented

as the sum of squares of consecutive positive integers. For example,

5 � 12 � 22, 13 � 22 � 32, 61 � 52 � 62, and so forth. It is an open

question whether there are an in®nite number of primes p such that

p � n2 � (n� 1)2 � (n� 2)2, where n is a positive integer. For example,

29 � 22 � 32 � 42 and 149 � 62 � 72 � 82.

Bachet wrote, in 1621, that since there is no explicit reference in
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Arithmetica, Diophantus must have assumed that every positive integer can

be represented as the sum of at most four nonzero integral squares. Bachet

added that he would welcome a proof of the result. Fermat using the

method of descent sketched a proof of Bachet's conjecture. Euler worked

on the problem for almost 25 years and in the process established a number

of crucial results. In particular, he discovered the identity

(a2 � b2 � c2 � d2)(e2 � f 2 � g2 � h2) � (ae� bf � cg � dg)2

� (af ÿ be� chÿ dg)2 � (ag ÿ bhÿ ce� df )2 � (ah� bg ÿ cf ÿ de)2

and the fact that there are integral solutions to x2 � y2 � 1 � 0 (mod p),

where p is prime. For example, 3 � 12 � 12 � 12 � 02 and 17 � 42 �
12 � 02 � 02. Hence, 459 � 32 . 3 . 17 � 32(12 � 12 � 12 � 02)(42 � 12 �
02 � 02) � 32[(4 � 1 � 0 � 0)2 � (1 ÿ 4 � 0 � 0)2 � (1 ÿ 0 ÿ 4ÿ 0)2 �
(0 � 0 ÿ 1 ÿ 0)2] � 32[52 � 32 � 42 � 12] � 152 � 92 �122 � 32.

Building on Euler's work, in 1770 Lagrange gave the ®rst proof of the four-

square theorem. We state Lagrange's result without proof; for a proof see

[Strayer].

Theorem 8.10 (Lagrange) Every positive integer can be represented as

the sum of four or fewer integral squares.

In 1829, Jacobi proved that the number of representations of an integer of

the form 2ám, taking order and signs into consideration, where m is odd, is

8 . ó (m) if á � 0, and 24 . ó (m) if á. 1. For example, 13 has 8 . 14 � 112

representations. 64 derive from the representation 13 � 32 � 22 � 02 � 02

and 48 from the representation 13 � 22 � 22 � 22 � 12. The number

36 � 22 . 32 has 24 . 13 � 312 representations: 192 derive from

52 � 32 � 12 � 12, 96 from 42 � 42 � 22 � 02, 16 from 32 � 32 � 32 � 32,

and 8 from 62 � 02 � 02 � 02.

In 1884, at age 18, Hermann Minkowski proved that all numbers of the

form 8n� 5 are sums of ®ve odd squares. Einstein's theory of general

relativity, where gravity is treated as a warping of space and not as a force,

is based on results in tensor calculus developed by Minkowski.

The above results all lead naturally to Waring's problem. Edward

Waring, sixth Lucasian professor of mathematics at Cambridge, had lots of

problems, but the ones we are interested in are mathematical in nature. For

example, is there a least positive integer g(k) such that every positive

integer can be expressed as the sum of at most g(k) kth powers of

nonnegative integers? That is, can any positive integer n be represented in

at least one way as ak
1 � ak

2 � � � � � ak
g(k), where ai > 0 are not necessa-
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rily distinct? From Theorem 8.10 we know that g(2) � 4. Several cubic

and quartic representations are quite intriguing. For example,

153 � 13 � 53 � 33,

370 � 33 � 73 � 03,

371 � 33 � 73 � 13,

407 � 43 � 03 � 73,

1634 � 14 � 64 � 34 � 44,

8208 � 84 � 24 � 04 � 84,

9474 � 94 � 44 � 74 � 44:

In addition, 635 381 657 is the smallest number that can be written as the

sum of two fourth powers in two distinct ways, namely as 1334 � 1344 and

594 � 1584.

In 1770, in Meditationes algebraicae, Waring stated, without proof, as

was his nature, that g(k) � ��(3
2
)k �� � 2k ÿ 2, where k . 2 is a positive

integer and �� . �� denotes the greatest integer function. That is, every

positive integer can be expressed as the sum of 4 or fewer squares, 9 or

fewer cubes, 19 or fewer fourth powers, 37 or fewer ®fth powers, and so

forth. Since 7 requires exactly 4 squares, 23 requires exactly 9 cubes, 79

requires exactly 19 fourth powers, and 223 requires exactly 37 ®fth powers,

Waring's problem has been shown to be the best estimate for squares,

cubes, fourth powers, and ®fth powers.

It is important, when dealing with odd exponents, that the solutions are

required to be nonnegative integers. For example, if n is a positive integer,

then since n3 � n (mod 6) there is an integer k such that n3 � n� 6k and

we have n � n3 ÿ 6k � n3 � k3 � k3 � (ÿk ÿ 1)3 � (1ÿ k)3. Therefore,

if no restrictions are placed on the integral solutions then any positive

integer may be represented as the sum of ®ve cubes.

In 1772, Euler's son, Johannes Albert, showed that for any positive

integer n, g(k) > ��(3
2
)k �� � 2k ÿ 2, for k > 1. His result follows from the

fact that for a given positive integer k, the number n � 2k . ��(3
2
)k �� ÿ 1

cannot be written by a sum of fewer than ��(3
2
)k �� � 2k ÿ 2 kth powers. Since

n < 2k(3
2
)k ÿ 1 , 3k , only summands of the forms 1k and 2k can be used

to represent n as a sum of kth powers. In addition, the maximum number

of summands of form 2k that we can use to represent n without exceeding

n is ��(3
2
)k �� ÿ 1. Thus, the number of summands of the form 1k is given by

nÿ 2 . (��(3
2
)k �� ÿ 1) � (2k . ��(3

2
)k �� ÿ 1)ÿ 2 . (��(3

2
)k �� ÿ 1) � 2k ÿ 1. There-

fore, the minimal number of summands needed to represent n is
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��(3
2
)k �� � 2k ÿ 2. For example, if k � 3, then n � 23, g(3) � 9,

��(3
2
)3�� ÿ 1 � 2, and 23ÿ 23 . [��(3

2
)3�� ÿ 1] � 23ÿ 8 . 2 � 7. Thus, 23 ex-

pressed as a sum of cubes requires exactly nine summands, namely,

23 � 23 � 13 � 13 � 13 � 13 � 13 � 13 � 13. In 1909, David Hilbert solved

Waring's problem when he proved that for every positive integer k > 2

there is a number g(k) such that every positive integer can be represented

as the sum of at most g(k) kth powers. Currently, it is known that

g(4) � 19, g(5) � 37, g(6) � 73, g(7) � 143, g(8) � 279, g(9) � 548,

and g(10) � 1079.

We can generalize Waring's problem in another direction, by de®ning

G(k) to be the least positive integer such that all integers from some point

on can be represented as the sum of at most G(k) kth powers. That is, all

but a ®nite number of integers can be represented as the sum of G(k) kth

powers and in®nitely many positive integers cannot be written as the sum

of fewer that G(k) kth powers. From the de®nitions of the functions g and

G, it follows that G(k) < g(k). Since an in®nite number of positive

integers cannot be written as the sum of three squares, it follows from

Theorem 8.10 that G(2) � 4. All positive integers except 23 and 239 can

be represented as the sum of eight or fewer cubes. In addition, all positive

integers greater than 454 can be expressed as the sum of seven or fewer

cubes. In fact, 8042 is the largest positive integer requiring seven cubes.

Hence, G(3) , 7. In 1908, E. Maillet and A. Hurwitz showed that

G(k) > k � 1, and in 1920, G.H. Hardy and J.E. Littlewood showed that

G(k) < 2kÿ1(k ÿ 2)� 5. Up to now, the following results concerning the

function G(k) are known: G(4) � 16, 6 < G(5) < 21, 9 < G(6) < 31,

8 < G(7) < 45, 32 < G(8) < 62, 13 < G(9) < 82, and 12 < G(10) <

102.

The number 325 is the smallest positive integer that can be represented

three essentially different ways as the sum of two squares, namely,

325 � 12 � 182 � 62 � 172 � 102 � 152. The story of Hardy's visit to

Ramanujan in a London hospital illustrates a stellar property of the number

1729. Ramanujan was suffering from tuberculosis, a disease that would

end his short but enormously mathematically productive life a few years

later. Hardy told Ramanujan that he had arrived in a taxi having the quite

undistinguished number 1729. Whereupon Ramanujan replied that it was

not so dull a number as Hardy thought for it is the smallest number which

can be represented as the sum of two cubes in two essentially different

ways.

Fermat showed that a cube cannot be expressed as the sum of two cubes.

However, generalizing Pythagorean triples, it is possible to ®nd cubic
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quadruples, that is, 4-tuples (x, y, z, w) such that x3 � y3 � z3 � w3. For

example, (1, 6, 8, 9) and (3, 4, 5, 6) are examples of cubic quadruples. In

1769, Euler conjectured that no nth power could be represented as the sum

of fewer than n nth powers, that is, xn
1 � xn

2 � � � � � xn
k � zn has nontrivial

integral solutions if and only if k > n. However, in 1968, L.J. Lander and

T.R. Parkin discovered that 1445 � 275 � 845 � 1105 � 1335. In 1988, N.J.

Elkies found an in®nite number of counterexamples to Euler's conjecture

for the case when n � 4 including 20 615 6734 � 2 682 4404 �
15 365 6394 � 18 796 7604 and the smallest counterexample known,

namely 422 4814 � 95 8004 � 217 5194 � 414 5604. In 1936, K. Mahler

discovered the identity (1� 9n3)3 � (3nÿ 9n4)3 � (9n4)3 � 1. Hence, 1

can be written in®nitely many ways as the sum of three cubes.

There have been conjectures as to whether each natural number n can be

expressed as the sum of ®nite number of kth powers of primes. In 1937,

I.M. Vinogradov showed that for every k > 1 there exists a natural number

V (k) such that every suf®ciently large natural number is the sum of at most

V (k) kth powers of prime numbers. In 1987, V. Thanigasalam showed that

V (5) < 23, V (6) < 33, V (7) < 47, V (8) < 63, V (9) < 83, and V (10)

< 107.

Fermat's Last Theorem states that the equation xn � yn � zn has no

integral solution (a, b, c) with abc 6� 0, if n > 3. In 1637, Fermat claimed

to have a proof but the margins of his copy of Bachet's version of

Diophantus's Arithmetica were too narrow to sketch the proof. In his

correspondence, Fermat showed that there are no integral solutions for the

case when n � 4 (Theorem 2.14) and he probably had a proof for the case

when n � 3. Euler considered the factorization a3 ÿ b3 � (aÿ b)

(aÿ bù)(a� bù), where ù � (ÿ1� ���
3
p

)=2 is a cube root of unity. How-

ever, Euler assumed that all numbers of the form a� bù, where a and b

are integers, factor uniquely and used the method of descent to establish

the case when n � 3. It was Gauss who showed that factorization of

numbers of the form a� bù is indeed unique. In 1820, Sophie Germain

showed that if p and 2 p� 1 are prime then xp � yp � zp has no solution

when xyz is not divisible by p. The case where the exponents are prime is

crucial for if p is any prime that divides n, say n � pm, then

(xm) p � (ym) p � (zm) p. Hence, if Fermat's Last Theorem is true for primes

then it is true for all positive integers.

In 1825, Dirichlet and Legendre established the theorem for the case

when n � 5. In 1832, Dirichlet showed the result is true for the case when

n � 14. In 1839, LameÂ proved it for the case when n � 7, but ran into

dif®culty for the general case when he assumed unique factorization for
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more general algebraic number ®elds. In particular, LameÂ was interested

in working with cyclotomic integers, numbers of the form a0 �
a1æ� a2æ2 � � � � � apæ p, where ai is an integer, for 0 < i < p, p is an

odd prime, and æ 6� 1 is a complex pth root of unity, that is æ � á� âi,

where á and â are real numbers and æ p � 1. Liouville and Dirichlet

remarked that unique factorization may fail to hold in such general number

systems. In addition, while 1 and ÿ1 are the only two integers that have

multiplicative inverses, many nontrivial cyclotomic integers have multi-

plicative inverses. From 1844 to 1847, Ernst Eduard Kummer, after

encountering the same problems as LameÂ, attacked the problem and in the

process founded the theory of ideals, a theory that was developed by

Richard Dedekind in the nineteenth century. In 1849, Kummer showed that

except possibly for n � 37, 59, and 67, the theorem was true for all positive

integer exponents less than 100. After receiving his degree from the

University of Halle and before assuming a position at the University of

Breslau, Kummer spent 10 years as a high school mathematics teacher.

When Dirichlet replaced Gauss at GoÈttingen in 1855, Kummer was chosen

to replace Dirichlet at the University of Berlin. After teaching at the

University of ZuÈrich for 5 years, he spent 50 years teaching high school

mathematics in Brunswick, Germany.

There have been more than a thousand alleged proofs of Fermat's Last

Theorem. In 1984, Gerd Faltings, a German mathematician from the

University of Wuppertal, was awarded the Fields Medal, considered by

many to be the Nobel Prize in mathematics, for solving the Mordell

conjecture. Faltings proved an auxiliary result, ®rst posed by the Cam-

bridge mathematician, Louis J. Mordell, in 1922, namely, for each integer

n . 2 the equation xn � yn � zn has ®nitely many solutions. Most attempts

at proving the theorem relied on devising original factoring techniques.

Much progress has been made in this direction by Ken Ribet, Jean-Pierre

Serre, Goro Shimura, Yutaka Taniyama, Barry Mazur, and Richard Taylor.

In 1985, L.M. Adleman, D.R. Heath-Brown, and E. Fouvry showed that

there are in®nitely many non-Sophie Germain primes p such that

xp � yp � zp has no solutions where p does not divide xyz. In 1986,

Gerhard Frey suggested that there was a correspondence between the

theorem and elliptic curves. By 1990, Fermat's Last Theorem had been

established for all positive integers less than 108. In 1994, more than 350

years after Fermat proposed the question, Cambridge-educated Andrew

Wiles of Princeton, working virtually by himself for six years and building

on the work of his predecessors and colleagues, proved Fermat's Last

Theorem. Wiles presented a ¯awed version of his proof at a conference at
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the Isaac Newton Institute for Mathematical Research at Cambridge

University in June 1993. After a year of intensive work back at Princeton

using a different approach, he published a valid proof of Fermat's Last

Theorem in the fall of 1994.

Exercises 8.1

1. In Arithmetica, Diophantus gave

x � 2am

m2 � 1

and

y � a(m2 ÿ 1)

m2 � 1
,

where m is a nonzero constant, as a rational solution to the equation

x2 � y2 � a2 for a given value of a. Verify that it is a valid rational

solution to the equation.

2. Use the Fermat-type method outlined in Example 8.1 to express 8650

as the sum of two squares.

3. Determine the values of h(n) and f (n), for 101 < n < 200.

4. If n is a multiple of 4 and can be represented as the sum of two

squares, such as n � x2 � y2, then show that both x and y must be

even.

5. If n � 12 (mod 16), then show that n cannot be written as a sum of

two squares.

6. If n � 6 (mod 8), then show that n cannot be written as the sum of two

squares.

7. Prove that if n � 7 (mod 8), then n cannot be written as the sum of

two squares.

8. Show that if 3 does not divide n, then 6n cannot be written as a sum of

two squares.

9. Prove that if n can be written as the sum of two squares then 2n can

also be written as the sum of two squares. [Charles Dodgson]

10. Determine the smallest positive number which can be written in two

different ways as the sum of two positive squares and exhibit the two

distinct representations.

11. Use Fibonacci's identity to ®nd a positive integer with three distinct

representations as the sum of two integral squares. Exhibit the three

distinct representations.
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12. Determine a representation of 22k�1 as the sum of two integral squares,

where k is a positive integer.

13. Prove that 22k cannot be represented as the sum of two integral

nonzero squares, where k is a positive integer.

14. Use Theorem 8.8 to determine f (3185), f (7735), f (72 581),

f (226 067).

15. Show that 6525 is the hypotenuse of a Pythagorean triangle and

determine the legs of the triangle.

16. Show that 6370 is the hypotenuse of a triangle with integral sides.

17. If n is a positive integer, show that either n or 2n can be expressed as

the sum of three integral squares.

18. Find two different representations for 1729 as the sum of two cubes.

19. Find two different representations for 40 033 as the sum of two cubes.

20. In how many ways can n appear as the hypotenuse of a Pythagorean

triangle where

(a) n � 16 120,

(b) n � 56 144?

21. Given that 30 � 12 � 22 � 32 � 42 and 29 � 22 � 52 � 02 � 02 ex-

press 870 � 29 . 30 as the sum of four squares.

22. Show that (3, 4, 5, 6) is a cubic quadruple.

23. Find the missing integer in the following cubic quadruples:

(2, 12, 16, a), (9, 12, 15, b), (3, 10, c, 19), and (d, 14, 17, 20).

24. What identity results when n � 2 (n � 4) in the equation m2 � (m �
1)2 � � � � � (m � n)2 � (m � n � 1)2 � (m � n � 2)2 � � � �
� (m� 2n)2, where m � n(2n� 1)?

25. Prove that a positive integer n can be written as the difference of two

squares if and only if n 6� 2 (mod 4).

26. Prove that every Fermat number, Fn � 22 n � 1, where n > 1, can be

expressed as the difference of two squares.

27. Prove that every odd prime can be expressed as the difference of two

squares.

28. Find three primes p, other than 5, 13, and 41, such that p �
n2 � (n� 1)2, where n is a positive integer.

29. Find two primes p, other than 29 and 149, such that p �
n2 � (n� 1)2 � (n� 2)2, where n is a positive integer.

30. Express 459 as the sum of three integral squares.

31. Show that there are no integer solutions to the equation y3 �
x2 � (x� 1)2.

32. If 3n is a sum of four squares, show that n is the sum of four squares,

where n is a positive integer. [Sylvester 1847]
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33. Represent 192 as the sum of three triangular numbers.

34. Show that if x, y, z are integers such that x pÿ1 � y pÿ1 � z pÿ1, where

p is prime, then p divides xyz.

35. Show that if x, y, z are integers such that x p � y p � z p, then p divides

x� yÿ z.

36. Can 19991999 be expressed as the sum of two squares? Justify your

answer.

37. Can 5 941 232 be expressed as the sum of three integral squares?

38. Show that 8(k � 1) � (2a� 1)2 � (2aÿ 1)2 � (2b� 1)2 � (2bÿ 1)2

� (2c� 1)2 � (2cÿ 1)2 � (2d � 1)2 � (2d ÿ 1)2, where k � a2 �
b2 � c2 � d2. The identity implies that any multiple of 8 can be

expressed as the sum of the square of eight odd integers.

39. In 1844, E.C. Catalan conjectured that 8, 9 are the only consecutive

integers that are powers. That is, 32 ÿ 23 � 1. Positive integers not

congruent to 2 modulo 4 can be represented as the difference of two

powers each greater than the ®rst. Note that 2 � 33 ÿ 52 and

3 � 27 ÿ 53. Express 4, 5, 7, 8, 9, 10, 11, 12, 13 as differences of two

powers each greater than the ®rst.

8.2 Pell's equation

Euler, after a cursory reading of Wallis's Opera Mathematica, mistakenly

attributed the ®rst serious study of nontrivial solutions to equations of the

form x2 ÿ dy2 � 1, where x 6� 1 and y 6� 0, to Cromwell's mathematician

John Pell. However, there is no evidence that Pell, who taught at the

University of Amsterdam, had ever considered solving such equations.

They would be more aptly called Fermat's equations, since Fermat ®rst

investigated properties of nontrivial solutions of each equations. Neverthe-

less, Pellian equations have a long history and can be traced back to the

Greeks. Theon of Smyrna used x=y to approximate
���
2
p

, where x and y

were integral solutions to x2 ÿ 2y2 � 1. In general , if x2 � dy2 � 1, then

x2=y2 � d � 1=y2. Hence, for y large, x=y is a good approximation of���
d
p

, a fact well known to Archimedes.

Archimedes's problema bovinum took two thousand years to solve.

According to a manuscript discovered in the WolfenbuÈttel library in 1773

by Gotthold Ephraim Lessing, the German critic and dramatist, Archi-

medes became upset with Apollonius of Perga for criticizing one of his

works. He divised a cattle problem that would involve immense calculation

to solve and sent it off to Apollonius. In the accompanying correspon-

dence, Archimedes asked Apollonius to compute, if he thought he was
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smart enough, the number of the oxen of the sun that grazed once upon the

plains of the Sicilian isle Trinacria and that were divided according to color

into four herds, one milk white, one black, one yellow and one dappled,

with the following constraints:

white bulls � yellow bulls� 1

2
� 1

3

� �
black bulls,

black bulls � yellow bulls� 1

4
� 1

5

� �
dappled bulls,

dappled bulls � yellow bulls� 1

6
� 1

7

� �
white bulls,

white cows � 1

3
� 1

4

� �
black herd,

black cows � 1

4
� 1

5

� �
dappled herd,

dappled cows � 1

5
� 1

6

� �
yellow herd, and

yellow cows � 1

6
� 1

7

� �
white herd:

Archimedes added, if you ®nd this number, you are pretty good at numbers,

but do not pat yourself on the back too quickly for there are two more

conditions, namely:

white bulls plus black bulls is square and

dappled bulls plus yellow bulls is triangular:

Archimedes concluded, if you solve the whole problem then you may `go

forth as conqueror and rest assured that thou art proved most skillful in the

science of numbers'.

The smallest herd satisfying the ®rst seven conditions in eight unknowns,

after some simpli®cations, lead to the Pellian equation x2 ÿ
4 729 494y2 � 1. The least positive solution, for which y has 41 digits, was

discovered by Carl Amthov in 1880. His solution implies that the number

of white bulls has over 2 3 105 digits. The problem becomes much more

dif®cult when the eighth and ninth conditions are added and the ®rst

complete solution was given in 1965 by H.C. Williams, R.A. German, and

C.R. Zarnke of the University of Waterloo.

In Arithmetica, Diophantus asks for rational solutions to equations of

the type x2 ÿ dy2 � 1. In the case where d � m2 � 1, Diophantus offered

the integral solution x � 2m2 � 1 and y � 2m. Pellian equations are found

in Hindu mathematics. In the fourth century, the Indian mathematican
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Baudhayana noted that x � 577 and y � 408 is a solution of x2 ÿ 2y2 � 1

and used the fraction 577
408

to approximate
���
2
p

. In the seventh century

Brahmagupta considered solutions to the Pellian equation x2 ÿ 92y2 � 1,

the smallest solution being x � 1151 and y � 120. In the twelfth century

the Hindu mathematician Bhaskara found the least positive solution to the

Pellian equation x2 ÿ 61y2 � 1 to be x � 226 153 980 and y �
1 766 319 049.

In 1657, Fermat stated without proof that if d was positive and

nonsquare, then Pell's equation had an in®nite number of solutions. For

if (x, y) is a solution to x2 ÿ dy2 � 1, then 12 � (x2 ÿ dy2)2 �
(x2 � dy)2 ÿ (2xy)2d. Thus, (x2 � dy2, 2xy) is also a solution to

x2 ÿ dy2 � 1. Therefore, if Pell's equation has a solution, it has in®nitely

many.

In 1657 Fermat challenged William Brouncker, of Castle Lynn in

Ireland, and John Wallis to ®nd integral solutions to the equations

x2 ÿ 151y2 � 1 and x2 ÿ 313y2 � 1. He cautioned them not to submit

rational solutions for even `the lowest type of arithmetician' could devise

such answers. Wallis replied with (1 728 148 040, 140 634 693) as a solu-

tion to the ®rst equation. Brouncker replied with (126 862 368, 7 170 685)

as a solution to the second. Lord Brouncker claimed that it only took him

about an hour or two to ®nd his answer. Samuel Pepys, secretary of the

Royal Society, had a low opinion of Brouncker's moral character but

thought that his mathematical ability was quite adequate. In the section on

continued fractions, in this chapter, we will demonstrate the method Wallis

and Brouncker used to generate their answers.

In 1770, Euler showed that no triangular number other than unity was a

cube and none but unity was a fourth power. He devised a method,

involving solutions to Pellian equations, to determine natural numbers that

were both triangular and square. In particular, he was looking for positive

integers m and n such that n(n� 1)=2 � m2. To accomplish this, he

multiplied both sides of the latter equation by 8 and added 1 to obtain

(2n� 1)2 � 8m2 � 1. He let x � 2n� 1 and y � 2m so that x2 ÿ
2y2 � 1. Solutions to this Pellian equation produce square±triangular

numbers since

xÿ 1

2

� �
xÿ 1

2
� 1

� ��
2 � y

2

� �2

:

That is, the ((xÿ 1)=2)th triangular number equals the (y=2)th square

number. Using notation introduced in Chapter 1, txÿ1=2 � S y=2. For

example, from the solution x � 3 and y � 2, it follows that m � n � 1,
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yielding the square±triangular number 1. Table 8.3 lists several solutions

(x, y) to x2 � 2y2 � 1 and their associated square±triangular numbers. A

natural question arises. Does the method generate all square±triangular

numbers? If one is more methodical about how one obtains the solutions,

one can see that it does.

Since 1 � x2 ÿ 2y2 � (xÿ y
���
2
p

)(x� y
���
2
p

), it follows that 1 � 12 � (x

ÿ y
���
2
p

)2(x � y
���
2
p

)2 � ((2y2 � x2) ÿ 2xy
���
2
p

)((2y2 � x2) � 2xy
���
2
p

) �
(2y2 � x2)2 ÿ 2(2xy)2. Thus, if (x, y) is a solution to 1 � x2 ÿ 2y2, so is

(2y2 � x2 � 2xy). For example, the solution (3, 2) generates the solution

(2 . 23 � 32, 2 . 2 . 3) � (17, 12). The solution (17, 12) generates the solu-

tion (2 . 122 � 172, 2 . 12 . 17) � (577, 408). The square±triangular num-

ber generated by the solution (2y2 � x2, 2xy) to 1 � x2 ÿ 2y2 is distinct

from the square±triangular number generated by the solution (x, y). There-

fore, there exist an in®nite number of square±triangular numbers. La-

grange in a series of papers presented to the Berlin Academy between 1768

and 1770 showed that a similar procedure will determine all solutions to

x2 � dy2 � 1, where d is positive and nonsquare. By the fundamental or

least positive solution of x2 � dy2 � 1, we mean the solution (r, s) such

that for any other solution (t, u) r , t and s , u. In 1766, Lagrange proved

that the equation x2 � dy2 � 1 has an in®nite number of solutions when-

ever d is positive and not square.

Theorem 8.11 (Lagrange) If (r, s) is the fundamental solution of

x2 ÿ dy2 � 1, where d is positive and nonsquare, then every solution to

x2 ÿ dy2 � 1 is given by (xn, yn) where xn � yn

���
d
p � (r � s

���
d
p

)n for

n � 1, 2, 3, . . . :

Proof Let (r, s) be a fundamental solution of x2 ÿ dy2 � 1, where d is

positive and nonsquare, and xn � yn

���
d
p � (r � s

���
d
p

)n, for n � 1, 2, 3, . . . :

It follows that x2
n ÿ dy2

n � (xn � yn

���
d
p

)(xn ÿ yn

���
d
p

) � (r � s
���
d
p

)n(r ÿ
s
���
d
p

)n � (r2 ÿ s2d)n � 1n � 1. Hence, (xn, yn) is a solution to

x2 ÿ dy2 � 1, where xn � yn

���
d
p � (r � s

���
d
p

)n for n � 1, 2, 3, . . . : We

Table 8.3.

x y m n sqr±tri #

3 2 1 1 1
17 12 6 8 36
99 70 35 49 1 225

577 408 204 288 41 616
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show that if (a, b) is a solution to x2 ÿ dy2 � 1, where a and b are

positive, there is a positive integer n such that (a, b) � (xn, yn). Suppose

that is not the case. Hence there is a positive integer k such that

(r � s
���
d
p

)k , a� b
���
d
p

,(r � s
���
d
p

)k�1. Since (r � s
���
d
p

)ÿk � (r ÿ
s
���
d
p

)k , dividing by (r � s
���
d
p

)k, we obtain 1 , (a� b
���
d
p

)

(r ÿ s
���
d
p

)k , (r � s
���
d
p

). Let u� v
���
d
p � (a� b

���
d
p

)(r ÿ s
���
d
p

)k ; hence,

u2ÿv2d� (u� v
���
d
p

)(uÿ v
���
d
p

) � (a� b
���
d
p

)(r ÿ s
���
d
p

)k(aÿ b
���
d
p

)(r �
s
���
d
p

)k � (a2 ÿ b2d)(r2 ÿ s2d)k � 1. Thus, (u, v) is a solution to

x2 ÿ dy2 � 1. However, since u� v
���
d
p

. 1, 0 , u ÿ v
���
d
p

, 1. Hence,

2u � (u� v
���
d
p

)� (uÿ v
���
d
p

) . 1� u . 0 and 2v
���
d
p � (u� v

���
d
p

)ÿ
(uÿ v

���
d
p

) . 1ÿ 1 � 0. Therefore, u . 0, v . 0, and u� v
���
d
p

, r � s
���
d
p

,

contradicting the assumption that (r, s) is the fundamental solution, and

the result is established. j

In particular, if (xk , yk) is the solution to x2 ÿ 2y2 � 1 generating the

square±triangular number Ek, then (xk�1, yk�1), the solution generating

the next square±triangular number Ek�1, is obtained as follows:

1 � 9ÿ 8 � (3� 2
���
2
p

)(3ÿ 2
���
2
p

) and 1 � x2
k ÿ 2y2

k � (xk �
���
2
p

yk)(yk ÿ���
2
p

xk). Hence, 1 � 1 . 1 � (xk �
���
2
p

yk)(xk ÿ
���
2
p

yk)(3� 2
���
2
p

)(3ÿ 2
���
2
p

)

� [(3xk � 4yk) � (2xk � 3yk)
���
2
p

][(3xk � 4yk) ÿ (2xk � 3yk)
���
2
p

] �
(3xk � 4yk)2 ÿ 2(2xk � 3yk)2. Therefore, xk�1 � 3xk � 4yk and yk�1

� 2xk � 3yk , in a sense, is the `next' solution to x2 ÿ 2y2 � 1. If we

represent the kth square±triangular number by Ek � y2
k=4 � (x2

k ÿ 1)=2, it

follows that xk � 2
����������������
8Ek � 1
p

and yk � 2
������
Ek

p
. Hence, the next square±

triangular number is given by

Ek�1 � (yk�1)2

4
� (2xk � 3yk)2

4
� 4x2

k � 12xkyk � 9y2
k

4

� 17Ek � 1� 6

��������������������
8E2

k � Ek

q
:

For example, the square±triangular number after 41 616 is 17 .

41 616� 1� 6
����������������������������������������
8 . 41 6162 � 41 616
p � 1 413 721.

Frenicle compiled a table of least positive solutions to x2 ÿ dy2 � 1,

where d is nonsquare and 1 < d < 150. A brief version of Frenicle's table

is shown in Table 8.4. The Canon Pellianus computed by C.F. Degenin,

1817, gave least positive solutions to Pell's equation for all positive

nonsquare values of d < 1000.

Pell's equation is of considerable importance in number theory and can

be used to ®nd optimal rational approximations to square roots of positive

integers. In particular, if x2 ÿ dy2 � 1, then x=y gives a good approxima-

tion to
���
d
p

. This follows since if x . y
���
d
p

then
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���� x

y
ÿ

���
d
p ���� � ���� 1

y

�������� x2 ÿ dy2

x� y
���
d
p

���� � ���� 1

y

�������� 1

x� y
���
d
p

����, 1

y(2y
���
d
p

)
,

���
d
p

2y2
���
d
p

� 1

2y2
:

Elliptic curves, Diophantine equations of form y2 � x3 � ax2 � bx� c,

are more general than Pellian equations. In 1621, Bachet studied elliptic

equations of the form y2 � x3 � c. He claimed correctly that the only

solution (x, y) to the equation y2 � x3 ÿ 2 is (3, 5). In 1657, Fermat

claimed that the only solutions to y2 � x3 ÿ 4 were (2, 2) and (5, 11).

Euler showed that the only solution to y2 � x3 � 1 is (2, 3). In 1922, Louis

J. Mordell, Sadlerian Professor of Mathematics at Cambridge, proved that,

for a ®xed value of c, Bachet's equation has only a ®nite number of

Table 8.4.

d x y d x y

1 Ð Ð 26 51 10
2 3 2 27 26 5
3 2 1 28 127 24
4 Ð Ð 29 9 801 1 820
5 9 4 30 11 2
6 5 2 31 1 520 273
7 8 3 32 17 3
8 3 1 33 23 4
9 Ð Ð 34 35 6

10 19 6 35 6 1
11 10 3 36 Ð Ð
12 7 2 37 73 12
13 649 180 38 37 6
14 15 4 39 25 4
15 3 1 40 19 3
16 Ð Ð 41 2 049 320
17 33 8 42 13 2
18 17 4 43 3 482 531
19 170 39 44 199 30
20 9 2 45 161 24
21 55 12 46 24 335 3 588
22 197 42 47 48 7
23 24 5 48 1 7
24 5 1 49 Ð Ð
25 Ð Ð 50 99 14
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solutions. In 1965 Alan Baker of Cambridge was awarded the Fields Medal

for devising a ®nite procedure for determining solutions to Bachet's equa-

tion.

Exercises 8.2

1. Find the square±triangular number generated by the solution

x � 19 601 and y � 13 860 to the equation x2 � 2y2 � 1.

2. Find positive solutions (x, y) to the following Pellian equations.

(a) x2 ÿ 3y2 � 1,

(b) x2 ÿ 5y2 � 1,

(c) x2 ÿ 6y2 � 1.

3. Find a Pellian formula to generate square±pentagonal numbers.

4. Find two square±pentagonal numbers.

5. Find two triangular±pentagonal numbers.

6. Find the next two square±triangular numbers following 1 413 721.

7. Why is it necessary, in determining a solution to Pell's equation

x2 ÿ dy2 � 1, that d not be a square?

8. Prove that if the Bachet equation y2 � x3 � 2 has a solution (x, y)

then x and y must both be odd.

9. Show that 3x2 � 2 � y2 has no integral solutions.

8.3 Binary quadratic forms

Fermat considered the representation of integers by Diophantine polyno-

mials of the form x2 � cy2 and in 1761 Euler those of the form

x2 � xy� y2 or x2 � cy2. In 1763, Euler showed that every prime of the

form 6n� 1 can be represented by x2 � 3y2 and every prime of the form

8n� 1 can be represented by x2 � 2y2. Representing integers as sums of

squares and Pellian problems are special cases of a more general problem,

namely, representing integers by integral expressions of the form

ax2 � bxy� cy2 � dx� ey� f . Gauss devoted almost 60 percent of Dis-

quisitiones to deriving properties of such expressions.

In general, an integral expression f(x, y) consisting of a ®nite number of

terms of the form axrys, with a an integer and x and y indeterminates, is

called a Diophantine polynomial in two variables. We say that f (x, y)

represents the integer n if there exist integers x and y such that

f (x, y) � n. In addition, the integer n is said to be properly represented by

f (x, y) if f (x, y) � n with gcd(x, y) � 1. We say that f (x, y) is universal

if it represents every integer, and positive de®nite if it represents only
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nonnegative integers. One of the ®rst problems that arised is that of

equivalence. Two Diophantine polynomials f (x, y) and g(u, v) are said to

be equivalent, denoted by f � g, if there is a linear transformation

x � au� bv and y � cu� dv, with ad ÿ bc � �1, such that

f (x, y) � g(u, v). For example, the Diophantine polynomials f (x, y) �
x3 � xy� y2 � xÿ 2 and g(u, v) � u3 � v3 � 2u2 � 3u2v� 3uv2 �
7uv� 6v2 � u� vÿ 2 are equivalent under the transformation x � u� v,

y � u� 2v. If two Diophantine polynomials are equivalent they represent

the same numbers. For example, under the transformation x � ÿu� 3v,

y � ÿu� 2v, f (x, y) � 3x2 ÿ 10xy� 8y2 is equivalent to g(u, v) �
u2 ÿ v2. Both polynomials represent all integers not of the form 4k � 2.

In 1773, Lagrange made the ®rst investigations of binary quadratic

forms, which are Diophantine equations of the type f (x, y) � ax2

� bxy� cy2. The term b2 ÿ 4ac is called the discriminant of the binary

quadratic form. Equivalent binary quadratic forms have the same discrimi-

nant. However, binary quadratic forms with the same discriminant need not

be equivalent. It can be shown that there exists a binary quadratic form

with discriminant d if and only if d � 0 or 1 (mod 4). In particular if d � 0

(mod 4), then x2 ÿ (d=4)y2 has discriminant d. If d � 0 (mod 4), then

x2 � xyÿ ((d ÿ 1)=4)y2 has discriminant d. Gauss showed that the number

of binary quadratic forms with a given discriminant is ®nite. It can be

shown that the integer n can be properly represented by ax2 � bxy� cy2 if

and only if x2 � d (mod 4n) has a solution, for a proof see [Baker].

Theorem 8.12 A binary quadratic form ax2 � bxy� cy2 is positive de®-

nite if and only if a > 0, c > 0, a2 � c2 . 0, and b2 ÿ 4ac < 0.

Proof Suppose that f (x, y) � ax2 � bxy� cy2 is a positive de®nite binary

quadratic form. Since f (1, 0) � a and f (0, 1) � c, neither a , 0 nor c , 0.

Hence a > 0 and c > 0. If a � b � c � 0, then the binary quadratic form

represents only 0 and hence cannot be positive de®nite. If a � c � 0 and

b 6� 0, then f (x, y) � bxy. So f (1, 1) � b and f (1, ÿ1) � ÿb, hence, the

form cannot be positive de®nite. Thus, at least one of a and c must be

nonzero. Therefore, a2 � c2 . 0. If a . 0, then f (b, ÿ2a) � ÿ
a(b2 ÿ 4ac) . 0. If a � 0 and c . 0, then f (ÿ2c, d) � ÿc(b2 ÿ 4ac) . 0.

In either case, b2 ÿ 4ac < 0. Conversely, suppose a > 0, c > 0,

a2 � c2 . 0, and b2 ÿ 4ac < 0. If a . 0, then f (x, y) represents at least

one positive integer since f (1, 0) � a, and 4af (x, y) � 4a(ax2�
bxy� cy2) � (2ax � by)2 ÿ (b2 ÿ 4ac)y2 > 0. If a � 0, then b � 0 and

c . 0, so f (x, y) � cy2 . 0. In any case, f (x, y) is positive de®nite. j
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In 1996, John Conway and William Schneeberger showed that if a positive

de®nite quadratic form represents all integers from 1 to 15, then it

represents all positive integers. Given two integers n and d, with n 6� 0,

there is a binary quadratic form with discriminant d that represents n

properly if and only if the quadratic equation x2 � d (mod 4jnj) has a

solution. Therefore, if d � 0 or 1 (mod 4) and if p is an odd prime then

there is a binary quadratic form of discriminant d that represents n if and

only if (d
p
) � 1; for a proof see [Niven, Zuckerman, and Montgomery].

Exercises 8.3

1. Show that equivalence between binary quadratic forms is an equiva-

lence relation.

2. Show that f (x, y) � ÿx2 � 2y2 and g(u, v) � 14u2 � 20uv� 7v2 are

equivalent under the transformation x � 2u� v, y � 3u� 2v.

3. Given the binary quadratic forms in the preceding exercise,

f (3, 2) � ÿ1, what values of u and v yield g(u, v) � ÿ1?

4. Show that 2x2 ÿ y2 and 2u2 ÿ 12uvÿ v2 are equivalent.

5. Show that x3 � y3 and 35u3 ÿ 66u2v� 42uv2 ÿ 9v3 are equivalent.

6. Use the transformation x � 5u� 2v, y � 7u� 3v to ®nd a binary

quadratic form equivalent to 2x2 � 5xyÿ y2.

7. Show that equivalent binary quadratic forms have the same discriminant.

8. Show that if d is the discriminant of the binary quadratic form

ax2 � bxy� cy2, then d � 0 (mod 4) or d � 1 (mod 4).

9. Find a binary quadratic form with discriminant 12.

10. Which of the following binary quadratic forms are positive de®nite?

(a) f 1(x, y) � 6xy;

(b) f 2(x, y) � x2 � 3xy� 2y2;

(c) f 3(x, y) � ÿx2 � 3xyÿ 12y2;

(d) f 4(x, y) � x2 � 3xy� 3y2;

(e) f 5(x, y) � x2 � xyÿ y2.

11. Are f (x, y) � 2x2 � 3xy� 3y2 and g(x, y) � x2 � y2 equivalent?

12. Can x2 � 6y2 ever represent 31 or 415?

13. Use the second derivative test for functions of several variables to

show if a > 0, c > 0, a2 � c2 . 0, and b2 ÿ 4ac < 0, then the surface

f (x, y) � ax2 � bxy� cy2 lies on or above the xy-plane in Euclidean

3-space.

14. Show that the equations x2 � 3y2 � 1 and 7u2 � 10uv� 4y2 � 1

have corresponding solutions under the transformation x � 2u� v and

y � u� v.
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8.4 Finite continued fractions

An iterated sequence of quotients of the form

a1 � 1

a2 � 1

a3 � 1

. . .

. .
. � 1

anÿ1 � 1

an

,

denoted by [a1, a2, . . . , an], where ai are real numbers and ai . 0, for

2 < i < n, is called a ®nite continued fraction. The notation

[a1, a2, . . . , an] was introduced by Dirichlet in 1854. If the ai are required

to be integers, the resulting expression is called a simple ®nite continued

fraction. For example,

34

79
� 0� 1

2� 1

3� 1

11

is a simple ®nite continued fraction and is denoted by [0, 2, 3, 11].

References to continued fractions can be found in Indian mathematical

works, in particular, in those of Aryabhata in the sixth century and

Bhaskara in the twelfth century. Both employed continued fractions to

solve linear equations. Fibonacci uses and attempts a general de®nion of

continued fractions in Liber abaci. In 1572, Bombelli employed simple

continued fractions to approximate the values of square roots as did Cataldi

before him. It was, however, Cataldi who ®rst developed a symbolism and

properties of continued fractions. The term `continued fraction' ®rst

appeared in the 1653 edition of John Wallis's Arithmetica in®nitorum. In a

posthumous paper, Descriptio automati planetarii, Christiaan Huygens

used continued fraction expansions to determine the number of teeth on the

gears of a planetarium he was constructing. A continued fraction expansion

appears on the ®rst page of Gauss's diary for the year 1796. The modern

theory of continued fractions began, in 1737, with Euler's De fractionibus

continuis. In 1882, Carl Lindemann used continued fractions to prove that

ð was a transcendental number, that is, not the solution to a polynomial

equation with rational coef®cients.

A straightforward inductive argument shows that every ®nite simple

continued fraction represents a rational number. A ®nite simple continued

fraction of length one is an integer and, hence, rational. Suppose that every

®nite simple continued fraction with k terms is rational and consider

[a1, a2, . . . , ak , ak�1]. We have [a1, a2, . . . , ak , ak�1] � a1 � 1=[a2,
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. . . , ak , ak�1], the sum of two rational numbers. Hence, [a1,

a2, . . . , ak , ak�1] is rational. The converse is also true, namely, every

rational number can be expressed as a ®nite simple continued fraction. Let

a=b be any rational number with b . 0. From the Euclidean algorithm, we

obtain

a � bq1 � r1, where 0 < r1 , b,

b � r1q2 � r2, where 0 < r2 , r1,

r1 � r2q3 � r3, where 0 < r3 , r2,

. . .

rnÿ2 � rnÿ1qn � rn, where 0 < rn , rnÿ1,

rnÿ1 � rnqn�1:

Hence, dividing, we have

a

b
� q1 � r1

b
� q1 � 1

b

r1

,

b

r1

� q2 � r2

r1

� q2 � 1
r1

r2

,

r1

r2

� q3 � r3

r2

� q3 � 1
r2

r3

,

. . .
rnÿ1

rn

� qn�1:

The multiplicative inverse of the fraction at the end of the kth row is the

®rst term in the (k � 1)th row. By substitution, we obtain

a

b
� q1 � 1

q2 � 1

q3 � � � �

. .
. � 1

qn � 1

qn�1

:

That is, a=b � [q1, q2, . . . , qn�1] and we have established the following

result.

Theorem 8.13 Every rational number can be expressed as a ®nite simple

continued fraction and every ®nite simple continued fraction represents a

rational number.

For example,
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[7, 4, 2, 5] � 7� 1

4� 1

2� 1

5

� 7� 1

4� 5

11

� 7� 11

49
� 354

49
:

In order to represent the fraction 73
46

as a ®nite simple continued fraction, we

®rst employ the Euclidean algorithm to obtain

73 � 46 . 1� 27,
73

46
� 1� 27

46
,

46 � 27 . 1� 19,
46

27
� 1� 19

27
,

27 � 19 . 1� 8,
27

19
� 1� 8

19
,

19 � 8 . 2� 3,
19

8
� 2� 3

8
,

8 � 3 . 2� 2,
8

3
� 2� 2

3
,

3 � 2 . 1� 1,
3

2
� 1� 1

2
,

2 � 1 . 2:

Substituting, we obtain

73

46
� 1� 1

1� 1

1� 1

2� 1

2� 1

1� 1
2

, or [1, 1, 1, 2, 2, 1, 2]:

Since [a1, a2, . . . , anÿ1, an] � [a1, a2, . . . , anÿ2, anÿ1 � 1=an] and [a1,

a2, . . . , an] � [a1, a2, . . . , an ÿ 1, 1], the representation for a ®nite con-

tinued fraction is not unique. However, [a1, a2, . . . , an] and

[a1, a2, . . . , an ÿ 1, 1] are the only two ®nite simple continued fractional

representations for a rational number.

Let [a1, a2, . . . , an] be a ®nite continued fraction. The terms

c1 � a1, c2 � a1 � 1

a2

,

c3 � a1 � 1

a2 � 1

a3

, . . . ,
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ck � a1 � 1

a2 � 1

a3 � 1

. . .

. .
.

� 1

akÿ1 � 1

ak

,

and so forth are called the convergents of [a1, a2, . . . , an]. In general, the

kth convergent of [a1, a2, . . . , an], denoted by ck, is given by [a1,

a2, . . . , ak]. Convergents were ®rst described by Daniel Schwenter, Profes-

sor of Hebrew, Oriental Languages, and Mathematics at the University of

Altdorf, who included the convergents of 177
233

in his Geometrica practica in

1618. The recursive formulas for convergents ®rst appeared in Wallis's

Arithmetica in®nitorum in 1665.

Given a rational number a=b, with a > b . 0, we can apply Saunder-

son's algorithm, albeit with different initial conditions, to develop a

practical method to determine the kth convergents of a=b. Suppose a=b �
[q1, q2, . . . , qn, qn�1], xi � xiÿ2 � xiÿ1qi, yi � yiÿ2 � yiÿ1qi, for i � 1, 2,

. . . , n� 1, xÿ1 � 0, x0 � 1, yÿ1 � 1, and y0 � 0. Hence,

x1

y1

� xÿ1 � x0q1

yÿ1 � y0q1

� 0� 1 . q1

1� 0 . q1

� q1 � c1,

x2

y2

� x0 � x1q2

y0 � y1q2

� 1� q1
. q2

0� 1 . q2

� 1� q1q2

q2

� q1 � 1

q2

� c2,

and

x3

y3

� x1 � x2q3

y1 � y2q3

� q1 � (1� q1
. q2)q3

1� q2
. q3

� q1 � q3

1� q2q3

� q1 � 1

q2 � 1

q3

� c3:

Suppose that for integer m, with 2 , m < n,

cm � [q1, q2, . . . , qmÿ1, qm] � xm

ym

� xmÿ2 � xmÿ1qm

ymÿ2 � ymÿ1qm

:

Consider
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cm�1 � [q1, q2, . . . , qmÿ1, qm, qm�1] � q1, q2, . . . , qmÿ1, qm � 1

qm�1

� �

� cm�1 �
xmÿ2 � xmÿ1 qm � 1

qm�1

� �
ymÿ2 � ymÿ1 qm � 1

qm�1

� �
� xmÿ1 � (xmÿ2 � xmÿ1qm)qm�1

ymÿ1 � (ymÿ2 � ymÿ1qm)qm�1

� xmÿ1 � xmqm�1

ymÿ1 � ymqm�1

� xm�1

ym�1

and we have established the following result.

Theorem 8.14 If a=b � [q1, q2, . . . , qn], xi � xiÿ2 � xiÿ1qi, yi � yiÿ2 �
yiÿ1qi, for i � 1, 2, . . . , n, xÿ1 � 0, x0 � 1, yÿ1 � 1, and y0 � 0, then the

kth convergent, ck, is given by ck � xk=yk, for 0 < k < n.

For example, let us determine the convergents of 230
163
� [1, 2, 2, 3, 4, 2].

Using the algorithm described in the proof of Theorem 8.14, we ®ll in

Table 8.5 with our data to obtain Table 8.6 and ®nd that the convergents

are c1 � 1, c2 � 3
2
, c3 � 7

5
, c4 � 24

17
, c5 � 103

73
, and c6 � 230

163
.

Table 8.5.

i ÿ1 0 1 2 3 . . . n

qi q1 q2 q3 . . . qn

xi 0 1 x1 x2 x3 . . . xn

yi 1 0 y1 y2 y3 . . . yn

ci

x1

y1

x2

y2

x3

y3

. . .
xn

yn

Table 8.6.

i ÿ1 0 1 2 3 4 5 6

qi 1 2 2 3 4 2
xi 0 1 1 3 7 24 103 230
yi 1 0 1 2 5 17 73 163

ci

1

1

3

2

7

5

24

17

103

73

230

163
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Example 8.2 The sidereal period of Saturn, the time it takes Saturn to

orbit the Sun, is 29.46 years; in Huygens's day it was thought to be 29.43

years. In order to simulate the motion of Saturn correctly, he needed to

ef®ciently construct two gears, one with p teeth, the other with q teeth,

such that p=q is approximately 26.43. To be ef®cient, p and q were

required to be relatively small. The convergents of 29.43 are given in Table

8.7. A reasonably close approximation of 29.43 is given by 206
7
� 29:4285.

Thus, to simulate the motion of Saturn with respect to the Earth's motion,

Huygens made one gear with 7 teeth and the other with 206 teeth.

Theorem 8.15 If ck � xk=yk is the kth convergent of a=b � [q1, q2,

. . . , qn], then yk > k, for 1 < k < n.

Proof Recall that yi � yiÿ2 � yiÿ1qi, for i � 1, 2, . . . , yÿ1 � 1 and

y0 � 0. It follows that y1 � 1 > 1 and y2 � 0� 1 . q2 > 1 since q2 . 0.

Suppose that yi > i, for 2 < i < k, and consider yk�1. We have

yk�1 � k kÿ1 � ykyk�1 > k ÿ 1� k . 1 � 2k ÿ 1 > k � 1. The result fol-

lows by induction. j

Theorem 8.16 If ck � xk=yk is the kth convergent of a=b � [q1, q2,

. . . , qn], then xk and yk are coprime.

Proof We claim that xkykÿ1 ÿ ykxkÿ1 � (ÿ1)k , for 1 < k < n. If k � 1,

using the notation of Theorem 8.14, x1 y0 ÿ y1x0 � q1
. 0ÿ 1 . 1 � (ÿ1)1.

If k � 2, x2 y1 ÿ y2x1 � (1� q1q2) . 1ÿ q2q1 � (ÿ1)2. Suppose that for

some m, with 1 , m < n, xmymÿ1 ÿ ymxmÿ1 � (ÿ1)m. Hence, xm�1 ym ÿ
ym�1xm � (xmÿ1 � xmqm)ym ÿ (ymÿ1 � ymqm)xm � xmÿ1 ym ÿ ymÿ1xm

� ÿ(xmymÿ1 ÿ ymxmÿ1) � ÿ(ÿ1)m � (ÿ1)m�1. The result follows from

induction and Theorem 2.7. j

Table 8.7.

i ÿ1 0 1 2 3

qi 29 2 3
xi 0 1 29 59 206
yi 1 0 1 2 7

ci

29

1

59

2

206

7
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The method outlined in the next result was used by Bhaskara in the twelfth

century. It offers a practical way to solve linear Diophantine equations of

the form axÿ by � 1 using convergents of ®nite simple continued frac-

tions. With a little ingenuity, the method can be adapted to solve Diophan-

tine equations of the form ax� by � c and axÿ by � c, where there are

no restrictions placed on the integers a, b and c.

Theorem 8.17 If gcd(a, b) � 1, a . b . 0, and cnÿ1 � xnÿ1=ynÿ1 is the

penultimate convergent of a=b, then x � (ÿ1)n ynÿ1, y � (ÿ1)nxnÿ1 is a

solution to the equation axÿ by � 1.

Proof From the proof of Theorem 8.16, xnynÿ1 ÿ ynxnÿ1 � (ÿ1)n. Thus,

a((ÿ1)n ynÿ1) ÿ b((ÿ1)nxnÿ1) � (ÿ1)2n � 1 and the result is estab-

lished. j

Corollary If gcd(a, b) � 1, a . b . 0, and cnÿ1 � xnÿ1=ynÿ1 is the pen-

ultimate convergent of a=b, then the equation axÿ by � c has solution

x � (ÿ1)n . c . ynÿ1, y � (ÿ1)n . c . xnÿ1.

For example, consider the equation 230xÿ 163y � 1. We have

gcd(230, 163) � 1, 230 . 163 . 0, and from Table 8.6, the penultimate

convergent of 230
163
� [1, 2, 2, 3, 4, 2] is c5 � x5=y5 � 103=73. From the

corollary to Theorem 8.17, x � (ÿ1)673 � 73 and y � (ÿ1)6103 � 103.

Hence, 230x ÿ 163y � 1.

Consider the equation 41xÿ 17y � 13. We have gcd(41, 17) � 1,

41 . 17 . 0, and 41
17
� [2, 2, 2, 3]. From Table 8.8 the penultimate conver-

gent of 41
17

is c3 � x3=y3 � 12=5. Thus, a solution to the equation

41xÿ 17y � 13 is given by x � (ÿ1)4 . 5 . 13 � 65 and y � (ÿ1)4 .

12 . 13 � 156.

With the few examples we have considered, you may have noticed that

the odd convergents, c2k�1, of a=b seem to be monotonically increasing

Table 8.8.

i ÿ1 0 1 2 3 4

qi 2 2 2 3
xi 0 1 2 5 12 41
yi 1 0 1 2 5 17

ci

2

1

5

2

12

5

41

17
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and always less than a=b, while the even convergents, c2k , of a=b seem to

be monotonically decreasing and always greater than a=b. This indeed is

the case as illustrated by the next result.

Theorem 8.18 If a=b � [q1, q2, . . . , qn], a . b . 0, and ck � xk=yk de-

notes the kth convergent of a=b, then c1 , c3 , c5 , � � � < a=b <

� � � c4 , c2 , c0.

Proof Using the notation of Theorem 8.14 and Theorem 8.15, we have

ck ÿ ckÿ2 � xk

yk

ÿ xkÿ2

ykÿ2

� xkykÿ2 ÿ ykxkÿ2

ykykÿ2

� (xkÿ2 � xkÿ1qk)ykÿ2 ÿ (ykÿ2 � ykÿ1qk)xkÿ2

ykykÿ2

� qk(xkÿ1 ykÿ2 ÿ ykÿ1xkÿ2)

yk ykÿ2

� qk(ÿ1)kÿ1

ykykÿ2

:

Since qi and yi are positive for 1 < i < n, if k is even, say k � 2r, then

c2r ÿ c2rÿ2 � q2r(ÿ1)2rÿ1=y2r y2rÿ2 , 0. Hence, c2r , c2rÿ2 and the se-

quence of even convergents is decreasing. Similarly, if k is odd, say

k � 2r � 1, then c2r�1 ÿ c2rÿ1 � q2r�1(ÿ1)2r=y2r�1 y2rÿ1 . 0. Hence,

c2r�1 . c2rÿ1 and the sequence of odd convergents is increasing. Consider

the difference of two consecutive convergents. We have

ck ÿ ckÿ1 � xk

yk

ÿ xkÿ1

ykÿ1

� xkykÿ1 ÿ ykxkÿ1

ykykÿ1

� (ÿ1)k

ykykÿ1

:

If k is even and m is odd and less than k, then m (odd) , k ÿ 1 (odd) , k

(even). Hence, cm < ckÿ1 and ck ÿ ckÿ1 . 0. Thus, cm < ckÿ1 , ck . If k is

odd and m is even and greater than k, then k (odd) , k ÿ 1

(even) < m (even). Hence, ckÿ1 < cm and ck ÿ ckÿ1 , 0. Thus,

ck , ckÿ1 < cm. In any case, the odd convergents are bounded above by all

the even convergents and the even convergents are bounded below by all

the odd convergents. Since the ultimate convergent cn � a=b is either the

smallest even convergent or the largest odd convergent the result is estab-

lished. j

Exercises 8.4

1. Determine the rational number represented by [1, 2, 3, 2, 1].

2. Determine the rational number represented by [1, 2, 3, 4, 5, 6].

3. Show that if x � [a1, a2, . . . , an], then 1=x � [0, a1, a2, . . . , an].

4. Determine the convergents of 177
233

.
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5. Devise a formula to solve equations of the form ax� by � c.

6. Determine a necessary and suf®cient condition that [a1, a2, . . . , an]

be palindromic.

7. Given the continued fraction expansion [a1, a2, . . . , an], show that the

convergents ck � xk=yk may be obtained by matrix multiplication.

That is,

a0 1

1 0

� �
a1 1

1 0

� �
. . .

ak 1

1 0

� �
� xk xkÿ1

yk ykÿ1

� �
, for 1 < k < n:

8.5 In®nite continued fractions

An expression of the form

a1 � 1

a2 � 1

a3 � 1

a4 � � � �

,

where the ai, for i � 1, 2, . . . , except possibly a1 which may be negative,

are positive real numbers, is called an in®nite continued fraction and is

denoted by [a1, a2, a3, . . .]. If the ai, for i > 1, are required to be integers

then the expression is called a simple in®nite continued fraction. Whereas

simple ®nite continued fractions represent rational numbers. simple in®nite

continued fractions represent irrational numbers. In particular, if cn denotes

the nth convergent of [a1, a2, a3, . . .], we de®ne the value of the simple

in®nite continued fraction [a1, a2, a3, . . .] to be the real number

limn!1cn, whenever the limit exists. It can be shown that if the values of

two simple in®nite continued fractions [a1, a2, a3, . . .] and [b1, b2, b3, . . .]

are equal then ai � bi, for i > 1.

Recall, from mathematical analysis, that every bounded monotonic

(either increasing or decreasing) sequence converges. The odd convergents

(c1, c3, c5, . . .) form an increasing sequence bounded above by c2 and the

even convergents (c2, c3, c6, . . .) form a decreasing sequence bounded

below by c1, hence, both sequences converge. Let limn!1c2n�1 � L and

limn!1c2n � M . From Theorem 8.14 and Theorem 8.15, it follows that

0 , jc2n�1 ÿ cnj �
���� x2n�1

y2n�1

ÿ x2n

y2n

���� � ���� x2n�1 y2n ÿ y2n�1x2n

y2n�1 y2n

����
�
���� (ÿ1)2n�1

y2n�1 y2n

���� � 1

y2n�1 y2n

<
1

(2n� 1)(2n)
:

Since limn!1jc2n�1 ÿ c2nj � 0, L � M . If L � M � ã is rational, say
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ã � a=b, then since limn!1cn � ã � a=b, jcn ÿ ãj can be made as small

as we please. In addition,

0 , jcn ÿ ãj �
���� xn

yn

ÿ a

b

���� � ���� bxn ÿ ayn

byn

����:
Therefore, let n be such that

0 ,

���� bxn ÿ ayn

byn

����, 1

byn

:

Hence, 0 , jbxn ÿ aynj, 1. However, since a, b, xn, yn are integers, this

implies that there is an integer between 0 and 1, a contradiction. Therefore,

we have established the following result.

Theorem 8.19 A simple in®nite continued fraction represents an irrational

number.

We carry our reasoning one step further to show that if ã �
[a1, a2, a3, . . .] and cn � xn=yn denotes the nth convergent of ã, then

0 , jãÿ cnj, jcn�1 ÿ cnj,
���� xn�1

yn�1

ÿ xn

yn

���� � ���� xn�1 yn ÿ xnyn�1

yn�1 yn

����
�
���� (ÿ1)n�1

yn�1 yn

���� � 1

yn�1 yn

,
1

y2
n

:

The latter inequality follows from the nature of the yi for i .ÿ1, as noted

in the proof of Theorem 8.11. Therefore,����ãÿ xn

yn

����, 1

y2
n

and we have established the following result.

Theorem 8.20 Given any irrational number ã and positive integer n there

is a rational number a=b such that jãÿ a=bj, 1=n.

In 1753, Robert Simpson derived the Fibonacci numbers as components of

terms in successive convergents of the irrational number (1� ���
5
p

)=2. In

1891, A. Hurwitz showed that if ã is irrational then there exist in®nitely

many rational numbers a=b such that jãÿ a=bj, 1=
���
5
p

b2. In addition,
���
5
p

is best possible in the sense that given any real number á.
���
5
p

there is an

irrational number ã such that there exist only a ®nite number of rational

numbers a=b with the property that jãÿ a=bj, 1=áb2.

Given an irrational number ã, we may represent ã as a simple in®nite

continued fraction [a1, a2, a3, . . .] in the following manner. Let ã1 � ã
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and ai � ��ãi��, where ãi�1 � 1=(ãi ÿ ai), for i > 1. Rewriting the last

equation, we have ãi � ai � 1=ãi�1, for i > 1. Hence,

ã � a1 � 1

ã2

� a1 � 1

a2 � 1

ã3

� a1 � 1

a2 � 1

a3 � 1

ã4

� � �
� a1 � 1

a2 � 1

a3 � 1
. .

.

� 1

an � 1

ãn�1

� [a1, a2, a3, . . . , an, ãn�1]:

In addition, ã equals the (n� 1)st convergent cn�1. That is,

ã � ãn�1xn � xnÿ1

ãn�1 yn � ynÿ1

,

where, since ã is irrational, ãi is irrational and greater than 1, for i > 1.

Thus,

0 < jãÿ cnj �
����ãÿ xn

yn

���� � ���� ãn�1xn � xnÿ1

ãn�1 yn � ynÿ1

ÿ xn

yn

���� � ���� xnÿ1 yn ÿ ynÿ1xn

yn(ãn�1 yn � ynÿ1)

����
�
���� (ÿ1)nÿ1

yn(ãn�1 yn � ynÿ1)

����, 1

yn

,
1

n
:

Hence, limn!1cn � ã. See [Niven, Zuckerman, and Montgomery] for the

proof of uniquenes of the representation.

For example, consider the irrational number ð � 3:141 59 . . . : Let

ð1 � ð, so a1 � ��ð1�� � ��ð�� � 3, ð2 � 1=(ðÿ 3) � 1=0:141 59 . . .

� 7:062 513 . . . : Hence, a2 � ��ð2�� � ��7:062 513 . . .�� � 7. Further,

ð3 � 1=(ð2 ÿ a2) � 1=0:062 513 . . . � 15:996 . . . , hence, a3 � ��ð3��
� ��15:996 . . .�� � 15. From Table 8.9, we ®nd that ð can be represented as

[3, 7, 15, 1, 292, 1, . . .]. Thus 3, 22
7

, 333
106

, 355
113

, 103 993
33 102

, . . . are successive

approximations to ð. The continued fraction expansion for e appears in
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Logometria, a treatise written by Roger Cotes, Plumian Professor of

Astronomy and Experimental Philosophy at Cambridge University, in

1714. It was from discussions with Cotes on continued fractions that

Saunderson devised his practical algorithm (Theorem 2.12). Cotes's work

so impressed Newton that upon his death, at age 34, Newton said, `If he

had lived we might have known something.'

We have
�����
17
p � 4:123 10 . . . � [4, 8, 8, 8, . . .],

�����
23
p � 4:795 83 . . . �

[4, 1, 3, 1, 8, 1, 3, 1, 8, . . .], and
�����
35
p � 5:91607 . . . � [5, 1, 10, 1, 10,

. . .]. The length of the period of
�����
17
p

is 1, of
�����
23
p

is 4, and of
�����
35
p

is 2. In

1770, Lagrange showed that every expression of the form (a� b
���
c
p

)=d,

where a, b, c, d are positive integers and c is nonsquare, has a periodic

simple in®nite continued fractional representation.

In particular, if á has a periodic continued fraction expansion

[a1, a2, . . . , ak , ak�1, . . . , ak�r], where the bar indicates that the sequence

ak , ak�1, . . . , ak�r repeats inde®nitely, then it can be shown, see [Olds],

that there exist positive integers a, b, c, d, with c nonsquare, such that

á � (a� b
���
c
p

)=d. For the suf®ciency, let â � [ak , . . . , ak�r], then â is an

in®nite continued fraction and, thus, from Theorem 8.19, it is irrational.

From the proof of Theorem 8.19, â � (âur � ur�1)=âvr � vrÿ1), where

urÿ1=vrÿ1 and ur=vr are the last two convergents of â. Hence,

â2vr � â(vrÿ1 ÿ ur)ÿ urÿ1 � 0. Thus â � (r � s
��
t
p

)=w, where r, s, t, w

are positive integers and t is nonsquare. In addition, á � [a1, . . . , ak , â],

hence, by rationalizing the denominator we obtain

á � âxk � xkÿ1

âyk � ykÿ1

�
r � s

��
t
p

w

� �
xk � xkÿ1

r � s
��
t
p

w

� �
yk � ykÿ1

� a� b
���
c
p

d
:

In the above example â was a special type of in®nite continued fraction

called purely periodic. More precisely, an in®nite continued fraction is

called purely periodic if it is of the form [ak , . . . , an]. It can be shown that

Table 8.9.

i ÿ1 0 1 2 3 4 5

qi 3 7 15 1 292
xi 0 1 3 22 333 355 103 933
yi 1 0 1 7 106 113 33 102

ci

3

1

22

7

333

106

355

113

103 993

33 102
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if ÿ1 ,(aÿ b
���
c
p

)=d , 0, the in®nite continued fraction for (a� b
���
c
p

=d is

purely periodic, for a proof see [Niven, Zuckerman, and Montgomery]. Let���
n
p � [b0, b1, . . . , bn, . . .], then b0 � ��

���
n
p ��. If á � �� ���np �� � ���

n
p

, then the

conjugate of á, namely �� ���np �� ÿ ���
n
p

, is such that ÿ1 ,�� ���np �� ÿ ���
n
p

, 0.

Hence, á is purely periodic and á � �� ���np �� � ���
n
p � [2b0, b1, . . . , bn].

Subtracting �� ���np �� from both sides of the equation we ®nd that���
n
p � [b0, b1, . . . , bn, 2b0].

If á � [a1, a2, . . . , anÿ1, an] is purely periodic, then the continued

fraction expansion of the negative reciprocal of the conjugate of á, ÿ1=á,

is given by [an, anÿ1, . . . , a2, a1]. In addition, if á. 1, then

1=á � [0, a1, a2, . . . , anÿ1, an]. Hence, if n is positive and nonsquare,

then the in®nite continued fraction expansion of
���
n
p

is given by

�� ���np ��, [a1, a2, a3, . . . , a3, a2, a1, 2�� ���np ��]. Periodic in®nite continued

Table 8.10.�����
26
p � [5, 10]���

2
p � [1, 2]

�����
27
p � [5, 5, 10]���

3
p � [1, 1, 2]

�����
28
p � [5, 3, 2, 3, 10]�����

29
p � [5, 2, 1, 1, 2, 10]���

5
p � [2, 4]

�����
30
p � [5, 2, 10]���

6
p � [2, 2, 4]

�����
31
p � [5, 1, 1, 3, 5, 3, 1, 1, 10]���

7
p � [2, 1, 1, 1, 4]

�����
32
p � [5, 1, 1, 1, 10]���

8
p � [2, 1, 4]

�����
33
p � [5, 1, 2, 1, 10]�����

34
p � [5, 1, 4, 1, 10]�����

10
p � [3, 6]

�����
35
p � [5, 1, 10]�����

11
p � [3, 3, 6]�����

12
p � [3, 2, 6]

�����
37
p � [6, 12]�����

13
p � [3, 1, 1, 1, 6]

�����
38
p � [6, 6, 12]�����

14
p � [3, 1, 2, 1, 6]

�����
39
p � [6, 4, 12]�����

15
p � [3, 1, 6]

�����
40
p � [6, 3, 12]�����

41
p � [6, 2, 2, 12]�����

17
p � [4, 8]

�����
42
p � [6, 2, 12]�����

18
p � [4, 4, 8]

�����
43
p � [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]�����

19
p � [4, 2, 1, 3, 1, 2, 8]

�����
44
p � [6, 1, 1, 1, 2, 1, 1, 1, 12]�����

20
p � [4, 2, 8]

�����
45
p � [6, 1, 2, 2, 2, 1, 12]�����

21
p � [4, 1, 3, 1, 8]

�����
46
p � [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]�����

22
p � [4, 1, 2, 4, 2, 1, 8]

�����
47
p � [6, 1, 5, 1, 12]�����

23
p � [4, 1, 3, 1, 8]

�����
48
p � [6, 1, 12]�����

24
p � [4, 1, 8] �����

50
p � [7, 14]
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fractional expansions for square roots of nonsquare integers n, for

1 , n , 50, are illustrated in Table 8.10.

Let us determine a rational representation for the in®nite periodic

continued fraction

[1, 3, 5] � 1� 1

3� 1

5� 1

[1, 3, 5]

:

If x � [1, 3, 5], then

x � 1� 1

3� 1

5� x

:

Hence, 8x2 ÿ 9xÿ 2 � 0. Using the quadratic formula, we ®nd that

x � (9� ��������
145
p

)=16.

If x � [a, b, a, b, a, b, . . .], a � bc, where c is an integer, then x �
a� ����������������

a2 � 4c
p

=2. Hence, [1, 1, 1, 1 . . .] � (
���
5
p � 1)=2 � ô, and [2, 1, 2, 1,

2, 1, . . .] � ���
3
p � 1. In addition,���

2
p
� 1� (

���
2
p
ÿ 1) � 1� 1���

2
p � 1

� 1� 1

2� (
���
2
p ÿ 1)

,

hence,
���
2
p � [1, 2, 2, 2, . . .]. Bombelli showed that

�������������
a2 � b
p � [a,

2a=b, 2a=b, . . .], which leads to a number of straightforward continued

fraction representations for square roots of integers. The ®rst publication

of Evariste Galois, in 1828, dealt with periodic continued fractions. Galois,

who died in a duel at the age of 20, had an exceptionally brilliant

mathematical mind. His work, as a teenager, founded the theory of

solvability of algebraic equations by radicals.

We state the following important result without proof. The interested

reader can ®nd the proof in [Robbins].

Theorem 8.21 If gcd(a, b) � 1, b . 0 and ã is irrational with

jãÿ a=bj, 1=2b2, then a=b is a convergent of ã.

Let (a, b) be a solution to x2 ÿ dy2 � 1. Since

aÿ b
���
d
p
� 1

a� b
���
d
p implies that

a

b
ÿ

���
d
p
� 1

b(a� b
���
d
p

)
,

it follows that if a . b
���
d
p

, then a� b
���
d
p

. 2b
���
d
p

. Hence, 0 , a=b

ÿ ���
d
p

, 1=2b2
���
d
p

, 1=2d2. Therefore, from Theorem 8.21, it follows that

if (a, b) is a solution to x2 ÿ dy2 � 1 then it is one of the convergents of
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���
d
p

. On the other hand, however, not every convergent of
���
d
p

is a solution

to x2 ÿ dy2 � 1. In particular, any positive solution x � xk , y � yk to

x2 ÿ dy2 � 1 has the property that ck � xk=yk is a convergent of
���
d
p

. The

next result outlines the method devised independently by Bhaskara and

Brouncker to solve Pell's equations. It is offered without proof: for a proof

see [Robbins]. In 1907, this result was generalized by Major Percy

MacMahon who showed that integral solutions to xn ÿ dyn � 1, where n is

a positive integer, can be obtained from the convergents of n
���
a
p

.

Theorem 8.22 (Bhaskara±Brouncker) Let ck � xk=yk denote the kth con-

vergent of
���
d
p

and n the length of the period of
���
d
p

. If n is even, every

positive solution to x2 ÿ dy2 � 1 is given by x � xknÿ1, y � yknÿ1, for

k > 1. If n is odd, every positive solution to x2 ÿ dy2 � 1 is given by

x � x2knÿ1, y � y2knÿ1 for k > 1.

For example, in order to ®nd solutions to the Pellian equation

x2 ÿ 2y2 � �1, where
���
2
p � [1, 2, 2, . . .], we construct Table 8.11. Hence,

(3, 2), (17, 12), (99, 70), . . . , are solutions (x, y) to x2 � 2y2 � �1, and

(7, 5), (41, 29), (239, 169), . . . , are solutions to x2 ÿ 2y2 � ÿ1.

Exercises 8.5

1. Use the process outlined in the section to determine the continued

fraction expansions for

(a)
���
3
p

(use 1.732 050 81),

(b)
���
5
p

(use 2.236 067 98),

(c)
���
7
p

(use 2.645 751 31),

(d)
�����
10
p

(use 3.162 277 66).

2. Determine the ®rst 12 terms of the continued fraction for e. [Cotes]

3. Determine the ®rst 12 terms of the continued fraction for (e� 1)=

(eÿ 1).

4. Determine ®ve solutions of the equation x2 ÿ 3y2 � �1.

Table 8.11.

i ÿ1 0 1 2 3 4 5 6

ai 1 2 2 2 2 2
xi 0 1 3 7 17 41 99 239
yi 1 0 2 5 12 29 70 169
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5. If n is a positive integer, then determine the number represented by the

periodic in®nite continued fraction [n].

6. A more generalized form of continued fraction was used by the

ancients to approximate square roots. In particular,�������������
a2 � b

p
� a� b

2a� b

2a� b

2a � � � �

:

Use the formula to approximate
�����
13
p

and
�����
18
p

.

7. Suppose that a=b , ã, c=d, where ã is irrational, a, b, c, d are

positive, and bcÿ ad � 1. Prove that either a=b or c=d is a convergent

of ã.

8.6 p-Adic analysis

A ®eld is a nonempty set F with two operations, called addition and

multiplication, that is distributive, an Abelian group under addition with

identity 0, and the nonzero elements of F form an Abelian group under

multiplication. A function v from a ®eld F to the nonnegative real numbers

is called a valuation or norm on F if for all x and y in F the following

properties hold:

(1) v(x) > 0, and v(x) � 0 if and only if x � 0,

(2) v(x, y) � v(x)v(y), and

(3) v(x� y) < v(x)� v(y).

From the ®rst properties it follows that if e denotes the multiplicative

identity of the ®eld F then v(e) � 1 and v(ÿe) � 1. Hence, for any

element a in F, v(ÿa) � v(a). The third condition is just the triangle

inequality. Two examples of valuations over the reals are the trivial

valuation given by

jxj0 � 1, if x 6� 0

0, otherwise,

�
and the familiar absolute value function

jxj � x, if x > 0

ÿx, if x , 0:

�
A valuation is called non-Archimedean if it satis®es the ultrametric

inequality,

8.6 p-Adic analysis 279



(4) v(x� y) < maxfv(x), v(y)g, for all x and y in F,

otherwise it is called Archimedean. The ultrametric inequality implies the

triangle inequality. The trivial metric is an example of a non-Archimedean

valuation and the absolute value is an example of an Archimedean

valuation.

Given any prime p, every rational number q can be written uniquely as

(a=b) pá, where gcd(a, b) � 1, and b . 0. That is, páiq. The p-adic

valuation, denoted by j . j p, is de®ned over the rational numbers in the

following manner:

jqj p � pÿá if pá iq,

0 if q � 0:

�
For example, since 450 � 2 . 32 . 52, j450j2 � 1=2, j450j3 � 1=32,

j450j5 � 1=52, and j450j p � 1, for any other prime p. We leave the proof

that j . j p is a valuation over the rationals as an exercise. Properties of p-

adic valuations were ®rst investigated by Kurt Hensel in 1908.

There are a number of interesting p-adic properties. For example,

jqj p < 1 for any rational number q and any prime p. In general, v(x) < 1,

for all x in F, is true for any non-Archimedean valuation v(x) over a ®eld F.

For any p-adic valuation,
Q

pjqj p � 1=jqj, where p runs through all

primes. If r and s are rational numbers, then r divides s if and only if

jsj p < jrj p for every prime p. In 1918, A. Ostrowski showed that every

nontrivial valuation in the rational numbers is equivalent to either the

absolute value or a p-adic valuation.

A distance function or metric d is a nonnegative real valued function

de®ned on ordered pairs of elements of a set such that

(1) d(x, y) > 0, and d(x, y) � 0 if and only if x � y,

(2) d(x, y) � d(y, x),

(3) d(x, y) < d(x, z)� d(z, y).

The third condition is the familiar triangle inequality. Each valuation on a

®eld generates a metric or distance function, namely, d(x, y) � v(xÿ y).

The ordinary metric in Euclidean space is generated by the absolute value.

The trivial valuation gives rise to the trivial metric d0(x, y) which equals 1

if x 6� y and equals 0 otherwise. Non-Archimedean metrics can generate

strange properties. If d is the metric generated by the non-Archimedean

valuation v, then, since xÿ y � (xÿ z)� (zÿ y), d(x, y) � v(xÿ y) �
v((xÿ z)� (zÿ y)) < maxfv((xÿ z), v(zÿ y)g � maxfd(x, z), d(z, y)g.

Example 8.3 Let d be the metric determined by the non-Archimedean

280 Representations



valuation v. Consider three points x, y, and 0 where, without loss of

generality, we have let one of the points be the origin. The three distances

determined by the points are d(x, 0) � v(x), d(y, 0) � v(y), and

d(x, y) � v(xÿ y). We have d(x, y) � v(xÿ y) � v(x� (ÿy)) <

maxfv(x), v(y)g. If v(x) 6� v(y), say v(x) . v(y), then d(x, y) < v(x).

However, v(x) � v((xÿ y)� y) < maxfv(xÿ y), v(y)g and since

v(x) . v(y), v(x) < v(xÿ y) � d(x, y), implying that v(x) � d(x, y). Thus

in a non-Archimedean geometry, v(x, y) � maxfv(x), v(y)g whenever

v(x) 6� v(y). Therefore, every triangle in a non-Archimedean geometry has

the property that its two longest sides are of equal length.

We say that the sequence a1, a2, a3, . . . converges p-adically to the real

number L, if the sequence ja1 ÿ Lj p, ja2 ÿ Lj p, . . . converges in the usual

sense. That is, given any real positive number E there is a natural number N

such that jan ÿ Lj p , E whenever n . N. Similarly, we say that S is the

sum of the series
P1

n�1an if and only if the sequence of partial sums s1, s2,

. . ., where sk �
Pk

i�1ai, for k > 1, converges to S. It follows that if p is

prime the sequence p, p2, p3, . . . converges to 0 p-adically. Another

interesting consequence of the de®nition of p-adic convergence is that, 7-

adically speaking, ÿ1 � 6� 6 . 7� 6 . 72 � 6 . 73 � 6 . 74 � � � � . To see

why this is the case, add 1 to both sides of the equation and continue to

combine terms to obtain

0 � 7� 6 . 7� 6 . 72 � 6 . 73 � 6 . 74 � � � �
� 0� 7 . 7� 6 . 72 � 6 . 73 � 6 . 74 � � � �
� 0� 0 � 7 . 72 � 6 . 73 � 6 . 74 � � � �
� 0� 0 � 0 � 7 . 73 � 6 . 74 � � � �
� 0� 0 � 0 � 0 � 7 . 74 � � � �
� 0� 0 � 0 � 0 � 0 � � � �
� � � � :

In addition, 5-adically speaking, to evaluate x � 2� 5� 52 � 53 � 54 �
55� � � � we multiply both sides of the equation by 4 and combine terms to

obtain
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4x � 8� 4 . 5� 4 . 52 � 4 . 53 � 4 . 54 � � � �
� 3� 5 . 5� 4 . 52 � 4 . 53 � 4 . 54 � � � �
� 3� 0 � 5 . 52 � 4 . 53 � 4 . 54 � � � �
� 3� 0 � 0 � 5 . 53 � 4 . 54 � � � �
� 3� 0 � 0 � 0 � 0 � � � �
� � � � :
� 3:

Hence, x � 3
4
. More formally, a sequence (an) of rational numbers is called

a p-adic Cauchy sequence if for every positive number E there is an integer

N such that whenever m and n are greater than N, jan ÿ amj p , E. Two p-

adic Cauchy sequences (an) and (bn) are called equivalent if

limn!1jan ÿ bnj p � 0. This is an equivalence relation and, hence, parti-

tions the p-adic Cauchy sequences into equivalence classes, denoted by

Qp. If we de®ne the operations of addition and multiplication on Qp to be

componentwise addition and multiplication, that is (an)� (bn) � (an � bn)

and (an) . (bn) � (an
. bn), then Qp becomes a ®eld. Any nonzero element r

of Qp can be represented uniquely as r � pn(a0, a0 � a1 p, a0 �
a1 p� a2 p2, . . .), where n and ai are integers such that 0 < a0 , p and

a0 6� 1, for i � 1, 2, 3 . . . : Equivalently, we could take the sequence of

partial sums above and represent r in the form of a series where, in that

case, r � a0 pn � a1 pn�1 � a2 pn�2 � � � � . For example,

1, 6, 31, 156, . . . � 1 � 1 . 5 � 1 . 52 � 1 . 53 � � � �,
3, 3, 3, . . . � 3 � 0 . 5 � 0 . 52 � 0 . 53 � � � �,

and

75, 275, 1525, 7775, . . . � 52(3, 1 � 2 . 5, 1 � 2 . 5 � 2 . 52, 1

� 2 . 5 � 2 . 52 � 2 . 53 � . . .):

p-Adic analysis is a useful tool. However, most of its important applica-

tions are outside our present scope. For its use in establishing polynomial

congruences see [Edgar]. To see how it may be applied to the analysis of

binary quadratic forms see [Cassels].

Exercises 8.6

1. Show that the absolute value is an Archimedean valuation.

2. If v is a valuation on the ®eld F show that
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(a) v(e) � 1,

(b) v(ÿe) � 1, and

(c) v(ÿa) � v(a) for any a in F.

3. Prove that the trivial valuation satis®es the three properties of a

valuation.

4. Show that the ultrametric inequality implies the triangle inequality.

5. Determine j600j p, for any prime p.

6. Determine jqk j p, where p and q are prime and k is an integer.

7. Prove that the p-adic valuation satis®es the ultrametric inequality.

8. If p is prime, show that the p-adic valuation satis®es the three

conditions for a valuation.

9. Prove that if r and s are rational numbers, then r divides s if and only

if jsj p < jrj p for every prime p.

10. Determine a 2-adic value for 1� 2� 22 � 23 � � � � .
11. Determine a 3-adic value for 5� 2 . 3� 2 . 32 � 2 . 33 � � � � .
12. Determine a 7-adic series expansion for 5

6
.

13. Show that ÿ1 � 6� 6 . 7� 6 . 72 � 6 . 73 � 6 . 74 � � � � .
14. Find the p-adic distance between 48 and 36 for any prime p.

15. In Q7 determine the ®rst four terms of the series represented by (3, 31,

227, 1599, . . .).

16. In Q7 determine the ®rst four terms of the sequence represented by

2 . 72 � 2 . 73 � 2 . 74 � � � � .
17. De®ne the unit disk U in the 2-dimensional Cartesian plane to be the

set of all points where distance from the origin is at most one. Describe

the unit disk geometrically if the distance from P � (x1, y1) to

Q � (x2, y2) is given by

(a) the trivial metric,

(b) d(P, Q) �
���������������������������������������������
(x2 ÿ x1)2 � (y2 ÿ y1)2

p
,

(c) d(P, Q) � jx1 ÿ x2j � jy1 ÿ y2j,
(d) d(P, Q) � maxfjx1 ÿ x2j, jy1 ÿ y2jg,
(e) a p-adic valuation on points whose coordinates are both rational.

18. Show that if v is a non-Archimedean valuation on the ®eld F, then

every point of D(a, r) � fx in F: v(xÿ a) , r), the disk centered at a

with radius r, can be considered as being at the center.
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9

Partitions

Say, is there Beauty yet to ®nd?

And Certainty? and Quiet kind?

Deep meadows yet, for to forget

The lies, and truths, and pain? . . . oh! yet

Stands the Church clock at ten to three?

And is there honey still for tea?

Rupert Brooke

9.1 Generating functions

Given a sequence a0, a1, a2, . . . of integers, the expression G(x) �
a0 � a1x� a2x2 � � � � is called the generating function for the sequence.

More generally, if f (n) is an integral valued function de®ned on the

nonnegative integers, then the generating function for f (n) is given by

G(x) � P1
n�0 f (n)x n. In this chapter, our main concern is with the

algebraic manipulation of the coef®cients of generating functions. We are

not interested in the convergence or divergence of generating functions

considered as in®nite series.

Generating functions were introduced in 1748 by Euler in Introductio in

analysin in®nitorum. He used generating functions as a tool to discover a

number of interesting properties concerning partitions. Several straightfor-

ward generating functions for familiar sequences can be derived by simple

polynomial division. The generating function for the sequence 1, 1, 1, 1,

. . . or equivalently for the constant function f (n) � 1, for n a positive

integer, is given by 1=(1ÿ x). Since 1� x� 2x2 � 3x3 � 4x4 � � � � �
1=(1ÿ x)2, the sequence of natural numbers is generated by 1=(1 ÿ x)2.

The sequence of triangular numbers is generated by 1=(1ÿ x)3 �
1� 3x� 6x2 � 10x3� 15x4 � 21x5 � � � � . The sequence of even positive

integers is generated by 1=(1ÿ 2x).

Suppose G(x) � a0 � a1x� a2x2 � � � � represents the generating func-

tion for the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , un, . . . , where

u0 � u1 � 1 and un � unÿ1 � unÿ2, for n > 3. Hence, xG(x) � u0x�
u1x2 � u2x3 � � � � , and x2G(x) � u0x2 � u1x3 � u2x4 � � � � . Thus,

G(x)ÿ xG(x)ÿ x2G(x) � u0 � (u1 ÿ u0)x � (u2 ÿ u1 ÿ u0)x2 � (u3 ÿ
u2 ÿ u1)x3 � � � � � (un ÿ unÿ1 ÿ unÿ2)x n � � � � � 1 � 0 . x � 0 . x2 �
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0 . x3 � � � � � 0 . x n � � � � � 1. Therefore, G(x) � 1=(1ÿ xÿ x2) is the

generating function for the Fibonacci sequence.

If G(x) � a0 � a1x� a2x2 � � � � represents the generating function for

the sequence 0, 1, 5, 18, 55, . . . , an, . . . , where an � 5anÿ1 ÿ 7anÿ2, then

G(x) ÿ 5xG(x) � 7x2G(x) � a0 � (a1 ÿ 5a0)x � (a2 ÿ 5a1 � 7a0)x2 �
� � � � (an ÿ 5anÿ1 � 7anÿ2)x n � � � � � x. Hence, G(x) � x=(1ÿ 5x �
7x2).

Many other number theoretic functions we have encountered have

nontrivial generating functions. In a paper dated 1747, but published

posthumously, Euler noted that the generating function for ó (n) is given byX1
n�1

nx n

1ÿ x n
:

In 1771, Johann Lambert discovered that the generating function for

ô(n) is X1
n�1

x n

1ÿ x n
:

Exercises 9.1

1. Identify the sequence for which 1=(1ÿ x)4 is the generating function.

2. Identify the sequence for which 1=(1ÿ x)5 is the generating function.

3. Identify the sequence for which 1=(1ÿ x)n is the generating function.

4. Describe the sequence for which x=(1ÿ x)4 is the generating function.

5. Describe the sequence for which x=(1ÿ x)5 is the generating function.

6. Describe the sequence for which x=(1ÿ x)n is the generating function.

7. Describe the sequence for which x2=(1ÿ x)2 is the generating func-

tion.

8. Identify the sequence for which (1� x)=(1ÿ x)2 is the generating

function.

9. Identify the sequence for which (x� x2)=(1ÿ x)3 is the generating

function.

10. Identify the sequence for which x(x2 � 4x� 1)=(1ÿ x)4 is the gener-

ating function.

11. Determine the generating function for the sequence of fourth powers

of nonnegative integers 0, 1, 16, 81, 625, 2401, . . . :

12. Determine the generating function for ó k, the sum of the kth powers

of the divisors of n.
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13. Determine a generating function for the Lucas sequence 1, 3, 4, 7,

11, . . . :

14. Determine a generating function for the difference equation an �
3anÿ1 ÿ 7anÿ2, where a0 � 0 and a1 � 1.

9.2 Partitions

By a partition of a positive integer n we mean an expression of n as a sum

of positive integers. For any positive integer n, there are 2nÿ1 ordered

partitions of n. Consider a linear array of n ones. In each of the nÿ 1

spaces between two of the ones, we may or may not put a slash. From the

multiplication principle, there are 2nÿ1 choices for all the slashes and each

choice generates an ordered partition of n. For example, if n � 7,

1 1 = 1 1 = 1 = 1 1

represents the partition 2� 2� 1� 2, and

1 = 1 = 1 = 1 1 1 1

represents the partition 1� 1� 1� 4. Consider the representation of a

partition of n using n ones and k � 1 slashes, where two slashes are

external and the remaining k ÿ 1 are internal. For example, = 1 1 1 = 1 =

1 1 = represents the partition 3� 1� 2 of 6. Since there are

nÿ 1

k ÿ 1

� �
ways of placing the k ÿ 1 slashes in the nÿ 1 slots between the ones, the

number of ordered partitions of the positive integer n into exactly k parts

equals

nÿ 1

k ÿ 1

� �
:

Summing over all possible cases, we obtainXn

k�1

nÿ 1

k ÿ 1

� �
� 2nÿ1:

For the remainder of the chapter, we restrict ourselves to partitions of the

positive integer n where the order of the summands is ignored and

repetitions are allowed. That is, we consider only the partitions of n which

are expressions of n as a sum of positive integers in descending order. We

denote the number of such partitions by p(n). For convenience, we set

p(0) � 1 and use the convention that if n � x1 � x2 � � � � � xk represents

a partition of n, the terms are written in descending order, x1 >
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x2 > � � � > xk > 1. Values of p(n), for 1 < n < 7, are given in Table 9.1.

For example, the partitions of 1, 2, 3, 4, 5, 6 and 7 are given by
1 2 3 4 5 6 7

1�1 2�1 3�1 4�1 5�1 6�1

1�1�1 2�2 3�2 4�2 5�2

2�1�1 3�1�1 4�1�1 5�1�1

1�1�1�1 2�2�1 3�3 4�3

2�1�1�1 3�2�1 4�2�1

1�1�1�1�1 3�1�1�1 4�1�1�1

2�2�2 3�3�1

2�2�1�1 3�2�2

2�1�1�1�1 3�2�1�1

1�1�1�1�1�1 3�1�1�1�1

2�2�2�1

2�2�1�1�1

2�1�1�1�1�1

1�1�1�1�1�1�1

The origin of partition theory can be traced back to 1669 when Gottfried

Leibniz wrote Johann Bernoulli asking him if he had ever considered

determining the number of ways a given positive integer may be separated

into parts. Leibniz commented that the problem seemed dif®cult but

important. In 1740, Philipp NaudeÂ, a Berlin mathematician originally from

Metz, France, proposed the following two questions to Euler.

(1) Find the number of ways a number is a sum of a given number of

distinct parts.

(2) Find the number of ways a number is a sum of a given number of equal

or distinct parts.

Euler realized that the coef®cient of x nz m in the expression (1 �
xz)(1� x2z)(1� x3z)(1� x4z) � � � represented the number of ways n can

be written as a sum of m distinct positive integers. For example, the

coef®cient of x9z3 is 3 and it results from summing the terms x6z . x2z .

Table 9.1.

n p(n)

1 1
2 2
3 3
4 5
5 7
6 11
7 15
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x1z, x5z . x3z . x1z, and x4z . x3z . x2z, that is, the terms corresponding

respectively to the partitions 6� 2� 1, 5� 3� 1, and 4� 3� 2 of 9. If

we let z � 1 in the expression, we ®nd that the coef®cient of x n in

(1� x)(1� x2)(1� x3)(1� x4)(1� x5) � � � represents the number of ways

n can be written as a sum of distinct positive integers, which we denote by

pd(n). That is, the generating function for pd(n), the number of ways n can

be written as a sum of distinct positive integers, is given by
Q1

n�1(1� x n),

solving NaudeÂ's ®rst problem. Generalizing Euler's argument, we ®nd thatQ1
n�1(1� x2n�1),

Q1
n�1(1� x2n), and

Q1
n�1(1� x n2

) represent respec-

tively the generating functions for the number of ways the positive integer

n can be written as a sum of distinct odd positive integers, even positive

integers, and squares.

With respect to NaudeÂ's second problem, Euler realized that

1

(1ÿ xz)(1ÿ x2z)(1ÿ x3z)(1ÿ x4z) � � �
� 1

1ÿ xz

� �
1

1ÿ x2z

� �
1

1ÿ x3z

� �
1

1ÿ x4z

� �
� � �

� (1� xz� x2z2 � x3z3 � � � �)(1� x2z� x4z2 � x6z3 � � � �)
3 (1� x3z� x6z2 � x9z3 � � � �)(1� x4z� x8z2 � x12z3 � � � �) � � � :

Hence the coef®cient of x nz m in the expression represents the number of

ways that n can be written as a sum of m not necessarily distinct positive

integers. For example, the coef®cient of x8z3 is 5 and it results from

summing the terms (x6z)(x2z), (x5z)(x2z)(xz), (x4z)(x3z)(xz), (x4z)(x4z2),

and (x6z2)(x2z). They are the terms corresponding respectively to the

partitions 6� 1� 1, 5� 2� 1, 4� 3� 1, 4� 2� 2, and 3� 3� 2 of 8.

If we let z � 1 in the above expression, we obtain

1

(1ÿ x)(1ÿ x2)(1ÿ x3)(1ÿ x4) � � �
� 1

1ÿ x

� �
1

1ÿ x2

� �
1

1ÿ x3

� �
1

1ÿ x4

� �
� � �

� (1� x� x2 � � � �)(1� x2 � x4 � � � �)(1� x3 � x6 � � � �)
3 (1� x4 � x8 � � � �) � � �

� 1� x� 2x2 � 3x3 � 5x4 � 7x5 � 11x6 � 15x7 � 22x8 � � � � ,
where the coef®cient of x n represents the number of ways n can be written

as the sum of not necessarily distinct positive integers. For example, the

partition 3� 2� 2� 2� 1 of 10 corresponds, in the previous expression,

to x . x6 . x3 . 1 . 1 . 1 � � � . That is, in the product of sums, it corresponds to
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choosing x from the ®rst sum, x6 � x2�2�2 from the second sum, x3 from

the third sum, and 1 from the remaining sums. The partition 2� 2

� 2� 2� 1� 1 of 10 corresponds to x2 . x8 . 1 . 1 . 1 � � � . That is, in the

product of sums, it corresponds to choosing x2 from the ®rst sum, x8 �
x2�2�2�2 from the second sum, and 1 from the remaining sums. In addition,

the terms x3x6x1 and x8x2 each contribute exactly 1 to the coef®cient of

x10. In general, each partition of 10 contributes exactly once to the coef®-

cient of x10. Therefore, the generating function for p(n), the number of

ways n can be written as a sum of not necessarily distinct positive integers,

is given by

G(x) �
Y1
n�1

1

1ÿ x n
,

solving NaudeÂ's second problem.

In general, the coef®cient of x n in

1

(1ÿ xa)(1ÿ xb)(1ÿ xc)(1ÿ xd) � � �
� 1

1ÿ xa

� �
1

1ÿ xb

� �
1

1ÿ xc

� �
1

1ÿ xd

� �
� � �

� (1� xa � x2a � � � �)(1� xb � x2b � � � �)(1� xc � x2c � � � �)
3 (1� xd � x2d � � � �) � � �

is of the form x k1 ax k2 bx k3 cx k4 d � � � , where n � k1a� k2b� k3c �
k4d� � � � . Hence, the term x k1 ax k2 bx k3 cx k4 d � � � represents writing n as the

sum of k1 as, k2 bs, k3 cs, k4 ds, and so forth. Therefore,

G(x) � 1

(1ÿ xa)(1ÿ xb)(1ÿ xc)(1ÿ xd) � � �
is the generating function for expressing the positive integer n as a sum of

as, bs, cs, ds, and so forth. Thus,Y1
n�1

1

1ÿ x2n
,
Y1
n�1

1

1ÿ x2n�1
,
Y1
n�1

1

1ÿ x n2

represent, respectively, the generating functions for the number of ways of

representing the positive integer n as a sum of not necessarily distinct

positive even integers, positive odd integers, and squares. In addition,

1=(1ÿ x6)(1ÿ x8)(1ÿ x10) � � � represents the generating function for the

number of partitions of the positive integer n into even integers greater

than 6. Analogously, the generating function for pk(n), the number of ways

of partitioning the positive integer n using only positive integers less than

or equal to k, is 1=(1ÿ x)(1ÿ x2)(1ÿ x3) � � � (1ÿ x k).

9.2 Partitions 289



Let po(n) and pe(n) denote the number of partitions of the positive

integer n using only odd or only even positive integers, respectively. For

example, the only ways to partition 7 into odd positive integers are 7,

5� 1� 1, 3� 3� 1, 3� 1� 1� 1� 1, and 1� 1� 1� 1� 1� 1� 1.

Therefore, po(7) � 5. The only ways to partition 6 into even positive

integers are 6, 4� 2, and 2� 2� 2. Therefore, pe(6) � 3. The elegant

proof of the next result is due to Euler.

Theorem 9.1 (Euler's parity law) For any positive integer n, the number

of partitions of n using only odd positive integers equals the number of

partitions of n into distinct parts.

Proof The generating function for po(n) is

1

(1ÿ x)(1ÿ x3)(1ÿ x5) � � � �
(1ÿ x2)(1ÿ x4)(1ÿ x6) � � �
(1ÿ x)(1ÿ x2)(1ÿ x3) � � �

� (1� x)(1� x2)(1� x3) � � � ,
which is the generating function for pd(n), the number of partitions of n

into distinct parts. Therefore, po(n) � pd(n). j

Exercises 9.2

1. Determine all the ordered partitions of 4 and 5.

2. Write out the partitions for n � 8 and 9.

3. What does the coef®cient of x nz m in the expression (1� xaz)(1

� xbz)(1� xcz)(1� xd z)(1� xez) � � � represent?

4. What does the coef®cient of x nz m in the expression

1

(1ÿ xaz)(1ÿ xbz)(1ÿ xcz)(1ÿ xdz)(1ÿ xez) � � �
represent?

5. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of cubes.

6. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of triangular numbers.

7. Determine the generating function for the number of ways the positive

integer n can be written as a distinct sum of prime numbers.

8. Determine the generating function for the number of ways the postive

integer n can be written as a sum of cubes.

9. Determine the generating function for the number of ways the positive

integer n can be written as a sum of triangular numbers.
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10. Determine the generating function for the number of ways the positive

integer n can be written as a sum of prime numbers.

11. Determine the generating function for the numbers of ways of repre-

senting the positive integer n as a sum of distinct primes each greater

than 7.

12. Determine the generating function for the number of ways of repre-

senting the positive integer n as a sum of odd numbers greater than 11.

13. Determine the generating function for the number of ways of repre-

senting the positive integer n as a sum of even numbers between 6 and

20 inclusive.

14. Determine the ®rst 10 coef®cients of (1� x)(1� x2)(1� x4)(1 �
x8)(1� x16) � � � , the generating function for the number of ways of

representing the positive integer n as a sum of powers of 2.

15. Determine all the odd partitions of 9 and all the partitions of 9 into

distinct parts.

16. Find all the even partitions of 10.

17. Find all the partitions of 10 using only the integers 3, 4, 5, 6, 7.

18. Show that the number of partitions of n into at most two parts is given

by ��n=2��.
19. For 1 < n < 9, construct a table with columns p(n), the number of

partitions of n; pe(n), the number of partitions of n using only even

positive integers; po(n), the number of partitions of n using only odd

positive integers; pd(n), the number of partitions of n using distinct

positive integers; ped(n), the number of partitions of n into an even

number of distinct parts; pod(n), the number of partitions of n into an

odd number of distinct parts; and p1(n), the total number of 1s that

appear in the partitions of n.

9.3 Pentagonal Number Theorem

In 1853, Norman Macleod Ferrers communicated to J.J. Sylvester an

ingenious method for representing partitions. Ferrers, an Etonian, was

Senior Wrangler and First Smith's Prizeman at Cambridge in 1851. He

edited The Mathematical Papers of George Green and served as Master of

Gonville and Caius College and Vice-Chancellor of Cambridge University.

His geometric representation is useful in establishing a number of results

concerning partitions. Given a partition n1 � n2 � n3 � n4 � � � � of the

positive integer n, the Ferrers diagram associated with the partition is an

array with nk dots in the kth row. If we interchange the rows and columns

of a Ferrers diagram, we obtain the conjugate Ferrers diagram.
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For example, in Figure 9.1, the partition 8� 4� 3� 3� 2� 1� 1 of

22 is represented by a Ferrers diagram. The Ferrers diagram of its

congugate partition, 7� 5� 4� 2� 1� 1� 1� 1, is shown in Figure

9.2.

Using our convention of expressing each partition of a positive integer

with terms in descending order, the longest row of each Ferrers diagram

will be at the top and the longest column will be the ®rst. Any Ferrers

diagram identical with its conjugate is called a selfconjugate Ferrers

diagram. For example, the partition 5� 3� 2� 1� 1 of 12 is self-

conjugate. Its Ferrers diagram is shown in Figure 9.3.

In 1882, J.J. Sylvester and William Pitt Durfee, a graduate student at

Johns Hopkins, noted that in any selfconjugate partition the shells outlined

in the selfconjugate Ferrers diagrams, shown in Figure 9.4, contain an odd

number of dots. Thus, the Ferrers diagrams represent the partition of a

positive integer into a sum of odd parts as for selfcongugate partitions of

12 and 24. Conversely, any partition of a positive integer into a sum of odd

Figure 9.1

Figure 9.2

Figure 9.3
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parts yields a selfconjugate partition of that positive integer. The result is

stated as the next theorem. After receiving his degree from Johns Hopkins,

Durfee taught mathematics at Hobart College, now Hobart±William Smith

College, in Geneva, New York.

Theorem 9.2 (Durfee±Sylvester) The number of partitions of a positive

integer n into odd distinct parts equals the number of partitions of n whose

Ferrers diagrams are selfconjugate.

Recall that pk(n) represents the number of partitions of n into parts none

of which exceeds k and p(n, k) denotes the number of partitions of n into

exactly k parts. Hence, pk(n)ÿ pkÿ1(n) represents the number of parti-

tions of n into parts the largest of which is k. For each partition for which

the largest part is k, the conjugate partition has k parts and vice versa.

Hence, the number of partitions of n into k parts equals the number of

partitions of n into parts the largest of which is k. Similarly, the number of

partitions of n into at most k parts equals the number of partitions of n into

parts which do not exceed k. Hence, we have established the next result.

Theorem 9.3 (Ferrers) For any positive integer n, p(n, k) � pk(n) ÿ
pkÿ1(n).

9 1 3

13 1 7 1 3 1 1

Figure 9.4
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Let pm(n, k) denote the number of partitions of n into k parts none of

which is larger than m. Consider a Ferrers diagram of the positive integer

aÿ c with bÿ 1 parts none of which is larger than c and adjoin a new top

row of length c to obtain a Ferrers diagram representing a partition of a

into b parts the largest of which is c. The conjugate of the revised Ferrers

diagram represents a partition of a into c parts the largest of which is b.

Deleting the top row of the conjugate Ferrers diagram we obtain a Ferrers

diagram representing a partition of aÿ b into cÿ 1 parts the largest of

which is b. The operations are reversible, hence, we have established the

next result, ®rst established by Sylvester in 1853.

Theorem 9.4 (Sylvester) If a, b, c are positive integers such that a . b

and b . c, then pc(aÿ c, bÿ 1) � pb(aÿ b, cÿ 1).

For a given positive integer n, there is no elementary formula for determin-

ing p(n). However, the next result, due to Euler, can be used to evaluate

p(n). Since p(n, k) denotes the number of partitions of n into exactly k

parts, it follows that p(n) �Pn
k�1 p(n, k). Some values of p(n, k) are

shown in Table 9.2. For convenience, we denote the order of a set A, that is

the number of elements in A, by |A|.

Table 9.2.

k

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 1 1
3 1 1 1
4 1 2 1 1
5 1 2 2 1 1
6 1 3 3 2 1 1
7 1 3 4 3 2 1 1
8 1 4 5 5 3 2 1 1
9 1 4 7 6 5 3 2 1 1

10 1 5 8 9 7 5 3 2 1 1
11 1 5 10 11 10 7 5 3 2 1 1
12 1 6 12 15 13 11 7 5 3 2 1 1
13 1 6 14 18 18 14 11 7 5 3 2 1 1
14 1 7 16 23 23 20 15 11 7 5 3 2 1 1
15 1 7 19 27 30 26 21 15 11 7 5 3 2 1 1
16 1 8 21 34 37 35 28 22 15 11 7 5 3 2 1 1
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Theorem 9.5 (Euler) For positive integers n and k with k < n,

p(n, k) � p(nÿ 1, k ÿ 1)� p(nÿ k, k).

Proof From Theorem 9.3, the number of partitions of n into exactly k

parts, p(n, k), is also the number of partitions of n into parts the largest of

which is k. Let S represent the set of partitions of n into parts the largest of

which is k. Hence, jSj � p(n, k). Let T represent the union of the set A of

partitions of nÿ 1 whose largest term is k ÿ 1 and the set B of partitions

of nÿ k whose largest term is k. Since A and B are disjoint,

jT j � jAj � jBj � p(nÿ 1, k ÿ 1)� p(nÿ k, k). Any partition in S has

the form x1 � � � � � xrÿ1 � xr � n, where k � x1 > � � � > xr. If k �
x1 . x2, we associate it with (x1 ÿ 1)� x2 � � � � � xr � nÿ 1, an element

of A. If x � x2 � k, associate it with x2 � x3 � � � � � xr �
nÿ x1 � nÿ k, an element of B. The association is a one-to-one mapping

from S into T, hence jSj < jT j. Any partition in T is of the form

á � u1 � u2 � � � � � ur � nÿ 1, where k ÿ 1 � u1 > � � � > ur � k ÿ 1,

or â � v1 � v2 � � � � � vs � nÿ k, where k � v1 > � � � > vs. Any parti-

tion of the form á, we associate with the partition (u1 � 1) �
� � � � ur � n. Since ur1

� 1 � k, this partition is in S. Any partition of the

form â, we associate with the partition k � v1 � � � � � vs � n, which is an

element of S. This association is a one-to-one mapping from T into S,

hence, jSj > jT j. Therefore, jSj � jT j and the result is established. j

The next result, ®rst proven in 1881 by Fabian Franklin, a professor of

mathematics at Johns Hopkins University, is instrumental in deriving

Euler's Pentagonal Number Theorem. Franklin was the husband of the

mathematician±psychologist, Christine Ladd Franklin. When he left Johns

Hopkins to begin a career in journalism in New York, Ladd taught at

Columbia.

Consider a Ferrers diagram for n, with b dots on the bottom row and s

dots on the rightmost NE±SW diagonal. If b , s remove the b dots on the

bottom row and adjoin one each to the end of each of the ®rst b rows of the

diagram. For example, in Figure 9.5, where b � 2 and s � 3, the partition

6� 5� 4� 2� 2 of 19 is transformed into the partition 7� 6� 4� 2 of

19. This process transforms a partition of n with an even number of distinct

parts into a partition of n with an odd number of distinct parts and vice

versa.

If b . s� 1 remove the rightmost diagonal and adjoin it to the bottom of

the diagram making it the new bottom row. For example, in Figure 9.6,

where b � 4 and s � 2, the partition 7� 6� 4 of 17 is transformed into
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the partition 6� 5� 4� 2 of 17. This process transforms a partition of n

with an even number of distinct parts into a partition of n with an odd

number of distinct parts and vice versa.

In the two remaining cases, where b � s and b � s� 1, no similar

process can be carried out, for example, in Figure 9.7, where b � s � 3 in

the partition 5� 4� 3 of 12, or in Figure 9.8, where b � 3 and s � 2 and

the bottom row and rightmost diagonal have a point in common.

If b � s then n � b� (b� 1) � � � � � (2bÿ 1) � b(3bÿ 1)=2 and if

b � s� 1 then n � (s� 1)� (s� 2) � � � � � 2s � s(3s� 1)=2. If b does

not equal s or s� 1, then exactly one of the above operations can be

carried out. Hence, there is a one-to-one correspondence between partitions

of n into an even number of distinct parts and partitions of n into an odd

number of distinct parts, and for these values of n, ped(n) ÿ pod(n) � 0. In

the two exceptional cases, when n � k(3k � 1)=2, the difference is (ÿ1)k

and we have established Theorem 9.6.

Theorem 9.6 (Franklin) If n is a positive integer, and ped(n) and pod(n)

represent, respectively, the number of partitions of the positive integer n

into even and odd distinct parts, then

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8
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ped(n)ÿ pod(n) �
0 if n 6� 3k � 1

2
,

(ÿ1)k if n � 3k � 1

2
:

8><>:
Recall that the generating function for pd(n), the number of ways n can be

written as a sum of distinct positive integers, is
Q1

n�1(1� x n). Substituting

ÿx for x, we account for the contribution of a plus or minus 1 to each

coef®cient depending on whether the number of distinct parts in the

partition is even or odd respectively. Hence, it follows from Theorem 9.6

that Y1
n�1

(1ÿ x n) � 1�
Y1
n�1

( ped(n)ÿ pod(n))x n

� 1�
X1
n�1

(ÿ1)nx n(3n�1)=2 �
X1
n�1

(ÿ1)nx n(3nÿ1)=2

and we have established the Pentagonal Number Theorem.

Theorem 9.7 (Euler's Pentagonal Number Theorem) For any positive

integer n,Y1
n�1

(1ÿ x n) � 1�
X1
n�1

(ÿ1)nx n(3n�1)=2 �
X1
n�1

(ÿ1)nx n(3nÿ1)=2:

Euler used the Pentagonal Number Theorem in 1750 to develop a formula

to determine values of p(n) recursively as illustrated in the next result.

Theorem 9.8 (Euler) For any positive integer n, p(n), the number of

partitions of n, is given by

p(nÿ 1)� p(nÿ 2)ÿ p(nÿ 5)ÿ p(nÿ 7)� p(nÿ 12)� p(nÿ 15)

� � � � � (ÿ1)k�1 p nÿ 3k2 ÿ k

2

� �
� p nÿ 3k2 � k

2

� �� �
:

Proof Recall that the generating function of p(n) is given byY1
n�1

1

1ÿ x n
:

From Theorem 9.7,
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1 � 1Y1
n�1

(1ÿ x n)

.
Y1
n�1

(1ÿ x n)

�
X1
n�0

p(n)x n

" #
. [1ÿ xÿ x2 � x5 � x7 ÿ x12 ÿ � � �

� (ÿ1)k(x(3k2ÿk)=2 � x(3k2�k)=2)]:

Expanding and collecting terms, we obtain

1 � p(0)ÿ [ p(0)ÿ p(1)]x� [ p(2)ÿ p(0)ÿ p(1)]x2� � � �

�
�

p(n)ÿ p(nÿ 1)ÿ p(nÿ 2)� p(nÿ 5)� p(nÿ 7)

ÿ p(nÿ 12)ÿ p(nÿ 15) � � � �

� (ÿ1)k p nÿ 3k2 ÿ k

2

� �
� p nÿ 3k2 � k

2

� �� �
� � � �

�
x n� � � � :

Cancelling p(0) � 1 from both sides of the equations and equating the

coef®cients of x n, for n > 1, to 0, we obtain Euler's partition formula

p(n) � p(nÿ 1)� p(nÿ 2)ÿ p(nÿ 5)ÿ p(nÿ 7)� p(nÿ 12)

� p(nÿ 15) ÿ � � �

� (ÿ1)k�1 p nÿ 3k2 ÿ k

2

� �
� p nÿ 3k2 � k

2

� �� �
: j

Major Percy Alexander MacMahon used Euler's result to calculate the

value of p(200), which he found to be 3 972 999 029 388. After a distin-

guished career with the Royal Artillery in Madras and as an instructor at

the Royal Military Academy, Woolwich, MacMahon at age 58 went up to

Cambridge University to pursue research in combinatorial number theory.

He was elected a member of St John's College and served as president of

the London Mathematical Society and of the Royal Astronomical Society.

About the same time that he derived the partition formula, Euler devised

an analogous formula for ó(n), the sum of the divisors of n.

Theorem 9.9 (Euler) If n is a positive integer, then

ó (n) � ó (nÿ 1)� ó (nÿ 2)ÿ ó (nÿ 5)ÿ ó (nÿ 7)� ó (nÿ 12)

� ó (nÿ 15) � � � � � (ÿ1)k�1 ó nÿ 3k2 ÿ k

2

� �
� ó nÿ 3k2 � k

2

� �� �
,

where ó (k) � 0 if k , 0 and ó (0) � k.
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Proof Let

G(x) �
X1
n�1

ó (n)x n �
X1
n�1

nx n

1ÿ x n
:

Assume that jxj, 1. Divide both sides by x and integrate with respect to x,

and use Theorem 9.7 to obtain�
G(x) dx

x
�
�X1

n�1

nx nÿ1 dx

1ÿ x n
� ÿ

X1
n�1

ln(1ÿ x n) � ÿln
Y1
n�1

(1ÿ x n)

 !
� ÿln(1ÿ xÿ x2 � x5 � x7 ÿ x12 ÿ x15� � � �):

Differentiate both sides with respect to x, we obtain

G(x)

x
� ÿ1ÿ 2x� 5x4 � 7x6 ÿ � � �

1ÿ xÿ x2 � x5 � x7 ÿ � � � :
Hence,

G(x) � ÿxÿ 2x2 � 5x5 � 7x7 ÿ � � �
1ÿ xÿ x2 � x5 � x7 ÿ � � � �

X1
n�1

ó (n)x n:

By crossmultiplying and equating coef®cients of x n the result follows. j

In 1829 C.G.J. Jacobi established the triple product identityQ1
n�1(1ÿ x2n)(1� x2nÿ1z)(1� x2nÿ1zÿ1) � P1

n�ÿ1x n2

z n, where z 6� 0

and jxj, 1. He used it to established the following results.

(a)
Y1
n�0

(1ÿ x2nÿ2)(1� x n) �
X1

n�ÿ1
x n(n�1)=2,

(b)
Y1
n�0

1ÿ x2n

1ÿ x2nÿ1
�
X1
n�0

x n(n�1)=2, and

(c)
Y1
n�0

(1ÿ x2n)3 �
X1
n�0

(ÿ1)n(2n� 1)x n(n�1)=2.

For example if we let x � z � u1=2 in the triple product identity on the left

we obtain
Q1

n�1(1ÿ u n)(1� u n)(1� u nÿ1) �P1n�ÿ1u n(n�1)=2. However,Y1
n�1

(1ÿ u n)(1� u n)(1� u nÿ1) �
Y1
n�1

(1ÿ u2n)(1� u nÿ1)

�
Y1
n�0

(1ÿ u2n�2)(1� u n)

and (a) is established.

In 1878, Franklin considered the partitions of n which contain at most

one 1. If a partition contained exactly one 1, he counted it as 1. If it

contained no 1s he counted the number of distinct elements in it. He found
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the total sum to be p(nÿ 1), as illustrated in Figure 9.9 for the case when

n � 8.

MacMahon discovered an interesting relationship concerning partitions

which he included in Combinatorial Analysis. MacMahon de®ned a

partition of n to be perfect if every integer from 1 to nÿ 1 can be

represented in a unique way as a sum of parts from the partition.

For example, the partition 7 � 4� 2� 1 is a perfect partition of 7 since

1 � 1,

2 � 2,

3 � 2� 1,

4 � 4,

5 � 4� 1,

6 � 4� 2:

The other perfect partitions of 7 are 4� 1� 1� 1, 2� 2� 2� 1, and

1� 1� 1� 1� 1� 1� 1.

Theorem 9.10 (MacMahon) The number of perfect partitions of n equals

the number of ways of factoring n� 1, where the order of the factors

counts and factors of 1 are not counted.

Proof There must be at least one 1 in any perfect partition of n� 1 and if

there are x 1s then the next smallest element in the partition must be x� 1

since all smaller integers can be written as the sum of 1s alone. If there are

y parts of x� 1 the next smallest number in the partition must be

x� y(x� 1)� 1 � (x� 1)(y� 1). Hence, if the different parts of the

partition occur x, y, z, . . . times then (x� 1)(y� 1)(z� 1) � � � � n� 1,

and the number of perfect partitions of n is the same as the number of ways

8
7 1 1
6 1 2
5 1 3
5 1 2 1 1
4 1 4
4 1 3 1 1
4 1 2 1 2
3 1 3 1 2
3 1 2 1 2 1 1
2 1 2 1 2 1 2

11
11
12
12
11
11
11
12
12
11
11
15 5 p(7)

Figure 9.9
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of factoring n� 1 where the order of the factors counts and factors of 1 are

not counted. j

Ramanujan proved that the number of partitions of n with unique smallest

part (it occurs only once) and largest part at most twice the smallest part is

equal to the number of partitions of n in which the largest part is odd and

the smallest part is larger than half the largest part. George Andrews of

Pennsylvania State University proved that the number of partitions of n in

which only odd parts may be repeated equals the number of partitions of n

in which no part appears more than three times. In 1958, R.K. Guy showed

that the numbers of partitions of a positive integer into (a) odd parts greater

than unity, (b) unequal parts such that the greatest two parts differ by unity,

and (c) unequal parts which are not powers of 2, are all equal.

Let p1(n) denote the 1s number of a positive integer n, that is, the total

number of 1s that appear in all the partitions of n. Richard Stanley, a

combinatorialist at MIT, de®ned the parts number of n, denoted by pp(n),

to be the sum of distinct parts in each partition of n. For example, if n � 6,

pp(6) � p1(6) � 19, as illustrated in Table 9.3.

Theorem 9.11 (Stanley) For any positive integer n, p1(n) � pp(n).

Proof If we add a 1 to any partition of nÿ 1, we obtain a partition of n

with at least one 1. Hence, the number of partitions of n which have at

least one 1 is p(nÿ 1). The number of partions of n which have two or

more 1s is p(nÿ 2), and so forth. Hence, the 1s number of n equals

Table 9.3.

Partitions Number of distinct parts
in each partition

6 1
5 � 1 2
4 � 2 2
4 � 1 � 1 2
3 � 3 1
3 � 2 � 1 3
3 � 1 � 1 � 1 2
2 � 2 � 2 1
2 � 2 � 1 � 1 2
2 � 1 � 1 � 1 � 1 2
1 � 1 � 1 � 1 � 1 � 1 1
Total 19
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p(n)� p(nÿ 1) � � � � � p(1)� 1. Since k occurs in exactly p(nÿ k)

partitions of n, the parts number of n also equals p(n)� p(n

ÿ 1) � � � � � p(1)� 1. j

It can be shown that

lim
n!1

p(n� 1)

p(n)
. 1

(see [Grosswald]). Finding reasonable bounds for p(n) is a dif®cult task.

However, we are able to derive the following upper bound for p(n).

Theorem 9.12 For any positive integer n, p(n) , e3
p

n.

Proof Let G(x) �P1i�0 p(n)x n �Q1k�1(1ÿ x k)ÿ1 be the generating

function for p(n). Hence,

ln G(x) � ÿln(1ÿ x)ÿ (ln(1ÿ x2)ÿ ln(1ÿ x3)ÿ � � �

� x� x2

2
� x3

3
� � � �

� �
� x2 � x4

2
� x6

3
� � � �

� �
� x3 � x6

2
� x9

3
� � � �

� �
� � � �

� (x� x2 � x3� � � �)� x2

2
� x4

2
� x6

2
� � � �

� �
� x3

3
� x6

3
� x9

3
� � � �

� �
� � � �

� x

1ÿ x

� �
� 1

2

x2

1ÿ x2

� �
� 1

3

x3

1ÿ x3

� �
� � � � :

If 0 , x , 1, then x nÿ1 , x nÿ2 , � � � , x2 , x , 1. Since the average of a

set of numbers is bigger than the smallest number in the set,

x nÿ1 ,
1� x� x2 � � � � � x nÿ1

n

or

x nÿ1

1� x� x2 � � � � � x nÿ1
,

1

n
:

Thus,

x n

1ÿ x n
� x nÿ1

1� x� x2 � � � � � x nÿ1
.

x

1ÿ x
,

1

n
.

x

1ÿ x
:

Hence,

302 Partitions



ln G(x) ,
x

1ÿ x

� �
� 1

2

� �2
x

1ÿ x

� �
� 1

3

� �2
x

1ÿ x

� �
� � � �

� x

1ÿ x

� �
1� 1

22
� 1

32
� � � �

� �
,

x

1ÿ x

� �
1�

�1
1

1

x2
dx

� �
� 2x

1ÿ x
:

Thus, G(x), a sum of positive terms, is bigger than any one of its terms, in

particular, G(x) . p(n)x n. Therefore, ln p(n) , ln G(x)ÿ n . ln(x). That is,

ln p(n) ,
2x

1ÿ x
ÿ n ln x , 2

x

1ÿ x

� �
� n

1ÿ x

x

� �
:

If we now let x � ���
n
p

=
�����������
n� 1
p

, we obtain ln p(n) , 3
p

n and the result is

established. j

Hardy and Ramanujan were able to show that

p(n) � 1

4
���
3
p

n
eð

����������
2
p

n=3
p

,

a result made exact by Hans Rademacher, a number theorist at the

University of Pennsylvania. Rademacher found an expression that, when

rounded to the nearest integer, equaled p(n). In 1919 Ramanujan discov-

ered a number of modular identities concerning partition numbers. In

particular, for any positive integer n, he showed the following.

(a) p(5n� 4) � 0 (mod 5),

(b) p(7n� 5) � 0 (mod 7), and

(c) p(11n� 6) � 0 (mod 11).

One may generalize partitions to Young tableaux, whose properties were

developed by Alfred Young, a Fellow of Clare College, Cambridge, who

served for many years as the rector at Birdbrook in Essex, England. Given

a positive integer n, a Young tableau for n of shape (n1, n2, . . . , nm) is a

Ferrers diagram for the partition n1 � n2 � � � � � nm of n, where adjacent

boxes are employed rather than dots, the ith row contains ni elements, the

integers from 1 to n are distributed in the boxes in such a way that all rows

and columns are increasing. For example, a Young tableau for the partition

5� 4� 2� 1 of 12, that is a Young tableau of shape (5, 4, 2, 1), is

illustrated in Table 9.4. Young tableaux can be used to generate symmetric
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groups in group representation theory a topic that is beyond the scope of

this book.

Exercises 9.3

1. Determine the 17th row of Table 9.2.

2. Show that pp(7) � p1(7).

3. Construct Ferrers diagrams for all 15 partitions of 7. Which of them

are selfconjugate?

4. Show that the partition 2� 2� 2� 1 of 7 is perfect.

5. Use Jacobi's triple product identity with x � u3=2 and z � ÿu1=2 to

establish Euler's Pentagonal Number Theorem.

6. In 1944, F.J. Dyson de®ned the rank of a partition to be the largest part

minus the number of parts. Prove that the ranks of a partition and its

conjugate differ only in sign.

7. Determine the sum of the ranks of the ®ve partitions of 4 modulo 5.

8. Determine the sum of the ranks of the 30 partitions of 9 modulo 5.

9. Show that, in general, if n � 4 (mod 5) there are an equal number of

ranks in each least positive residue class modulo 5. Hence,

p(5k � 4) � 0 (mod 5).

10. Determine at least two Young tableaux of shape (5, 4, 2, 1).

11. Determine all 16 Young tableaux of shape (3, 2, 1).

Table 9.4.

1 3 4 7 11

2 5 10 12

6 9

8
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Tables

Table T.1. List of symbols used

A(n) arithmetic mean of the divisors of n
Bn nth Bernoulli number
dk(n) number of distinct solutions to the equation x1

. x2 � � � xk � n
D(n) smallest positive integer with n divisors
E(n) excess of the number of divisors of n of the form 4k � 1 over

the number of divisors of n of the form 4k � 3
En nth square±triangular number
f n nth fortunate number
f m

n nth mth order ®gurate number
Fn nth Fermat number
F n Farey fractions of order n
G(n) geometric mean of the divisors of n
H set of Hilbert numbers
Hn nth harmonic number
H(n) harmonic mean of the divisors of n
I(n) index of n
Kn n-digit Kaprekar constant
Ka1

Kaprekar sequence with ®rst term a1

Mn nth Monica set
Mp Mersenne prime
nb n written to the base b
on nth oblong number
On nth octahedral number
pm

n nth m-gonal number
pe(n) number of partitions of n using only even integers
ped(n) number of partitions of n into even distinct parts
pk(n) number of ways of partitioning n using only integers less than or

equal to k
po(n) number of partitions of n using only odd positive integers
pod(n) number of partitions of n into odd distinct parts
p1(n) 1s number of a positive integer n
pp(n) parts numbers of n
p(n, k) number of partitions of n into exactly k parts
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Table T.1. (cont.)

pm(n, k) number of partitions of n into k parts none of which is larger
than m

P3
n nth tetrahedral number

P4
n nth pyramidal number

P#
n product of the ®rst n primes

P n nth prime
Q(n) number of squarefull numbers less than n
rn,k rectangular number of the form n(n� k)
Rn nth repunit
sd(n) sum of the digits of n
sd(n, b) sum of the digits of n base b
sp(n, b) prime digital sum of n expressed in base b
sn nth square number
s(n) sum of divisors of n that are less than n
s�(n) Chowla's function, ó (n)ÿ nÿ 1
S complement of set S
Sn nth Suzanne set
S(n) sum of the squarefree positive integers less than n
Sd(n, b) extended digital sum of n
tn nth triangular number
t(nÿ k, k) number of divisors of nÿ k greater than k
T (n) Trigg operator
T m

n nth m-triangular number
un nth Fibonacci number
u(m, n) Ulam (m, n)-numbers
vn nth Lucas number
v(m, n) non-Ulam (m, n)-numbers
V (n) number of perfect numbers less than n
Zm f0, 1, 2, . . . , mÿ 1g
Z�m f1, 2, . . . , mÿ 1g
ã Euler±Mascheroni number
Än nth differences of a sequence
æ(n) Riemann zeta-function
è(n) excess of the sum of odd divisors of n over the even divisors

of n
ë(n) Liouville lambda-function
Ë(n) Von Mangolt's function
Ëc(n) Carmichael's lambda function
ì(n) MoÈbius function
í(n) sum of the MoÈbius function over the divisors of n
î(n) number of positive integers k, 1 < k < n, such that k is not a

divisor of n and gcd(k, n) 6� 1
ð(x) number of primes less than or equal to x
r(n) digital root of the positive integer n
ó(n) sum of the positive divisors of n
ó�(n) sum of the unitary divisors of n
óe(n) sum of the even divisors of n
ók(n) sum of the kth powers of the divisors of n
óo(n) sum of the odd divisors of n
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Table T.1. (cont.)

ô golden ratio
ô(n) number of positive divisors of n
ôe(n) number of even divisors of n
ôk(n) generalized number of divisors of n
ôo(n) number of odd divisors of n
ô(m, n) number of positive divisors of n which are congruent to m

modulo 4
ö(n) number of positive integers less than n and coprime to n
÷(n) î(d) summed over the divisors of n
Ø(n) inner product of primes and powers in the canonical

representation of n
ù(n) number of distinct prime factors of n
Ù(n) the degree of the positive integer n
ajb a `divides' b
a6 jb a `does not divide' b
pá im pá `exactly divides' m
jxj absolute value of x
jnj p p-adic valuation of n
��x�� greatest integer not greater than x
(a0a1 � � � an)b base b expansion of a0a1 � � � an

[a1, a2, . . . , an] simple continued fraction
gcd(a, b) greatest common divisor of a and b
lcm(a, b) least common multiple of a and b
ordn(a) order of a modulo n
a � b (mod n) a is `congruent to' b modulo n
(n

r ) binomial coef®cient
( n

p
) Legendre symbolY

djn
product of the divisors of nX

djn
summation over the divisors of n

�n nth star number
n! n factorial
!n 0! � � � � � (nÿ 1)!
� approximately equal
, equivalence of binary quadratic forms
f � g Dirichlet product of f and g
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Table T.2. Primes less than 10 000

2 151 353 577 811 1049 1297 1559
3 157 359 587 821 1051 1301 1567
5 163 367 593 823 1061 1303 1571
7 167 373 599 827 1063 1307 1579

11 173 379 601 829 1069 1319 1583
13 179 383 607 839 1087 1321 1597
17 181 389 613 853 1091 1327 1601
19 191 397 617 857 1093 1361 1607
23 193 401 619 859 1097 1367 1609
29 197 409 631 863 1103 1373 1613

31 199 419 641 877 1109 1381 1619
37 211 421 643 881 1117 1399 1621
41 223 431 647 883 1123 1409 1627
43 227 433 653 887 1129 1423 1637
47 229 439 659 907 1151 1427 1657

53 233 443 661 911 1153 1429 1663
59 239 449 673 919 1163 1433 1667
61 241 457 677 929 1171 1439 1669
67 251 461 683 937 1181 1447 1693
71 257 463 691 941 1187 1451 1697

73 263 467 701 947 1193 1453 1699
79 269 479 709 953 1201 1459 1709
83 271 487 719 967 1213 1471 1721
89 277 491 727 971 1217 1481 1723
97 281 499 733 977 1223 1483 1733

101 283 503 739 983 1229 1487 1741
103 293 509 743 991 1231 1489 1747
107 307 521 751 997 1237 1493 1753
109 311 523 757 1009 1249 1499 1759
113 313 541 761 1013 1259 1511 1777

127 317 547 769 1019 1277 1523 1783
131 331 557 773 1021 1279 1531 1787
137 337 563 787 1031 1283 1543 1789
139 347 569 797 1033 1289 1549 1801
149 349 571 809 1039 1291 1553 1811
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Table T.2. (cont.)

1823 2131 2437 2749 3083 3433 3733 4073
1831 2137 2441 2753 3089 3449 3739 4079
1847 2141 2447 2767 3109 3457 3761 4091
1861 2143 2459 2777 3119 3461 3767 4093
1867 2153 2467 2789 3121 3463 3769 4099

1871 2161 2473 2791 3137 3467 3779 4111
1873 2179 2477 2797 3163 3469 3793 4127
1877 2203 2503 2801 3167 3491 3797 4129
1879 2207 2521 2803 3169 3499 3803 4133
1889 2213 2531 2819 3181 3511 3821 4139

1901 2221 2539 2833 3187 3517 3823 4153
1907 2237 2543 2837 3191 3527 3833 4157
1913 2239 2549 2843 3203 3529 3847 4159
1931 2243 2551 2851 3209 3533 3851 4177
1933 2251 2557 2857 3217 3539 3853 4201

1949 2267 2579 2861 3221 3541 3863 4211
1951 2269 2591 2879 3229 3547 3877 4217
1973 2273 2593 2887 3251 3557 3881 4219
1979 2281 2609 2897 3253 3559 3889 4229
1987 2287 2617 2903 3257 3571 3907 4231

1993 2293 2621 2909 3259 3581 3911 4241
1997 2297 2633 2917 3271 3583 3917 4243
1999 2309 2647 2927 3299 3593 3919 4253
2003 2311 2657 2939 3301 3607 3923 4259
2011 2333 2659 2953 3307 3613 3929 4261

2017 2339 2663 2957 3313 3617 3931 4271
2027 2341 2671 2963 3319 3623 3943 4273
2029 2347 2677 2969 3323 3631 3947 4283
2039 2351 2683 2971 3329 3637 3967 4289
2053 2357 2687 2999 3331 3643 3989 4297

2063 2371 2689 3001 3343 3659 4001 4327
2069 2377 2693 3011 3347 3671 4003 4337
2081 2381 2699 3019 3359 3673 4007 4339
2083 2383 2707 3023 3361 3677 4013 4349
2087 2389 2711 3037 3371 3691 4019 4357

2089 2393 2713 3041 3373 3697 4021 4363
2099 2399 2719 3049 3389 3701 4027 4373
2111 2411 2729 3061 3391 3709 4049 4391
2113 2417 2731 3067 3407 3719 4051 4397
2129 2423 2741 3079 3413 3727 4057 4409
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Table T.2. (cont.)

4421 4759 5099 5449 5801 6143 6481 6841
4423 4783 5101 5471 5807 6151 6491 6857
4441 4787 5107 5477 5813 6163 6521 6863
4447 4789 5113 5479 5821 6173 6529 6869
4451 4793 5119 5483 5827 6197 6547 6871

4457 4799 5147 5501 5839 6199 6551 6883
4463 4801 5153 5503 5843 6203 6553 6899
4481 4813 5167 5507 5849 6211 6563 6907
4483 4817 5171 5519 5851 6217 6569 6911
4493 4831 5179 5521 5857 6221 6571 6917

4507 4861 5189 5527 5861 6229 6577 6947
4513 4871 5197 5531 5867 6247 6581 6949
4517 4877 5209 5557 5869 6257 6599 6959
4519 4889 5227 5563 5879 6263 6607 6961
4523 4903 5231 5569 5881 6269 6619 6967

4547 4909 5233 5573 5897 6271 6637 6971
4549 4919 5237 5581 5903 6277 6653 6977
4561 4931 5261 5591 5923 6287 6659 6983
4567 4933 5273 5623 5927 6299 6661 6991
4583 4937 5279 5639 5939 6301 6673 6997

4591 4943 5281 5641 5953 6311 6679 7001
4597 4951 5297 5647 5981 6317 6689 7013
4603 4957 5303 5651 5987 6323 6691 7019
4621 4967 5309 5653 6007 6329 6701 7027
4637 4969 5323 5657 6011 6337 6703 7039

4639 4973 5333 5659 6029 6343 6709 7043
4643 4987 5347 5669 6037 6353 6719 7057
4649 4993 5351 5683 6043 6359 6733 7069
4651 4999 5381 5689 6047 6361 6737 7079
4657 5003 5387 5693 6053 6367 6761 7103

4663 5009 5393 5701 6067 6373 6763 7109
4673 5011 5399 5711 6073 6379 6779 7121
4679 5021 5407 5717 6079 6389 6781 7127
4691 5023 5413 5737 6089 6397 6791 7129
4703 5039 5417 5741 6091 6421 6793 7151

4721 5051 5419 5743 6101 6427 6803 7159
4723 5059 5431 5749 6113 6449 6823 7177
4729 5077 5437 5779 6121 6451 6827 7187
4733 5081 5441 5783 6131 6469 6829 7193
4751 5087 5443 5791 6133 6473 6833 7207
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Table T.2. (cont.)

7211 7561 7907 8273 8647 8971 9337 9677
7213 7573 7919 8287 8663 8999 9341 9679
7219 7577 7927 8291 8669 9001 9343 9689
7229 7583 7933 8293 8677 9007 9349 9697
7237 7589 7937 8297 8681 9011 9371 9719

7243 7591 7949 8311 8689 9013 9377 9721
7247 7603 7951 8317 8693 9029 9391 9733
7253 7607 7963 8329 8699 9041 9397 9739
7283 7621 7993 8353 8707 9043 9403 9743
7297 7639 8009 8363 8713 9049 9413 9749

7307 7643 8011 8369 8719 9059 9419 9767
7309 7649 8017 8377 8731 9067 9421 9769
7321 7669 8039 8387 8737 9091 9431 9781
7331 7673 8053 8389 8741 9103 9433 9787
7333 7681 8059 8419 8747 9109 9437 9791

7349 7687 8069 8423 8753 9127 9439 9803
7351 7691 8081 8429 8761 9133 9461 9811
7369 7699 8087 8431 8779 9137 9463 9817
7393 7703 8089 8443 8783 9151 9467 9829
7411 7717 8093 8447 8803 9157 9473 9833

7417 7723 8101 8461 8807 9161 9479 9839
7433 7727 8111 8467 8819 9173 9491 9851
7451 7741 8117 8501 8821 9181 9497 9857
7457 7753 8123 8513 8831 9187 9511 9859
7459 7757 8147 8521 8837 9199 9521 9871

7477 7759 8161 8527 8839 9203 9533 9883
7481 7789 8167 8537 8849 9209 9539 9887
7487 7793 8171 8539 8861 9221 9547 9901
7489 7817 8179 8543 8863 9227 9551 9907
7499 7823 8191 8563 8867 9239 9587 9923

7507 7829 8209 8573 8887 9241 9601 9929
7517 7841 8219 8581 8893 9257 9613 9931
7523 7853 8221 8597 8923 9277 9619 9941
7529 7867 8231 8599 8929 9281 9623 9949
7537 7873 8233 8609 8933 9283 9629 9967

7541 7877 8237 8623 8941 9293 9631 9973
7547 7879 8243 8627 8951 9311 9643
7549 7883 8263 8629 8963 9319 9649
7559 7901 8269 8641 8969 9323 9661
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Table T.3. The values of ô(n), ó(n), j(n), ì(n), ù(n), and Ù(n) for natural

numbers less than or equal to 100.

n ô(n) ó(n) j(n) ì(n) ù(n) Ù(n)

1 1 1 1 1 1 1
2 2 3 1 ÿ1 1 1
3 2 4 2 ÿ1 1 1
4 3 7 2 0 1 2
5 2 6 4 ÿ1 1 1
6 4 12 2 1 2 2
7 2 8 6 ÿ1 1 1
8 4 15 4 0 1 3
9 3 13 6 0 1 2

10 4 18 4 1 2 2
11 2 12 10 ÿ1 1 1
12 6 28 4 0 2 3
13 2 14 12 ÿ1 1 1
14 4 24 6 1 2 2
15 4 24 8 1 2 2
16 5 31 8 0 1 4
17 2 18 16 ÿ1 1 1
18 6 39 6 0 2 3
19 2 20 18 ÿ1 1 1
20 6 42 8 0 2 3
21 4 32 12 1 2 2
22 4 36 10 1 2 2
23 2 24 22 ÿ1 1 1
24 8 60 8 0 2 4
25 3 31 20 0 1 2
26 4 42 12 1 2 2
27 4 40 18 0 1 3
28 6 56 12 0 2 3
29 2 30 28 ÿ1 1 1
30 8 72 8 ÿ1 3 3
31 2 32 30 ÿ1 1 1
32 6 63 16 0 1 5
33 4 48 20 1 2 2
34 4 54 16 1 2 2
35 4 48 24 1 2 2
36 9 91 12 0 2 4
37 2 38 36 ÿ1 1 1
38 4 60 18 1 2 2
39 4 56 24 1 2 2
40 8 90 16 0 2 4
41 2 42 40 ÿ1 1 1
42 8 96 12 ÿ1 3 3
43 2 44 42 ÿ1 1 1
44 6 84 20 0 2 3
45 6 78 24 0 2 3
46 4 72 22 1 2 2
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Table T.3. (cont.)

n ô(n) ó(n) j(n) ì(n) ù(n) Ù(n)

47 2 48 46 ÿ1 1 1
48 10 124 16 0 2 5
49 3 57 42 0 1 2
50 6 93 20 0 2 3
51 4 72 32 1 2 2
52 6 98 24 0 2 3
53 2 54 52 ÿ1 1 1
54 8 120 18 0 2 4
55 4 72 40 1 2 2
56 8 120 24 0 2 4
57 4 80 36 1 2 2
58 4 90 28 1 2 2
59 2 60 58 ÿ1 1 1
60 12 168 16 0 3 4
61 2 62 60 ÿ1 1 1
62 4 96 30 1 2 2
63 6 104 36 0 2 3
64 7 127 32 0 1 6
65 4 84 48 1 2 2
66 8 144 20 ÿ1 3 3
67 2 68 66 ÿ1 1 1
68 6 126 32 0 2 3
69 4 96 44 1 2 2
70 8 144 24 ÿ1 3 3
71 2 72 70 ÿ1 1 1
72 12 195 24 0 2 5
73 2 74 72 ÿ1 1 1
74 4 114 36 1 2 2
75 6 124 40 0 2 3
76 6 140 36 0 2 3
77 4 96 60 1 2 2
78 8 168 24 ÿ1 3 3
79 2 80 78 ÿ1 1 1
80 10 186 32 0 2 5
81 5 121 54 0 1 4
82 4 126 40 1 2 2
83 2 84 82 ÿ1 1 1
84 12 224 24 0 3 4
85 4 108 64 1 2 2
86 4 132 42 1 2 2
87 4 120 56 1 2 2
88 8 180 40 0 2 4
89 2 90 88 ÿ1 1 1
90 12 234 24 0 3 4
91 4 112 72 1 2 2
92 6 168 44 0 2 3
93 4 128 60 1 2 2
94 4 144 46 1 2 2
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Table T.3. (cont.)

n ô(n) ó(n) j(n) ì(n) ù(n) Ù(n)

95 4 120 72 1 2 2
96 12 252 32 0 2 6
97 2 98 96 ÿ1 1 1
98 6 171 42 0 2 3
99 6 156 60 0 2 3

100 9 217 40 0 2 4
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Answers to selected exercises

Exercises 1.1

1. Even� even � 2n� 2m � 2 (m� n) which is even. Odd� even �
(2n� 1)� 2m � 2(n� m)� 1 which is odd. Odd� odd � (2n �
1)� (2m� 1) � 2 (m� n� 1) which is even. Oddÿ odd � (2n �
1)ÿ (2m� 1) � 2 (mÿ n) which is even.

2. 8, 10, 12, 14, 15, 16, 18, 20, 21, 22.

3. tn � t n�1 � n(n� 1)

2
� (n� 1)(n� 2)

2
� (n� 1)2 � sn�1:

4. 9tn � 1 � t3n�1; 25tn � 3 � t5n�2; 49tn � 6 � t7n�3; (2m� 1)2tn �
tm � tf(2m�1)ng � m.

5. (tn)2 ÿ (t nÿ1)2 � n(n� 1)

2

� �2

ÿ (nÿ 1)n

2

� �2

� n2

4
[(n� 1)2 ÿ (n ÿ 1)2] � n3.

6. t608 � 185 136 � 56 . 57 . 58.

7. n(n � 1)(n � 2)(n � 3) � 1 � n4 � 6n3 � 11n2 � 6n � 1 � (n2 �
3n� 1)2:

8. �n � sn � 4t nÿ1 � n2 � 4
(nÿ 1)n

2

� �
� 3n2 ÿ 2n.

9. 8k � 3 � 8(tn � tm � tr) � 3 � 4n(n � 1) � 4m(m � 1) � 4r(r �
1) � 3 � (2n� 1)2 � (2m� 1)2 � (2r � 1)2:

10. In odd rows the middle term, (2n� 1)2, is ¯anked on the left by

[(2n� 1)2 ÿ 2n], [(2n� 1)2 ÿ 2n� 2], . . . , [(2n� 1)2 ÿ 2] and on

the right by [(2n� 1)2 � 2n], [(2n� 1)2 � 2nÿ 2], . . . , [(2n� 1)2

� 2]. Therefore, the sum of the 2n� 1 terms on that row is given by

(2n� 1) . (2n� 1)2 � (2n� 1)3. In even rows, the terms on the left

side are [(2n)2 ÿ (2nÿ 1)], [(2n)2 ÿ (2nÿ 3)], . . . , [(2n)2 ÿ 1] and

on the right side are [(2n)2 � (2nÿ 1)], [(2n)2 � (2nÿ 3)],

. . . , [(2n)2 � 1]. Therefore, 2n terms sum to 2n . (2n)2 � (2n)3.
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11. (a) s2n�1 � (2n � 1)2 � 4n2 � 4n � 1 � n2 � (n � 1)2 � 2n(n � 1)

� sn � sn�1 � 2on.

(b) s2n � (2n)2 � 4n2 � (n ÿ 1)n � n(n � 1) � 2n2 � onÿ1 � on �
2sn.

12. sn � t nÿ1 � n2 � (nÿ 1)n

2
� n(3nÿ 1)

2
� p5

n.

13. p5
n � n(3nÿ 1)

2
� 3

(nÿ 1)n

2

� �
� n � 3t nÿ1 � n.

14. 3 . p5
n � 3 .

n(3nÿ 1)

2
� (3nÿ 1)(3n)

2
� t3nÿ1.

15. n � 24.

16. t9n�4 ÿ t3n�1 � (9n� 4)(9n� 5)

2
ÿ (3n� 1)(3n� 2)

2

� 72n2 � 72n� 18

2
� (6n� 3)2 � [3(2n� 1)]2.

17. Both sides equal (n� 1)(n� 2)(n2 � 3n� 4)=8.

18. t2mn�m � (2mn� m)(2mn� m� 1)

2
� 4m2 n(n� 1)

2

� m(m� 1)

2
� mn � 4m2 tn � tm � mn.

19. 2, 8, 20, 40, 70, 112, 168, 240, 330, 440.

20. p6
n � 2n2 ÿ n.

21. 40 755 � t285 � p5
165 � p6

143.

22. We have

pm
n �

nÿ 1

0

� �
� (mÿ 1)

nÿ 1

1

� �
� (mÿ 2)

nÿ 1

2

� �
� 1� (mÿ 1)(nÿ 1)� (mÿ 2)(nÿ 1)(nÿ 2)

2

� (mÿ 2)n2

2
ÿ (mÿ 4)n

2
:

23. pm
n � p3

nÿ1 � (mÿ 2)n2

2
ÿ (mÿ 4)n

2

� �
� (nÿ 1)n

2

� (mÿ 1)n2

2
ÿ (mÿ 3)n

2

� pm�1
n.

24. pm
n � pm

r � nr(mÿ 2) � (mÿ 2)n2

2
ÿ (mÿ 4)n

2

� �
� (mÿ 2)r2

2
ÿ (mÿ 4)r

2

� �
� nr(mÿ 2)
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� (mÿ 2)(n2 � 2nr � r2)

2
ÿ (mÿ 4)(n� r)

2
� pm

n�r.

25. pm
n � (mÿ 2)n2

2
ÿ (mÿ 4)n

2
� 1

2
(mn2 ÿ 2n2 ÿ nm� 4n)

� 1

2
(n2 � n� mn2 ÿ mnÿ 3n2 � 3n)

� 1

2
[n(n� 1)� (mÿ 3)(n2 ÿ n)]

� n(n� 1)

2
� (mÿ 3)(nÿ 1)n

2
� p3

n � (mÿ 3) p3
nÿ1.

26. 240 � 3 . 80 � 8 . 30 � 15 . 16. Hence, 120 � p41
3 � p6

8 � p3
15.

27. 8 . 225 . 6� 42 � 1042.

28. If x is an m-gonal number, then for some positive integers m and

n, x � (mÿ 2)n2=2ÿ (mÿ 4)n=2. Hence, 2xÿ (mÿ 2)n2 � ÿ(m

ÿ 4)n, so 4x2 ÿ 4x(mÿ 2)n2 � (mÿ 2)2 n4 � (mÿ 4)2 n2. Therefore

8x(mÿ 2)� (mÿ 4)2 � (2x=n� (mÿ 2)n)2.

29. P3
n � nÿ 1

0

� �
� 3

nÿ 1

1

� �
� 3

nÿ 1

2

� �
� nÿ 1

3

� �
� 1� 3(nÿ 1)� 3

(nÿ 1)(nÿ 2)

2
� (nÿ 1)(nÿ 2)(nÿ 3)

6

� n3

6
� n2

2
� n

3
� n(n� 1)(n� 2)

6
.

30. 1540 � t55 � P3
20; 7140 � t119 � P3

34.

31. P3
nÿ1 � P3

n � 1

6
(nÿ 1)n(n� 1)� 1

6
n(n� 1)(n� 2)

� 1

6
n(n� 1)(2n� 1) � P4

n.

32. P5
n � P4

nÿ1 � P4
n � 1

6
(nÿ 1)n(2nÿ 1)� 1

6
n(n� 1)(2n� 1)

� 1

3
n(2n2 � 1).

33. Since Pm
n � pm

1 � pm
2 � � � � � pm

n and

pm
n � (mÿ 2)n2

2
ÿ (mÿ 4)n

2
, it follows that
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Pm
n � mÿ 2

2

� �
(12 � 22 � � � � � n2)ÿ mÿ 4

2

� �
(1� 2 � � � � � n)

� mÿ 2

2

� �
n(n� 1)(2n� 1)

6

� �
ÿ mÿ 4

2

� �
n(n� 1)

2

� �
� n� 1

6

� �
2(mÿ 2)

2
n2 ÿ 2(mÿ 4)

2
n� n

� �
� n� 1

6

� �
(2 pm

n � n):

34. Since On � P4
n � P4

nÿ1 � n(2n2 � 1)=3, the ®rst 10 octahedral num-

bers are given by 1, 6, 19, 44, 85, 146, 231, 344, 489, 670.

35. f 2
n � n� 2ÿ 1

2

� �
� n� 1

2

� �
� n(n� 1)

2
� tn:

f 3
n � n� 3ÿ 1

3

� �
� n� 2

3

� �
� (n� 2)(n� 1)n

3

� (nÿ 1)3 ÿ (nÿ 1)

6
� F 4

n.

36. f 3
nÿ1 � f 3

n � n� 1

3

� �
� n� 2

3

� �
� (n� 1)n(nÿ 1)

6
� (n� 2)(n� 1)n

6
� n(n� 1)(2n� 1)

6
.

37. n . f r
n�1 � n

n� r

r

� �
� n(n� r)!

r!n!
� (r � 1)(n� r)!

(r � 1)!(nÿ 1)!

� (n� r) f r�1
n.

38. xy� x� y � (n2 � n� 1)2; yz� y� z � (2n2 � 3n� 3)2; xz� x �
z � (2n2 � n� 2)2; xy� z � (n2 � n� 2)2; yx� x � (2n2 � 3n �
2)2; zx� y � (2n2 � n� 1)2.

39. If x, y, A, h denote respectively the legs, area, and hypotenuse of the

right triangle, then x2, y2 � h2 �
���������������������
h4 ÿ 16A2
p

2
.

40. 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953.

Exercises 1.2

1. 13 112 221, 1 113 213 211, 31 131 211 131 221.

2. If a four occurs in a look and say sequence then either a four appeared in

the previous term or there were four consecutive repeated digits in the

previous term. However, because of the linguistic nature of the sequence

four or more consecutive repeated digits cannot occur except as the ®rst

term. Working backwards, we ®nd that there must be a four in the ®rst

or second term. A similar argument applies for the digits 5 through 9.

318 Answers to selected exercises



3. 1, 5, 14, 16, 41, 43, 47, 49, 122, 124.

4. Only (a).

5. 101, 501, 505. Rule: add 4 and reverse the digits.

6. 84, 59, 17. Rule to generate an: add n� 2 and reverse the digits.

7. (a) Happy: 392, 94, 97, 130, 10, 1.

(b) Happy: 193, 91, 82, 68, 100, 1.

(c) Sad: 269, 121, 6, 36, 45, 41, 17, 50, 25, 29, 85, 89, 145, 42, 20, 4.

(d) Sad: 285, 93, 90, 81, 65, 61, 37, 58, 89.

(e) Sad: 521, 30, 9, 81.

8. There are:

®ve of order 1: 1, 153, 370, 371, and 407

two of order 2: 1459, 919, and 136, 244

two of order 3: 133, 55, 250, and 217, 352, 160.

9. They are: 1; 8208; 6514, 2178; and 13 139, 6725, 4338, 4514, 1138,

4179, 9219.

10. (a) 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1, 0, 1, 1, 2, 3, 5, 8, 3, 1,

4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7, 5, 2,

7, 9, 6, 5, 1 (60); (b) 2, 0, 2, 2, 4, 6, 0, 6, 6, 2, 8, 0, 8, 8, 6, 4, 0, 4, 4, 8

(20); (c) 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7 (12); (d) 2, 6, 8, 4 (4); (e) 5, 5, 0

(3); (f ) 0 (1). The sum of the periods is 100.

11. (a) 8, 8, 4, 2, 8, 6,

(b) 4, 8, 2, 6, 2, 2,

(c) 3, 9, 7, 3, 1, 3,

(d) 1, 7, 7, 9, 3, 7,

(e) 6, 4, 4,

(f ) 9, 9, 1,

(g) 6,

(h) 5.

12. From the recursive de®nition of Fibonacci numbers, it follows that u3n

is divisible by 2, for any natural number n.

13. Let the sequence be given by a, b, a� b, a� 2b, 2a� 3b, 3a� 5b,

5a� 8b, 8a� 13b, 13a� 21b, 21a� 34b. The sum of the terms

equals 55a� 88b � 11(5a� 8b).

14. Set the expression equal to x. Square both sides to obtain x2 � x� 1,

whose root is ô.

15. Let jABj � a, then jADj2 � jABj2 � jBDj2 � a2 � (a=2)2 � (5
4
)a2.

jACj � jAEj � jADj ÿ jEDj � jADj ÿ jBDj

� a

���
5
p

2
ÿ a

2

� �
� a

���
5
p ÿ 1

2

� �
:
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jABj
jACj �

a

a

���
5
p ÿ 1

2

� � � 2���
5
p ÿ 1

� ô:

16. jEFj2 � jEBj2 � jBCj2 � jECj2 � a2 � (a=2)2 � (5
4
)a2.

jAGj � jDFj � jDEj � jEFj � a

2
�

���
5
p

2
a � 1� ���

5
p

2

� �
a:

Hence, jAGj=jADj � ô:
17. Since ôÿ1 � ó , multiplying each term by ô gives the desired result.

18. 1, 3, 4, 7, 11, 18, 29, 47, 76, 123.

19. 5778 � t107 � v18.

20. Let bn � ôn � ó n, then bn�2 � ôn�2 � ó n�2 � (ôn�1 � ôn)� (ó n�1

� ó n) � (ôn�1 � ó n�1)� (ôn � ó n) � bn�1 � bn, with b1 � ô �
ó � 1and b2 � ô2 � ó 2 � 3.Therefore, bn � ôn � ó n � vn.

21. 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768,

10 609, 19 513, 35 890, 66 012. (Tribonacci)

22. 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10 671,

20 569, 39 648, 76 424, 147 312. (Tetranacci)

23. (a) 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

(b) 50, 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20,

10, 5, 16, 8, 4, 2, 1.

(c) 121, 364, 182, 91, 274, 37, 412, 206, 103, 310, 155, 466, 233, 700,

350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,

668, 334, 167, 502, 251, 754, 377, 7132, 566, 283, 850, 425, 1276,

638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858,

2429, 7188, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,

9232, 4616, 2308, 1154, 577, 1723, 866, 433, 1300, 640, 325, 976,

488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,

10, 5, 16, 8, 4, 2, 1.

24. 1, 2; 7, 20, 10, 5, 14; and 17, 50, 25, 74, 37, 110, 55, 164, 82, 41,

122, 61, 182, 91, 272, 136, 68, 34.

25. (a) 9963 (b) 9421 9963

3699 1249 3699

6264 8172 6264

6642 8721 6642

2466 1278 2466

4176 7443 4176

7641 7443 7641

1467 3447 1467

6174 3996 6174
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26. 495.

27. (a) 936 (b) 991 (c) 864

639 199 468

297 792 396

792 297 (c) 693

1089 1089 1089

28. 2538.

29. 1 2 4 8 7 5, 3 6, and 9.

30. When 9 is added to a natural number the 10s digit is increased by 1

and the units digit decreased by 1 leaving a net change of zero.

31. 220, 224, 232, 239, 253, 263, 274, 287, 304, 311, 316, 326, 337, 350,

358, 374, 388, 407, 418;

284, 298, 317, 328, 341, 349, 365, 379, 398, 418.

32. Pair up the numbers as follows:

0 ÿ 999 999 sum of digits � 54

1 ÿ 999 998 sum of digits � 54

2 ÿ 999 997 sum of digits � 54
. . . . . . . . . . . . . . . . . .

499 999 ÿ 500 000 sum of digits � 54

1 000 000 sum of digits � 1

total sum of digits � 500 000 . 54� 1 � 27 000 001.

33. I: K2, K4, K5, K7, K8, K10; II: K3, K6; III: K9.

34. 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97.

35. If all the digits are less than 5, then double the number will have the

sum of its digits equal to 20. If two of the digits are 5, and all the rest

zero, double the number will have the sum 2. In all other cases, the

sum of the digits of twice the number will be 20ÿ 9 � 11.

36. (a) Two: 543, 60, 0.

(b) Four: 6989, 3888, 1536, 90, 0.

(c) Seven: 86 898, 27 648, 2688, 768, 336, 54, 20, 0.

(d) Three: 68 889 789, 13 934 592, 29 160, 0.

(e) Ten: 3 778 888 999, 438 939 648, 4 478 976, 338 688, 27 648, 2688,

768, 336, 54, 20, 0.

37. 39; 77; 679.

Exercises 1.3

1. P(1): 1 � 1:

P(k � 1): [12 � 22 � � � � � k2]� (k � 1)2
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� k(k � 1)(2k � 1)

6
� (k � 1)2

� k � 1

6

� �
[k(2k � 1)� 6(k � 1)]

� (k � 1)(k � 2)(2k � 3)

6
:

2. P(1): 1 � 1:

P(k � 1): [12 � 32 � � � � � (2k ÿ 1)2]� (2k � 1)2

� (4k3 ÿ k)

3

� �
� (2k � 1)2

� 4k3 ÿ k � 3(2k � 1)2

3

� 4k3 � 12k2 � 11k � 3

3

� 4(k � 1)3 ÿ (k � 1)

3
:

3. P(1): 1
2
� 1

2
.

P(k � 1):
1

2
� 1

6
� 1

12
� � � � � 1

k(k � 1)

� �
� 1

(k � 1)(k � 2)

� k

k � 1
� 1

(k � 1)(k � 2)

� 1

k � 1

� �
k � 1

k � 2

� �

� 1

k � 1

� �
k2 � 2k � 1

k � 2

� �

� k � 1

k � 2
:

4. P(1): 1 � 1:
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P(k � 1): [t1 � t2 � � � � � tk]� t k�1

� k(k � 1)(k � 2)

6
� (k � 1)(k � 2)

2

� (k � 1)(k � 2)

6

� �
(k � 3):

5. P(1): 1 � 1:

P(k � 1): [13 � 23 � 33 � � � � � k3]� (k � 1)3

� tk
2 � (k � 1)3

� k2(k � 1)2

4
� (k � 1)3

� (k � 1)2

4

� �
[k2 � 4(k � 1)]

� (k � 1)2(k � 2)2

4

� (t k�1)2:

6. P(1): 1� a > 1� a:

P(k � 1): (1 � a)k�1 . (1 � ka)(1 � a) � 1 � (k � 1)a � ka2 .

1� (k � 1)a:

7. P(4): 4! � 24 . 16 � 42. Suppose that k! . k2. Now (k � 1)! .

k(k!) . k(k2) . 3(k2) � 2k2 � k2 . k2 � 2k � 1 � (k � 1)2:

8. P(1): u1 � 1 � u2.

P(k � 1): [u1 � u3 � � � � � u2kÿ1]� u2k�1 � u2k � u2k�1 � u2k�2:

9. P(1): u2
1 � 1 � u1

. u2.

[u2
1 � u2

2 � � � � � u2
k]� u2

k�1 � ukuk�1 � u2
k�1

� uk�1(uk � uk�1)

� uk�1uk�2:

10. P(1): u2 � u3 ÿ 1:

P(k � 1): [u2 � u4 � u6 � � � � � u2k]� u2k�2 � u2k�1 ÿ 1� u2k�2

� u2k�3 ÿ 1:

11. Since u1 � 1 . 1=ô and u2 � 1 > ô0, let uk > ôkÿ2, for 1 < k , n;

hence, unÿ2 > ônÿ4 and unÿ1 > ônÿ3. In addition, un � unÿ2 � unÿ1 >
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ônÿ3 � ônÿ4 � (1� ô)ônÿ4 � ô2ônÿ4 � ônÿ2 and the result follows

from the principle of mathematical induction.

12. For any positive integer n, u2
n�1 ÿ u2

n � (un�1 � un)(un�1 ÿ un)

� un�2unÿ1.

13. P(1): u1 � v1 � 1� 1 � 2 � 2u2: Suppose the formula is true when

1 < n < k. We have uk�1 � vk�1 � (uk � ukÿ1)� (vk � vkÿ1) �
(uk � vk)� (ukÿ1 � vkÿ1) � 2uk�1 � 2uk � 2uk�2:

14. P(2): v1 � v3 � 1� 4 � 5 � 5u1. Suppose the formula is true for

1 < n < k. We have

5uk�1 � 5uk � 5ukÿ1 � (vkÿ1 � vk�1) � (vkÿ2 � vk) � (vkÿ1 �
vkÿ2)� (vk � vk�1) � vk � vk�2.

15. P(2): v2 � 3 � 2� 1 � u3 � u1. P(3): v3 � 4 � 3� 1 � u4 � u2.

Suppose the formula is true for k and k ÿ 1. We have vk�1 � vk �
vkÿ1 � (ukÿ1 � uk�1) � (ukÿ2 � uk) � (ukÿ1 � ukÿ2)� (uk �
uk�1) � uk � uk�2.

16. Since un � (ôn ÿ ó n)=(ôÿ ó ) and vn � ôn � ó n, for any positive

integer n,

un
. vn � ôn ÿ ó n

ôÿ ó
. (ôn � ó n) � ô2n ÿ ó 2n

ôÿ ó
� u2n:

17. From the two previous exercises, for any positive integer k,

u2k�2 � uk�1vk�1 � (uk�2 � uk)(uk�2 ÿ uk) � u2
k�2 ÿ u2

k .

18. P(2): u3
. u1 � (ÿ1)3 � 2ÿ 1 � 1 � u2

2. Suppose that (ÿ1)k�1 �
u2

k ÿ uk�1ukÿ1; then

(ÿ1)k�2 � ÿu2
k � uk�1ukÿ1

� ÿukuk � uk�1(uk�1 ÿ uk)

� u2
k�1 ÿ uk(uk�1 � uk)

� u2
k�1 ÿ ukuk�2:

19. S being in®nite leads to a contradiction of the well-ordering principle.

20. Suppose that a is an integer such that 0 , a , 1. Then 1 . a .

a2 . a3 . � � � making fa, a2, a3, . . .g an in®nite set of positive inte-

gers having no least element, contradicting the well-ordering principle.

21. The result follows by induction or from the fact that

r

r

� �
� r � 1

r

� �
� r � 2

r

� �
� � � � � n� r ÿ 1

r

� �
� n� r

r � 1

� �
:

Exercises 1.4

1. 1 533 776 805 � p3
55 385 � p5

31 977 � p6
27 693:
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2. 55, 66, 171, 595, 666.

3. (798 644)2 � 637 832 238 736; (1 270 869)2 � 1 615 108 015 161:

4. (54 918)2 � 3 015 986 724; (84 648)2 � 7 165 283 904.

5. No, 11 8262 � 139 854 276, `0' is not represented. In Hill's defense, it

should be noted that at the time many did not consider 0 to be a digit.

6. 90 . 16 583 742 � 1 492 536 780.

7. 428 571 � 3 . 142 857.

8. (76)2 � 5776; (625)2 � 390 625.

9. 325 � t25, 195 625 � t625, 43 959 376 � t9376.

10. 2972 � 88 209 and 88� 209 � 297.

142 8572 � 20 408 122 449 and 20 408� 122 449 � 142 857.

1 111 111 1112 � 1 234 567 900 987 654 321 and

123 456 790� 0 987 654 321 � 1 111 111 111.

11. 153 � 13 � 53 � 33; 371 � 33 � 73 � 13.

12. 165 033 � (16)3 � (50)3 � (33)3.

13. (a) 43 � 42 � 33,

(b) 63 � 62 � 33,

(c) 89 � 81 � 92,

(d) 132 � 11 � 31 � 27.

14. 2592 � 2592.

15. 4!� 0!� 5!� 8!� 5! � 40 585.

16. 21 978 3 4 � 87 912, 219 978 3 4 � 879 912, 10 989 3 9 � 98 901.

17. The sum equals t1 � t2 � � � � � t12 or 364 days.

18. The answer represents the month and day that you were born.

19. The result follows from the fact that 7 . 143 � 1001.

20. Solve (10x� y)=(10y� z) � x

z
or 9xz � y(10xÿ z) to obtain

16

64
,

19

95
,

26

65
,

49

98
,

11

11
,

22

22
, . . . ,

99

99
:

21. 1 � (9� 9ÿ 9)=9,

2 � (9=9)� (9=9),

3 � (9� 9� 9)=9,

4 � (9=
p

9)� (9=9),

5 � 9ÿ (9=9)ÿp9,

6 � 9� 9ÿ 9ÿp9,

7 � 9� (9=9)ÿp9,

8 � (
p

9)(
p

9)ÿ (9=9),

9 � (9� 9� 9)=
p

9,

10 � (99ÿ 9)=9,

11 � 9�p9ÿ 9=9,

12 � (99� 9)=9,

13 � 9�p9� 9=9,

14 � 99=9�p9,

15 � 9� 9ÿ 9=
p

9,

16 � 9� 9ÿp9� :9,

17 � 9� 9ÿ 9=9,

18 � 9� 9� 9ÿ 9,

19 � 9� 9� 9=9,

20 � 99=9� 9,
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21 � 9� 9� 9=
p

9,

22 � 9� 9�p9� :9,

23 � 9
p

9ÿp9ÿ :9,

24 � 9� 9� 9ÿp9,

25 � 9
p

9ÿ :9ÿ :9:

22. Possible answers include the following.

0 � (9ÿ 9)� (9ÿ 9) � (
p

9ÿp9)� (
p

9ÿp9)

� (9ÿ 9)ÿ (9ÿ 9) � (
p

9ÿp9)ÿ (
p

9ÿp9)

� (9� 9)ÿ (9� 9) � (
p

9 �p9)ÿ (
p

9�p9)

� (9ÿ 9)� (
p

9ÿp9) � (9=9)ÿ (9=9) � (
p

9=
p

9)ÿ (9=9)

� (
p

9=
p

9)ÿ (
p

9=
p

9) � 9 . 9ÿ 9 . 9

� p9 .
p

9ÿp9 .
p

9 � (9
p

9=9)ÿp9 � 9ÿ 9(9=9)

� 9ÿ 9(
p

9=
p

9) � 9 .
p

9ÿ 9 .
p

9

� 9ÿp9ÿp9ÿp9 � (9
p

9=
p

9)ÿ 9

� (:9� :9)ÿ (:9� :9) � (:9ÿ :9)ÿ (:9ÿ :9)

� (:9ÿ :9)� (:9ÿ :9) � (:9=:9)ÿ (:9=:9) � (9ÿ 9)� (:9ÿ :9)

� (:9ÿ :9)� (
p

9ÿp9) � (9ÿ 9)ÿ (:9ÿ :9):

23. 1 � (4� 4ÿ 4)=4,

2 � (4=4)� (4=4),

3 � (4� 4� 4)=4,

4 � (4=
p

4)� (4=
p

4),

5 � 4� (
p

4�p4)=4,

6 � 4� (4� 4)=4,

7 � 4� 4ÿ 4=4,

8 � 4� 4� (4ÿ 4),

9 � 4� 4� (4=4),

10 � 4� 4� (4=
p

4),

11 � (4!ÿ (4=
p

4)=
p

4,

12 � 4 . (4ÿ (4=4)),

13 � (44)=4�p4,

14 � 4 . 4ÿ (4=
p

4),

15 � 4 . 4ÿ (4=4),

16 � 4� 4� 4� 4,

17 � 4 . 4� (4=4),

18 � 4 . 4� (4=
p

4),

19 � 4!ÿ 4ÿ (4=4),

20 � 4 . (4� (4=4)),

21 � 4!ÿ 4� 4=4,

22 � ((44)=4) .
p

4,

23 � 4!ÿ (
p

4�p4)=4,

24 � 4 . 4� 4� 4,

25 � 4!� (
p

4�p4)=4:

24: lim
n!1

un�1

un

� lim
n!1

ôn�1 ÿ ó n�1

ôn ÿ ó n
� ô,

since

limn!1ó n�1 � limn!1ó n � 0,

while

limn!1ôn�1 � limn!1ôn � 1:
25. If x1 � x2 � � � � � xnÿ2 � 1, xnÿ1 � 2, and xn � n, x1 � x2 � � � �
� xn � x1

. x2 � � � xn � 2n.

26:
X1
n�1

1

tn

�
X1
n�1

2

n(n� 1)
� 2

X1
n�1

1

n
ÿ 1

n� 1

� �
� 2:
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27. n � 84.

29. Thursday

31. June 25, 1963

32. October 2, 1917

33. Monday

34. (a) Tuesday; (b) Wednesday; (c) Saturday.

35. 10

36. 1±8

2±7

3±6

4±5

9±16

10±15

11±14

12±13

17±32

18±31

19±30

20±29

21±28

22±27

23±26

24±25

33±48

34±47

35±46

36±45

37±44

38±43

39±42

40±41

37. 8, 14, 16, and every even integer greater than 22.

38. There are 16 ®fth order zigzag numbers, namely 24 351, 25 341,

34 251, 35 241, 45 231, 14 352, 15 342, 34 152, 35 142, 45 132, 14 253,

15 243, 24 153, 25 143, 13 254, and 23 154.

39. B6 � 1
42

, B8 � ÿ 1
30

, and B10 � 5
66

.

40. 2, 4, 17, 48, 122, 323. No.

41. A1 � 1 1

1 0

� �
� u2 u1

u1 u0

� �
,

An�1 � An . A � un�1 un

un unÿ1

� �
. 1 1

1 0

� �
� (un�1 � un) un�1

(un � unÿ1) un

� �
� un�2 un�1

un�1 un

� �
:

42. det(An) � (ÿ1)n.

43. 2

44. (a � 1)(b � 1)(c � 1) � (a ÿ 1)(b ÿ 1)(c ÿ 1) � abc � ac � bc � c

� ab � a � b � 1 � abc ÿ ac ÿ bc � c ÿ ab � a � b ÿ 1 � 2(a �
b � c � abc).

45. [a4 ÿ (ab � bc � ac)2] � [b4 ÿ (ab � bc � ac)2] � (a2 ÿ ab ÿ bc ÿ
ac)(a2 � ab � bc � ac) � (b2 ÿ ab ÿ bc ÿ ac)(b2 � ab � bc � ac)

� (a2 ÿ ab ÿ bc ÿ ac)[a(a � b � c) � bc] � (b2 ÿ ab ÿ bc ÿ
ac)[b(a � b � c) � ac] � (a2 ÿ ab ÿ bc ÿ ac)(bc) � (b2 ÿ ab ÿ bc

ÿ ac)(ac) � (ÿc2)(a2 � 2ab � b2) � c4.

46. The formula works for n � 1, 2, . . . , 8, but not for n . 8.

47. (a) (1) Great Pyramid of Khufu

(2) Hanging Gardens of Babylon

(3) Mausoleum at Halicarnassus

(4) Artemision at Ephesus
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(5) Colossus of Rhodes

(6) Olympian Zeus

(7) Pharos at Alexandria

(b) (1) Thales of Miletus (natural philosopher)

(2) Solon of Athens (politician and poet)

(3) Bias of Priene (philosopher)

(4) Chilon of Sparta (philosopher)

(5) Cleobulus of Rhodes (tyrant)

(6) Periander of Corinth (tyrant)

(7) Pittacus of Mitylene (statesman and lawyer)

(c) There are two versions:

(A) (1) Arsinoe II (Egyptian queen)

(2) Sappho of Lesbos (poet)

(3) Corinna (poet)

(4) Antiochis of Lycia (physician)

(5) Flavia Publica Nicomachis of Phoecia (politician)

(6) Apollonia (philosopher)

(7) Iaia Marcus Varro (artist)

(B) (1) Arete of Cyrene (philosopher)

(2) Apasia of Miletus (philosopher)

(3) Diotima of Mantinea (philosopher)

(4) Hypatia of Alexandria (mathematician and philosopher)

(5) Leontium of Athens (philosopher)

(6) Theano (philosopher and physician)

(7) Themistoclea (philosopher)

Exercise 2.1

1. Since dja and djb there exist integers x and y such that dx � a and

dy � b. Hence, c � aÿ b � dxÿ dy � d(xÿ y). Since c is a multiple

of d, d divides c.

2. Since ajb and bjc, there exist integers r and s such that ar � b and

bs � c. Hence, c � bs � (ar)s � a(rs). Therefore, ajc.

3. If ajb and bja there exist integers r and s such that ar � b and bs � a.

Hence, a � bs � (ar)s � a(rs) implying that rs � 1. Since a and b

are positive r � s � 1 and a � b.

4. Since ajb, there exists an integer r such that ar � b. Hence,

a� a � � � � � a � a� (r ÿ 1)a � b. The sum contains r terms.

Since r ÿ 1 > 1, a < b.
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5. Let ajb and c � a� b. Then ax � b and c � a� ax � a(1� x).

Therefore, ajc.

6. Let ax � b and cy � d. Thus, bd � ax . cy � ac . xy. Therefore,

acjbd.

7. (a) False, 6j2 . 3 yet 6 6 j2 and 6 6 j3.

(b) False, 6j(3� 3) yet 6 6 j3.

(c) False, 82j43, but 8 6 j4,

(d) False, 22j36, 32j36, and 22 < 32 yet 26 j3.

(e) True.

8. When p , q and q is divided by p, there are only q possible

remainders. Hence, the resulting decimal expansion must repeat after

at most q divisions.

9. If n � 0:123 123 123 . . . , then 1000n � 123:123 123 . . . and 999n

� 1000nÿ n � 123. Therefore, n � 123
999

.

10. Every integer is of the form 3k, 3k � 1 or 3k � 2. The square of any

integer of the form 3k is of the form 3m and the square of any integer

of the form 3k � 1 or 3k � 2 is of the form 3m� 1, where k and m

are integers. Suppose that
���
3
p � p=q, where p and q are integers in

lowest form. Hence, p � ���
3
p

q. It follows that p2 � 3q2, thus 3 divides

p2. Hence, p is divisible by 3 and p � 3r. In addition,

3q2 � p2 � 9r2, thus, q2 � 3r2 implying that 3 divides q. Thus, p

and q have a common factor, contradicting the assumption that p=q

was in lowest form.

11. (a) The result follows since either n or n� 1 must be even. (b) The

result follows since one of n, n� 1, or n� 2 must be divisible by 3.

12. Since 2jn(n� 1), if 3 6 jn and 3 6 j(n� 1), then n � 3k � 1, implying

that 3j(2n� 1). Therefore, 6jn(n� 1)(2n� 1).

13. (2n� 1)2 � (2m� 1)2 � 4(n2 � m2 � n� m)� 2 � 4k � 2 which

can never be square by Theorem 2.3.

14. (n� 1)3 ÿ n3 � 3n(n� 1)� 1 � 6k � 1, which is always odd.

15. If n � 2k � 1, then n2 ÿ 1 � 4k(k � 1) � 8m.

16. If 36 jn, then 3j(nÿ 1) or 3j(n� 1). From the previous exercise,

8j(n2 ÿ 1). Hence, 24j(n2 ÿ 1).

17. Since 3 divides (2 . 12 � 7) � 9, suppose that k(2k2 � 7) � 3x. We

have (k � 1)(2(k � 1)2 � 7) � 3x� 3(2k2 � 2k � 3) � 3y and the re-

sult is established by induction.

18. Since 8 divides 52 � 7 � 32, suppose that 52k � 7 � 8x. We have

52(k�1) � 7 � 25(52k) � 7 � 24(52k) � 52k � 7 � 8(3 . 52k � x) � 8y

and the result is established by induction.

19. Since 7 divides 33 � 23, suppose that 32k�1 � 2k�2 � 7x. We have
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32k�3 � 2k�3 � 9(32k�1)� 2(2k�2) � 7(32k�1)� 2 . 7x � 7y and the

result follows by induction.

20. Since 5 divides 34 � 22, suppose that 33k�1 � 2k�1 � 5x. We have

33k�4 � 2k�2 � 27(33k�1) � 2(2k�1) � 25(33k�1) � 2(33k�1) �
2(2k�1) � 5[5 . 33k�1 � 2x] � 5y and the result follows by induction.

21. If n � 2x then n2 � 2 � 4x2 � 2 and if n � 2k � 1 then

n2 � 2 � 4(k2 � k)� 3. In either case 46 j(n2 � 2).

22. If an integer is not a perfect square then its divisors can be grouped

into distinct pairs.

23. 6k � 5 � 3(2k � 1)� 2 � 3m� 2. However, 8 � 3 . 2� 2 and there

does not exist a k such that 8 � 6k � 5.

24. Every integer is of the form 3k, 3k � 1, or 3k � 2, and

(3k)2 � 3(3k2) � 3M , (3k � 1)2 � 3(3k2 � 2k)� 1 � 3N � 1,

(3k � 2)2 � 3(3k2 � 4k � 1)� 1 � 3R� 1.

25. If n � 3k then (3k)3 � 9(3k3) � 9M . If n � 3k � 1 then

(3k � 1)3 � 9(3k3 � 3k2 � k)� 1 � 9N � 1. If n � 3k � 2 then

(3k � 2)3 � 9(3k3 � 16k2 � 4k � 1)ÿ 1 � 9Rÿ 1.

26. If n � 5k then (5k)2 � 5(5k2) � 5M . If n � 5k � 1 then (5k �
1)2 � 5(5k2 � 2k)� 1 � 5N � 1. If n � 5k � 2 then (5k � 2)2 �
5(5k2 � 4k)� 4 � 5R� 4. If n � 5k � 3 then (5k � 3)2 �
5(5k2 � 6k � 1)� 4 � 5S � 4. If n � 5k � 4 then (5k � 4)2 �
5(5k2 � 8k � 3)� 1 � 5m� 1. When squared again the results will

each be of the form 5m or 5m� 1.

27. Since x2, y2, and z2 must be of the form 8m, 8m� 1, or 8m� 4,

x2 � y2 � z2 can only be of the form 8k, 8k � 1, 8k � 2, 8k � 3,

8k � 4, 8k � 5, or 8k � 6.

28. From Exercise 2.1.26 5 divides n5 ÿ n. In addition, n5 ÿ n � (n ÿ
1)n(n� 1)(n2 � 1). Since (nÿ 1)n(n� 1) is the product of three

consecutive integers it is divisible by 6. Thus, n5 ÿ n is divisible by

5 . 6 � 30. If n � 2m� 1, then n5 ÿ n � 8(2m� 1)m(m� 1)(2m2

� 2m� 1) and is divisible by 16. Therefore, 240 � 15 . 16 divides

n5 ÿ n.

29. Any square must be of the form 3k or 3k � 1. If n � 2k then

3n2 ÿ 1 � 3(4k2 ÿ 1)� 2 � 3m� 2. If n � 2k � 1 then 3n2 ÿ 1 �
3(4k2 � 4k)� 2 � 3m� 2.

30. 11 � 4 . 2� 3, 111 � 4 . 27� 3. In general, 111 . . . 1 � 4 . 277 . . . 7

� 3 where the integer on the left contains n ones and the second

integer in the product on the right contains nÿ 2 sevens. Hence, an

integer whose digits are all ones is of the form 4m� 3 and thus cannot

be square.
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31. Suppose ax � b with a . b=2. Therefore, 2a . b � ax. Hence, 2 . x,

which implies that x � 1 and a � b, contradicting the fact that a 6� b.

32. If a .
���
n
p

and b .
���
n
p

, then ab .
���
n
p

.
���
n
p � n, a contradiction.

33. If n � ab, with a > b, let s � (a� b)=2 and t � (aÿ b)=2; then

n � s2 ÿ t2. Conversely, if n � s2 ÿ t2 let a � s� t and b � sÿ t.

34. Let m � (n3 ÿ 1)n3(n3 � 1): If n � 7k, 7k � 1, . . . , or 7k � 6 we

®nd that 7jm. If n � 8k, 8k � 1, . . . , or 8k � 7 we ®nd that 8jm. If

n � 3k, 3k � 1, or 3k � 2 we ®nd that 9jm. Hence, 9�8�7 divides m.

35. 40 � 101 0002; 40 � 11113; 173 � 10 101 1012; 173 � 20 1023; 5437

� 1 010 100 111 1012; 5437 � 21 110 1013.

36. 101 0112 � 43 and 201 1023 � 524.

37. 1 is triangular. Suppose that (11 . . . 1)9 with k ones is triangular, say

11 . . . 19 � n(n� 1)=2. Consider 11 . . . 1�9 with k � 1 ones. We have

11 . . . 1�9 � 9 . 11 . . . 19 � 1. Since 9 . 11 . . . 19 � 1 � 9 . n(n� 1)=2

� 1 � (3n� 1)(3n� 2)=2, 11 . . . 1�9 is triangular and the result is

established by induction.

38. The weights 1, 2, 22, . . . , 2nÿ1 will weight any integral weight up to

2n ÿ 1 and no other set of so few weights is equivalently effective.

Any positive integral weight up to 2nÿ1 can be expressed uniquely asPnÿ1
k�0ak2k , where ak � 0 or 1. One answer is given by 1, 2, 4, 8, 16,

32.

39. Niven numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30,

36, 40, 42, 45, 48, 50, 54, 60.

40. sd(7, 2) � sd(13, 2) � sd(15, 2) � 3:

41. When n is even.

Exercises 2.2

1. Since ax � bc and au� bv � 1, we have that auc� bvc � c. By

substitution c � auc� axv � a(uc� xv). Hence, ajc.

2. Since (ÿ1)n� (1)(n� 1) � 1, the result follows from Theorem 2.7.

3. Since 3(22n� 7)� (ÿ2)(33n� 10) � 1, the result follows from The-

orem 2.7.

4. If 3x � a and 3y � b then 3(x� y) � 65, which is impossible since

3 6 j65.

5. If 5x � a and 5y � b, then 5(x� y) � 65 or x� y � 13, which has

in®nitely many pairs of integers as solutions.

6. If djun�1 and djun then dj(un�1 ÿ un), hence, djunÿ1. Continuing this

process, it follows that dju1; hence, d � 1.
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7. We have d � au� bv � xdu� ydv, so 1 � xu� yv. From Theorem

2.7, gcd(x, y) � 1.

8. Suppose ax� by � 1 and au� cv � 1, then (ax� by)(au� cv) �
1 . 1 � 1. Hence, a(xau� xcv� byu)� bc(yv) � 1. By Theorem 2.7,

gcd(a, bc) � 1.

9. Let gcd(a, b) � 1. From Exercise 8, gcd(a, b2) � 1. Suppose

gcd(a, bk) � 1 for some positive integer k. From Exercise 8,

gcd(a, bk�1) � 1 and the general result follows from an inductive

argument.

10. If d � gcd(a, b) then dja and djb, hence, dj(a� b) and dj(aÿ b).

From the de®nition of gcd, it follows that djgcd(a� b, aÿ b):

11. If dj(a� ab) and djb then it follows that dja, but since gcd(a, b) � 1

we must have d � 1.

12. Let d � gcd(a� b, aÿ b). Since dj(a� b) and dj(aÿ b), dj[(a
� b)� (aÿ b)]. Thus, dj2a and dj2b. Since gcd(a, b) � 1, dj2.

Therefore, d � 1 or 2.

13. When a and b are of different parity.

14. Let D � gcd(ac, bc) and d � gcd(a, b). Since dja and djb, cdjca and

cdjcb, so cdjD. Conversely, there exist integers x and y such that

d � ax� by, hence, cd � acx� bcy. Hence, Djcd. Thus, cd � D.

15. Let d � gcd(a, a� b) so dja and dj(a� b). Hence, d divides

(ÿ1)a� (a� b), that is, djb.

16. Since gcd(a, 4) � 2 and gcd(b, 4) � 2, a � 2(2n� 1) and b �
2(2m� 1). Thus, a� b � 4(m� n� 1). Therefore, gcd(a� b, 4)

� 4.

17. From Theorem 2.9, lcm(ac, bc) � jac . bc=gcd(ac, bc)j �
cjab=gcd(a, b)j � c lcm(a, b).

18. gcd(a, b) � jaj and lcm(a, b) � jbj.
19. If ajb, gcd(a, b) � jaj. From Theorem 2.9 lcm(a, b) � jbj. If

lcm(a, b) � jbj, from Theorem 2.9, ja . bj � gcd(a, b) . jbj implying

that jaj � gcd(a, b), that is, b is a multiple of a or equivalently ajb. If

a � b � 0, the result follows immediately.

20. From Theorem 2.9 and the fact that gcd(n, n� 1) � 1, we ®nd that

lcm(n, n� 1) � n(n� 1).

21. From Theorem 2.9 and the fact that 2(9n� 8)� (ÿ3)(6n� 5) � 1,

we ®nd that lcm(9n� 8, 6n� 5) � (9n� 8)(6n� 5) � 54n2 � 93n

� 40.

22. gcd(2, 3, 6)ÿ lcm(2, 3, 6) � 1 . 6 � 36 � 2 . 3 . 6.

23. a � 50, b � 20; a � 100, b � 10.
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24. The largest value for the product of two numbers that sum to 5432 is

7 376 656. In addition, from Theorem 2.9, a . b � 223 020 . gcd(a, b).

Since 5432 � 7 . 8 . 97, the only possible values for gcd(a, b) are 1, 2,

4, 8, 7, 14, and 28. If gcd(a, b) � 28, then we ®nd that a � 1652 and

b � 3780 is a solution.

25. f210, 330, 462, 770, 1155g.

Exercises 2.3

1. gcd lcm LameÂ Dixon Actual

(a) 3 1581 10 6 5

(b) 13 11 063 15 7 6

(c) 2 1 590 446 20 8 7

(d) 1 3 810 183 20 8 4

(e) 77 113 344 20 9 5

2. (a) 3 � 11 . 51ÿ 6 . 93.

(b) 13 � 5 . 481ÿ 8 . 299.

(c) 2 � 413 . 1742ÿ 394 . 1826.

(d) 1 � 803 . 1941ÿ 794 . 1963.

(e) 77 � 9 . 4928ÿ 25 . 1771.

Exercises 2.4

1. (2n2 � 2n)2 � (2n � 1)2 � 4n4 � 8n3 � 8n2 � 4n � 1 � (2n2 � 2n

� 1)2.

2. (2n)2 � (n2 ÿ 1)2 � 4n2 � n4 ÿ 2n2 � 1 � n4 � 2n2 � 1 � (n2 �
1)2.

3. (ax ÿ by)2 � (ay � bx)2 � (ax)2 � (by)2 � (ay)2 � (bx)2 � (a2 �
b2)(x2 � y2) � (cz)2.

4. a2 � (a� d)2 � (a� 2d)2, hence, (a� d)(aÿ 3d) � 0. Thus, a � 3d

and the triple is (3d, 4d, 5d).

5. One of s and t must be even.

6. If s � 2n and t � 2m� 1, then s2 � 2st ÿ t2 � 4n(n� 1) ÿ
4m(m� 1)ÿ 1 � 8Rÿ 1. If s � 2n� 1 and t � 2m, then s2 �
2st ÿ t2 � 4n(n� 1)ÿ 4m(m� 1)� 1 � 8S � 1.

7. The even numbers occur as the side x � 2st. Odd numbers occur when

s � n� 1 and t � n so y � s2 ÿ t2 � 2n� 1.

8. x2
n � y2

n � (a4
n�1 ÿ 2a2

na2
n�1 � a4

n) � (4a2
na2

n�1) � a4
n�1 � 2a2

na2
n�1 �

a4
n � z2

n. x1 � a2
2 ÿ a2

1 � 4ÿ 1 � 2a2a1 ÿ 1 � y1 ÿ 1. Suppose, for
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some integer k, xk � yk ÿ 1. That is, a2
k�1 ÿ a2

k � 2akak�1 ÿ 1. Since

ak�2 � 2ak�1 � ak ,

xk�1 � a2
k�2 ÿ a2

k�1 � (ak�2 ÿ ak�1)2 ÿ 2a2
k�1 � 2ak�2ak�1

� (ak�1 � ak)2 ÿ 2a2
k�1 � 2ak�2ak�1

� ÿa2
k�1 � 2akak�1 � a2

k � 2ak�2ak�1

� ÿ2akak�1 � 1� 2akak�1 � 2ak�2ak�1

� 2ak�2ak�1 � 1 � yk�1,

and the result follows by induction.

9. Let x � 2st, y � s2 ÿ t2, z � s2 � t2, X � 2(2s� t)s � 4s2 � 2st,

Y � (2s� t)2 ÿ s2 � 3s2 � 4st � t2, and Z � 5s2 � 4st � t2. We

have jxÿ yj � jX ÿ Y j and X 2 � Y 2 � 25s4 � 40s3 t � 26s2 t2 �
8st3 � t4 � Z2.

10. (6, 8, 10) and (12, 5, 13).

11. Their perimeters are 120 and their areas 600, 540, and 480.

12. Given the product of three consecutive numbers, say (2n ÿ
1)(2n)(2n� 1), let s � 2n and t � 1 to obtain (sÿ t)st(s� t).

13. Let s � 2n, then we have st(s� t)(sÿ t) � 2nt(2n� t)(2nÿ t),

which is divisible by 2. Since 2n� t and 2nÿ t are odd and at equal

distances from 2n one of the three must be divisible by 3. Thus,

st(s� t)(sÿ t) is divisible by 6.

14. If st(s2 ÿ t2) � w2 then, since s and t are coprime, s, t, and s2 ÿ t2

must be squares, implying that the equation a4 ÿ b4 � c2 has a

solution, a contradiction.

15. Numbers of the form 2mn� m2, for m � 1, 2, 3, . . . :

16. Since one of s and t is even 4 divides 2st(s2 ÿ t2)(s2 � t2). If one of s or t

is divisible by 3 then so is xyz. If neither is divisible by 3, say s � 3u� 1

and t � 3v� 1. We have s2 � 3S � 1 and t2 � 3T � 1 and 3 divides

y � s2 ÿ t2. Other cases follow similarly. Hence, 12 divides xyz.

17. If s or t is divisible by 5 then so is xyz. If not, go through cases to show

that 5 divides xyz, hence 60 divides xyz.

18. Use the following Pythagorean triples:

3 4 5

5 12 13

7 24 25

8 15 17

9 40 41

11 60 61
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Hence,

P1 � (0, 0) , Pi � (xi, 0), for 2 < i < 8, where x2 � 3 . 5 . 7 . 8 . 9 . 11

� 83160, x3 � 4 . 5 . 7 . 8 . 9 . 11 � 110 880, x4 � 3 . 12 . 7 . 8 . 9 . 11

� 199 584, x5 � 3 . 5 . 24 . 8 . 9 . 11 � 285 120, x6 � 3 . 5 . 7 . 15 . 9 . 11

� 155 925, x7 � 3 . 5 . 7 . 8 . 40 . 11 � 369 600, x8 � 3 . 5 . 7 . 8 . 9 . 60

� 453 600:

19. There are 16 corresponding to (s, t) � (2, 1), (3, 2), (4, 1), (4, 3),

(5, 2), (5, 4), (6, 1), (6, 5), (7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5),

(9, 2), and (9, 4). Lehmer's rule predicts 15.9.

Exercises 2.5

1. It was possible because 1
2
� 1

3
� 1

9
6� 1.

2. 1
2
� 1

4
� 1

6
� 11

12
; 1

2
� 1

4
� 1

8
� 7

8
; 1

2
� 1

3
� 1

12
� 11

12
; 1

2
� 1

3
� 1

9
� 17

18
;

1
2
� 1

4
� 1

5
� 19

20
; 1

2
� 1

3
� 1

10
� 14

15
; 1

2
� 1

3
� 1

8
� 23

24
; 1

2
� 1

3
� 1

7
� 41

42
.

4. The sum of 3k ÿ 2, 3k ÿ 1 and 3k is 9k ÿ 3. The repeated sum of the

digits of any multiple of 9 is eventually 9, hence, the repeated sum of

the digits of 9k ÿ 3 is eventually 6.

5. The weights 1, 3, 32, . . . , 3nÿ1 will weigh any weight up to (3n ÿ 1)=2

when the weights are placed in either pan and no other set is equally

effective. Any positive integer up to 3n ÿ 1 inclusive can be expressed

as
Pnÿ1

k�0ak3k , ak � 0, 1, or 2. Subtracting 1� 3� 32 � � � � �
3nÿ1 � (3n ÿ 1)=2. Thus every positive or negative integer between

ÿ(3n ÿ 1)=2 and (3n ÿ 1)=2 inclusive can be expressed uniquely in

the form
Pnÿ1

k�0bk3k , where bk � ÿ1, 0, or 1. One answer is given by

1, 3, 9, 27.

6. The method relies on the binary representation of a number, for

example, 83 . 154 � (1� 2� 24 � 26) . 154. Terms that have already

been accounted for in the sum are eliminated.

7. We show that 3 . 103n�1 � 7 and 7 . 103n�2 � 3 are both divisible by

37 for any positive integer n. Since 37 divides 30 007 and 37 divides

700 003 both propositions are true when n � 1. Suppose that

3 . 103k�1 � 7 � 37r for some positive integer k. We have 3 . 103k�4

� 7 � 3 . 103k�1103 � 7 � (37r ÿ 7)103 � 7 � 37r103 ÿ 6993 �
37(103 r ÿ 189). If 7 . 103k�2 � 3 � 37s for some positive integer

k, then 7 . 103k�5 � 3 � 7 . 103k�2103 � 3 � 37s103 ÿ 2997 �
37(103sÿ 81). The conclusions follows from the principle of mathe-

matical induction.

8. f (4) � 12; 1
2
� 1

4
� 1

6
� 1

12
.
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9. If (a� b)=ab is an integer then abj(a� b), aj(a� b) and bj(a� b).

Hence, ajb and bja so a � b. Hence, aj2: Therefore, a � 1 or 2:

10. In any subset of n� 1 integers selected from f1, 2, . . . , 2ng there

must exist two consecutive integers, which are coprime.

11. Such products have the form

n(nÿ 1)(nÿ 2) � � � (nÿ k � 1)

k!
� n

k

� �
,

which is an integer.

12. Suppose we have the sequence n, n� 1, n� 2, n� 3, n� 4. If n is

even and n� 1 is not a multiple of 3 then n� 1 is coprime to the other

four integers. If n is even and n� 3 is not divisible by 3 then n� 3 is

coprime to the rest. If n is odd then n� 2 is coprime to the other

integers.

13. If n is odd, say n � 2m� 1, then n � m� (m� 1). If n is even, say

n � 2 t m, where m is odd, say m � 2s� 1, then n � (2s� 1)2 t � (2 t

ÿ s) � (2 t ÿ s ÿ 1) � � � � � 2 t � � � � � (2 t � s ÿ 1) � (2 t � s).

Otherwise, suppose that n � 2 t and 2 t � m� (m� 1) � � � � �
(m� k) � (k � 1)m� k(k � 1)=2 � (2m� k)(k � 1)=2. Hence,

2 t�1 � (2m� k)(k � 1). If k is even, say k � 2r, then

2 t�1 � (2r � 1)(2m� 2r) or 2 t � (2r � 1)(m� r), which is impossi-

ble since 2r � 1 is odd. Suppose that k is odd, say k � 2r � 1, then

2 t�1 � (2r � 2)(2m� 2r � 1) or 2 t � (r � 1)[2(m� r)� 1], which

is impossible since 2(m� r)� 1 is odd.

14. s � (2k � 1)3, sÿ a � 2k2(2k2 ÿ 1)2, sÿ b � 8k2(2k2 � 1), sÿ c

� (2k2 ÿ 1)2, hence, s(sÿ a)(sÿ b)(sÿ c) � 16k4(2k2 ÿ 1)4(2k2

� 1)4.

15. If n is divisible by 9 then its digital root is 9. The assertion is valid for

n , 27. If n is greater than 27, and not divisible by 9, then, by the

division algorithm, n � 27k � r, where 0 < r , 27. In addition, r(n)

� r(r(27)r(k) � r(r)) � r(9r(k) � r(r)) � r(r(9r(k)) � r(r)) �
r(r(9k)� r(r)) � r(9� r(r)) � r(r).

16. The ®rst case in the induction arguments is established by Theorem

2.8. Suppose that if c1, c2, . . . , ck are pairwise coprime integers and

cijn, for i � 1, 2, . . . , k, and m � Qk
i�1 ci, then mjn. Let c1, c2, . . . ,

ck�1 be pairwise coprime integers where cijn, for i � 1, 2, . . . , k � 1,

and m �Qk
i�1 ci. From Theorem 2.8, m and ck�1 are coprime, hence,

m . ck�1 �
Qk�1

i�1 ci divides n and the proof is established by induc-

tion.

17. For n � 1, 1
5
� 1

3
� 7

15
� 1. If n5=5� n3=3� 7n=15 � m, then
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(n� 1)5

5
� (n� 1)3

3
� 7(n� 1)

15
� m� n4 � 2n3 � 3n2 � 2n� 1,

an integer, and the result is established by induction.

18. g(4) � 4, g(5) � 5, g(6) � 3, g(7) � 7, g(8) � 4, g(9) � 6,

g(10) � 5.

19. h(7) � h(11) � 6.

20. (anan�3)2 � (2an�1an�2)2 � [an(2an�1 � an)]2 � [2an�1(an�1 � an)]2

� (2anan�1 � a2
n)2 � (2a2

n�1 � 2an�1an)2

� 4a2
n�1a2

n � 4an�1a3
n � a4

n � 4a4
n�1 � 8a3

n�1an � 4a2
n�1a2

n

� (2a2
n�1 � 2an�1an � a2

n)2 � (2an�1[an�1 � an]� a2
n)2

� (2an�1an�2 � a2
n)2.

21. u0 � 0, and for n a natural number uÿ2n � ÿu2n, uÿ(2n�1) � u2n�1.

Exercises 3.1

1. 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241.

2. 6(20)ÿ 1 � 119 � 7 . 17 and 6(20)� 1 � 121 � 112.

3. Every positive integer can be expressed in the form 6k, 6k � 1,

6k � 2, 6k � 3, 6k � 4, or 6k � 5. For k > 1, 6k, 6k � 2, 6k � 3, and

6k � 4 are composite. Thus, all primes except 2 and 3 must be of the

form 6k � 1 or 6k � 5. Therefore, they are of the form 6n� 1.

4. If k � 2r � 1 then 3k � 1 � 3(2r � 1)� 1 � 6r � 4 is not prime

since it is divisible by 2. Hence, k � 2r and 3k � 1 � 3(2r)

� 1 � 6r � 1.

5. 1 � � � � � 128 � 255 � 5 . 51 and 1 � � � � � 128� 256 � 511 �
7 . 73 are composite.

6. The next numbers are 39, 46, and 49. It is the increasing sequence of

positive integers having exactly two prime factors.

7. (a) gcd(m, n) � 2 . 3 . 5 � 30, lcm(m, n) � 22 . 33 . 54 � 67 500;

(b) gcd(m, n) � 2 . 5 . 112 � 1210,

lcm(m, n) � 23 . 32 . 52 . 7 . 113 � 16 770 600.

8. If n is squarefree, all primes in the canonical representation of n have

exponent 1.

9. If n � pá1

1 pá2

2 � � � pá r
r q

â1

1 q
â2

2 � � � qâs
s , where pi, qj are prime, ái � 2ãi

and â j � 2äi � 1, for 1 < i < r, 1 < j < s then n � ( p
ã1

1 p
ã2

2 � � �
pã r

r qä1

1 qä2

2 � � � qäs
s )2(q1q2 � � � qs), the product of a square and a square-

free number.

Chapter 3 337



10. Since 4 divides every fourth number, the length is 3.

11. Q(100) � 37.

12. No, since 2 . 15 is irreducible in E and (2 . 15) divides (2 . 3) (2 . 5),

but 2 . 15 divides neither 2 . 3 nor 2 . 5.

13. The ®rst 25 Hilbert primes are 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53,

57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133.

14. 4 937 775 � 3 . 5 . 5 . 65 837 and the sum of the digits on each side of

the equality sign is 42.

15. s2(4, 2) � 2, s2(6, 2) � 4, s2(8, 2) � 3, s2(9, 2) � 6, s2(12, 2) � 4,

s2(14, 2) � 4, s2(15, 2) � 4, s2(16, 2) � 8.

16. 104 � 23 . 13 and sp(104) � 2� 2� 2� 1� 3 � 10 � 2(1� 0� 4)

� 2 . sd(104).

17. For any Smith number r, sd(r)ÿ sp(r) � 0.

18. Suppose mjn. If x belongs to Mn then nj[sd(x)ÿ sp(x)]. Hence,

mj[sd(x)ÿ sp(x)] and x belongs to Mm.

19. Suppose that x is a k-Smith number. Hence, sp(x) � k . sd(x) and

[sd(x)ÿ sp(x)] � ÿ(k ÿ 1)sd(x). Thus, (k ÿ 1)j[sd(x)ÿ sp(x)]. Hence,

x is in M kÿ1.

20. sd(1) � 1, sp(10) � 7, 10 is in M6, since 6j(1ÿ 7), but 10 is not in S6

since 66 j1.

21. If 17 p� 1 � x2, then 17 p � x2 ÿ 1 � (x� 1)(xÿ 1). Since x �
1 � 17 implies that 15 is prime, xÿ 1 � 17. Therefore, p � 19.

22. If all prime factors of the number were of the form 4m� 1 then the

number would be of the form 4k � 1.

23. Yes, 33 � 4 . 8� 1 � (4 . 0� 3)(4 . 2� 3) � 3 . 11.

24. For n . 1, n4 ÿ 1 � (n2 ÿ 1)(n2 � 1).

25. If n . 4 is composite then its factors are included in (nÿ 1)!

26. There are two cycles, 692 307 and 153 846, each of length 6.

27. The result follows since n� 1 � 54 . 7 and m� 1 � 22 . 32.

28. Let m � páx, n � pâ y, with gcd( p, x) � gcd( p, y) � 1, then mn �
( páx)( pâ y) � ( pá pâ)(xy) � ( pá�â)(xy). However, gcd(xy, p) � 1,

hence, pá�â i mn.

29. 2i10 and 2i6, but 2 6 i16.

30. Suppose
���
nm
p � a=b, in lowest form. Then am � nbm. Unless b � 1,

any prime factor of b is also a prime factor of a, contrary to our

assumption that a and b had no comon factor.
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Exercises 3.2

1. For any integer n there is a one-to-one correspondence between the set

of all divisors d of n and the set of all quotients n=d.

2. (a) ô(122) � ô(2 . 61) � 4 and ó (122) � 186.

(b) ô(1424) � ô(24 . 89) � 10 and ó (1424) � 2790.

(c) ô(736) � ô(25 . 23) � 12 and ó (736) � 1512.

(d) ô(31) � 2 and ó (31) � 32.

(e) ô(23 . 35 . 72 . 11) � 144 and ó (23 . 35 . 72 . 11) � 3 734 640.

3. ô(242) � ô(243) � ô(244) � ô(245) � 6.

4. ô(40 311) � � � � � ô(40 315) � 8.

5. ô( p1 � � � pr)ÿ 1 � 2r ÿ 1 � (2r ÿ 1)=(2ÿ 1) � 1 � � � � � 2rÿ1.

6. If n is squarefree then 2ù(n) � ô(n), otherwise 2ù(n) < ô(n). If n is

nonsquare its divisors come in pairs and one of the numbers must be

less than
���
n
p

, hence, ô(n) < 2
���
n
p

. The inequality is strict since

(nÿ 1) 6 jn for n . 2. Similarly if n is a square number.

7. If n is not square then the divisors of n pair up, their product is n, and

there are ô(n)=2 such pairs.

8. n must be of the form p3 or pq, where p and q are distinct primes.

9. n must be of the form p2q or p5, where p and q are distinct primes.

10. ô(106) , (106)2=3 � 104, whereas ô(106) � ô(2656) � 7 . 7 � 49.

ó (106) , 6 . (106)3=2=ð2 , 607 927 101, whereas ó (106) � 2 480 437.

11. ó (106) , 1
6
[7 . 106 . ù(106)� 10 . 106] � 24 . 106=6 � 4 . 106.

12.
1

25

� �X25

k�1

ô(k) � 3:48 compared with Dirichlet's 3.37.

1

50

� �X50

k�1

ô(k) � 4:14 compared with Dirichlet's 4.06.

1

100

� �X100

k�1

ô(k) � 4:84 compared with Dirichlet's 4.76.

13. H1 � 1, H2 � 3
2
, H3 � 11

6
, H4 � 50

24
, H5 � 137

60
.

14. H1 � 1 � 2(3
2
ÿ 1) � 2(H2 ÿ 1). Suppose that for some positive in-

teger k, H1 � H2 � � � � � Hk � (k � 1)(H k�1 ÿ 1). Then,

Chapter 3 339



H1 � H2 � � � � � Hk � H k�1 � (k � 1)(H k�1 ÿ 1)� H k�1

� (k � 2)H k�1 ÿ k ÿ 1

� (k � 2) H k�1 � 1

k � 2

� �
ÿ k ÿ 2

� (k � 2)H k�2 ÿ k ÿ 2

� (k � 2)(H k�2 ÿ 1),

and the result follows from the principle of mathematical induction.

15. 16! � 20 922 789 888 000, Stirling's formula gives 20 813 807 482 100.

17. 5040 since ô(5040) � ô(24 . 32 . 5 . 7) � 60.

18. D(8) � 24; D(16) � 120; D(24) � 360; D(32) � 840.

19. E(512) � E(29) � 1; E(24 137 569) � E(176) � 7; E(750) � E(2 .

3 . 53) � 0; E(2401) � E(74) � 1. E(19) ÿ E(18) ÿ E(16) � E(13)

� E(9) ÿ E(4) � E(19) ÿ 1 ÿ 1 � 2 � 1 ÿ 1 � 0. Thus, E(19) � 0.

20. 1
25

P25
n�1 E(n) � 20

25
� 0:8; ð=4 � 0:785.

21. For n � 7, we have (1� 2)2 � (13 � 23) � 9. For n � 12, we have

(1� 2� 2� 3� 4� 6)2 � (13 � 23 � 23 � 33 � 43 � 63) � 324. For

n � 24, we have (1� 2� 2� 3� 4� 4� 6� 8)2 � (13 � 23�
23 � 33 � 43 � 43 � 63 � 83) � 900.

22. ó (14) � ó (15) � ó (23) � 24.

23. ó (36) � ó (35)� ó (34)ÿ ó (31)ÿ ó (29)� ó (24)� ó (21)

ÿ ó (14)ÿ ó (10)� ó (1)� ó (ÿ4)

� 48� 54ÿ 32ÿ 30� 60� 32ÿ 24ÿ 18� 1� 0 � 91.

24. When p is odd, ( pá�1 ÿ 1)=( pÿ 1) � 1� p � � � � � pá must be the

sum of an odd number of terms, hence, á must be even. The power of

2 is not a factor in the problem since if n � 2k m, with m odd, then n

and m have the same odd divisors which pair up with an even sum if m

is not a square.

25. (1=25)
P25

k�1ó (k) � 20:88 as compared to Dirichlet's 20.56.

(1=50)
P50

k�1ó (k) � 39:78 as compared to Dirichlet's 41.12.

(1=100)
P100

k�1ó (k) � 83:16 as compared to Dirichlet's 82.25.

26. 276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964,

28 596.

27. (1, 36), (2, 36), (3, 36), (4, 9), (4, 18), (4, 36), (6, 9), (6, 36), (9, 4),

(9, 6), (9, 12), (9, 36), (12, 9), (12, 18), (12, 36), (18, 4), (18, 12),

(18, 36), (36, 1), (36, 2), (36, 3), (36, 4), (36, 6), (36, 9), (36, 12),

(36, 18), (36, 36).

28. 12 496 (24 . 11 . 71), 14 288 (24 . 19 . 47), 15 472 (24 . 967), 14 536
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(23 . 23 . 79), 14 264 (23 . 1783).

29. 2 115 324, 3 317 740, 3 649 556, 2 792 612.

30. ó�(48) � ó (48)ÿ 48ÿ 1 � 124ÿ 48ÿ 1 � 75,

ó�(75) � ó (75)ÿ 75ÿ 1 � 124ÿ 75ÿ 1 � 48.

31. 36, 54, 65, 18, 20, 21, 10, 7, 1.

32. (1=50)
P50

n�1Ù(n) � 2:2; ln(ln(50))� 1:0346 � 2:3986.

33. ó (39 . 53 . 113 . 133 . 413 . 473)

� (28 . 32 . 5 . 7 . 11 . 13 . 17 . 29 . 61)2.

34. ó (24 . 52 . 72 . 112 . 372 . 672 . 1632 . 1912 . 2632 . 4392 . 4992)

� (32 . 73 . 13 . 19 . 312 . 67 . 109)3.

35. Both equal 187 131.

36. sd(173) � sd(4913) � 17,

sd(183) � sd(5832) � 18,

sd(263) � sd(17 576) � 26,

sd(273) � sd(19 683) � 27.

37. sd(224) � sd(234 256) � 22,

sd(254) � sd(390 625) � 25,

sd(284) � sd(614 656) � 28,

sd(364) � sd(1 679 616) � 36.

38. If n � 2á pá1

1 pá2

2 � � � pá r
r , where the pi, for 1 < i < r, are odd, is the

canonical representation for n, then m � pá1

1 pá2

2 � � � pá r
r and ó (n) ÿ

ô(m) � (2á ÿ 1)(1 � p1 � p2
1 � � � � � pá1

1 ) � � � (1� pr � p2
r �

� � � � pá r
r )ÿ (á1 � 1) � � � (ár � 1). The result follows since 2á ÿ 1 is

odd and 1� pi � p2
i � � � � � pái

i is odd whenever ái is even and even

whenever ái is odd.

39. The result follows from the fact that if r and s are coprime then

ó k(rs) � ó k(r) . ó k(s) and if n � pá,

ó k( pá) � 1� pk � p2k � � � � � pák � pk(á�1) ÿ 1

pÿ 1
:

40. The result follows sinceX
djn

1

d2

� �
� 1

d2
1

� 1

d2
2

� � � � � 1

d2
r

� d2
1 � d2

2 � � � � � d2
r

n2
� ó2(n)

n2
:

41. If gcd(m, n) � 1, ù(m) � r, and ù(n) � s, then ù(mn) � r �
s � ù(m)� ù(n), since m and n have no common prime divisor.

42. Let Ù(m) � r and Ù(n) � s, Ù(mn) � r � s � Ù(m)�Ù(n), since,

in such a product, exponents with common bases are added.

43 ù(pá) � 1 � ù(p) for p a prime and á. 0.

44. ô(n) � 14 implies that nÿ p6q or n � p13 where p and q are prime.
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Since 12 � 22 . 3, there is no such n.

45. n � 215 . 310 . 56 � 30 233 088 000 000:

n

2

� �1
2

� 3 888 000,
n

3

� �1
3

� 21 600,
n

5

� �1
5

� 360:

46. If n � pá . 6, then p > 2 and á > 3. Hence, ø(n) . 6. If

n � páqâ . 8, p > 2, q > 2, á > 1, and â > 1. Hence, ø(n) . 6. If

n �Qr
i�1 p

ái

i > 8, then
Pr

i�1ái pi � 3 <
Pr

i�1 p
ái

i .

Exercises 3.3

1. Let m=n � r, so m � n . r. Since f is completely multiplicative

f (m) � f (n . r) � f (n) f (r). Therefore,

f
m

n

� �
� f (r) � f (m)

f (n)
:

2. f (r . s) � (r . s)k � rk . sk � f (r) f (s).

3. f (mn) � c g(mn) � c g(m)� g(n) � f (m) f (n).

4. Suppose that ù(m) � r and ù(n) � s. Hence ù(m . n) � r � s. Since

gcd(m, n) � 1, f (m . n) � kù(m.n) � k r�s � kr . ks � f (m) f (n).

Conversely, f (60) � k3, but f (6) . f (10) � k2 . k2 � k4.

5. If gcd(m, n) � 1, and m, n . 1, then ë(mn) � (ÿ1)Ù(mn) �
(ÿ1)Ù(m)�Ù(n) � (ÿ1)Ù(m)(ÿ1)Ù(n) � ë(m)ë(n).

6. ë( pá) � (ÿ1)á. Hence, F( pá) � ë(1)� ë( p)� ë( p2) � � � � � ë( pá)

� 1� (ÿ1)� 1� (ÿ1) � � � � � (ÿ1)á � (1� (ÿ1)á)=2. Hence,

F(n) � 1 if n is square and 0 otherwise.

7. F( pá) � ì(1)ë(1)� ì( p)ë( p) � 2. Therefore, if n �Qr
i�1 pái

i F(n)

� 2r.

8. See Table A.1.

9. It would suf®ce to show that they are not multiplicative. We have

ôe(6) � ôe(2 . 3) � 2, but ôe(2) . ôe(3) � 1 . 0 � 0. In addition,

óe(6) � óe(2 . 3) � 8, but óe(2) . óe(3) � 2 . 0 � 0.

10. Suppose that gcd(m, n) � 1; then

ôo(m)ôo(n) �
X
d1jm

d1 odd

1 .
X
d2jn

d2 odd

1 �
X
d1jm

d1 odd

X
d2jn

d2 odd

1 �
X
djmn
d odd

1

� ôo(m . n):

Also,
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óo(m)óo(n) �
X
d1jm

d1 odd

d1
.
X
d2jn

d2 odd

d2 �
X
d1jm

d1 odd

X
d2jn

d2 odd

d1d2

�
X
djmn
d odd

d � óo(mn):

Neither ôo nor óo is completely multiplicative since ôo(60) � 3, but

ôo(6) . ôo(10) � 2 . 2 � 4, and óo(60) � 8, but óo(6) . óo(10) �
4 . 6 � 24.

11. Suppose that gcd(m, n) � 1. If either m or n is not squarefree then

ì(mn) � 0 � ì(m)ì(n). If m � p1
. p2 � � � pr and n � q1

. q2 � � � qs,

where pi, qj are prime for 1 < i < r, 1 < j < s, then ì(m) � (ÿ1)r

and ì(n) � (ÿ1)s, hence ì(mn) � (ÿ1)r�s � (ÿ1)r(ÿ1)s �
ì(m)ì(n).

12. One of any four consecutive numbers is divisible by 4, hence

ì(n)ì(n� 1)ì(n� 2)ì(n� 3) � 0.

13.
P1

k�1ì(k!) � 1�ÿ1� 1� 0� 0 � � � � � 1.

14. n � 33.

15. Since ì is multiplicative and
P

dj pá jì(d)j � jì(1)j � jì( p)j � 2, for p

a prime. Hence,
P

djnjì(d)j � 2ù(n).

16. Let F(n) �Pdjnì(d)ô(n=d). Since ì and ô are multiplicative so is

F and F( pá) � ì(1)ô( pá) � ì( p)ô( páÿ1) � ì( p2)ô( páÿ2) � � � � �
ì( pá)ô(1) � á� 1� (ÿ1)á� 0 � � � � � 0 � 1 for p a prime. Hence,

if n �Qr
i�1 pái

i , F(n) � 1.

17. Let F(n) �Pdjnì(d)ó (d). Since ì and ó are multiplicative so is F

and F(2r pá) � F(2r)F( pá) � 2r . pá for p a prime. Hence, if

n �Qr
i�1 p

ái

i , F(n) � n.

18. Let F(n) �Pdjnì(d)ô(d). Since ì and ô are multiplicative so is F.

Table A.1

n ôe(n) ôo(n) óe(n) óo(n)

1 0 1 0 1
2 1 1 2 1
3 0 2 0 4
4 2 1 6 1
5 0 2 0 6
6 2 2 8 4
7 0 2 0 8
8 3 1 14 1
9 0 3 0 13

10 2 2 12 6
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For any prime p, F( pá) � ì(1)ô(1)� ì( p)ô( p) � � � � � ì( pá)ô( pá)

� 1 . 1� (ÿ1) . 2� 0 . 0 � � � � � 0 . 0 � (ÿ1). Therefore, if n �Qr
i�1 pái

i ,

F(n) � F
Yr

i�1

p
ái

i

 !
�
Yr

i�1

F( p
ái

i ) �
Yr

i�1

(ÿ1) � (ÿ1)r � (ÿ1)ù(n):

19. According to the MoÈbius inversion formula with F(n) � 1=n,

f (n) �
X
djn

ì(d)F
n

d

� �
�
X
djn

ì(d)
d

n

� �
:

Hence,

f ( pá) �
X
dj pá

ì(d)
d

pá

� �
� 1

pá
ÿ p

pá
� 1

pá
(1ÿ p):

Therefore,

f (n) � 1

n

Y
pjn

(1ÿ p):

20. If n � pá,
Q

dj pá dô(d)ì(n=d)=2 � ( páÿ1)ÿá=2( pá)(á�1)=2 � pá.

21. If n � pá, X
dj pá

ù(d)

ô( pá)
� 1� 1 � � � � � 1

á� 1
� á

á� 1
:

22. If n �Qr
i�1 pái

i ,
P

djnË(d) �Pr
i�1Ë( pái

i ) �Pr
i�1 ln( pái

i ) �
ln(
Qr

i�1 p
ái

i ) � ln(n).

23. Since
P

djnË(d) � ln(n) the MoÈbius inversion formula implies that

Ë(n) � Pdjnì(d)ln(n=d) � Pdjnì(d)ln(n) ÿ Pdjnì(d)ln(d) � 0 ÿP
djnì(d)ln(d).

Exercises 3.4

1. 1142 ÿ 12 971 � 52, thus 12 971 � (114� 5)(114ÿ 5) � 119 . 109.

2. (a) 493 � 182 � 132 � 222 � 32 � 17 . 29.

(b) 37 673 � (142 � 362)(3602 � 362)

4 . 362
� 373 . 101.

3. a � kmr � ns

2
, b � msÿ nr

2
, c � kmr ÿ ns

2
, d � ms� nr

2
,

N � a2 � kb2 � k2 m2 r2 � kn2 r2 � n2s2 � km2s2

4
,

N � c2 � kd2 � k2 m2 r2 � kn2 r2 � km2s2 � n2s2

4
. Hence,
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2N � 2(k2 m2 r2 � kn2 r2 � km2s2 � n2s2)

4
and

N � k2 m2 r2 � kn2 r2 � km2s2 � n2s2

4
� (km2 � n2)(kr2 � s2)

4
.

4. a� c � 10 . 30; aÿ c � 14; ms � d � b � 70; nr � d ÿ b � 6.

Hence, m � 10; n � 2; r � 3; s � 7 and 34 889 � 251 . 139.

5. If n � pm and m � ab, with a . n1=3 and b . n1=3, then

n � pab . n1=3 n1=3 n1=3 . n, a contradiction.

6. 2 027 651 281 � (45 041� 1020)(45 041ÿ 1020) � 46 061 . 44 021.

Exercises 3.5

1. Since ��x�� < x , ��x�� � 1, ��x�� < x and x , ��x�� � 1. Hence, xÿ 1

, ��x��. Therefore, xÿ 1 , ��x�� < x.

2. Since xÿ 1 , ��x�� < x and ÿxÿ 1 , ��ÿx�� < ÿx, ÿ2 , ��x�� �
��ÿx�� < 0. If x is an integer ��x�� � ��ÿx�� � 0; otherwise ��x�� � ��ÿx��
� ��jxj�� � ��ÿjxj�� � ��jxj�� � (ÿ��jxj�� ÿ 1) � ÿ1.

3. Let x � ��x�� � á and y � ��y�� � â, where 0 < á,â < 1. Hence,

x� y � ��x�� � ��y�� � á� â, where 0 < á� â, 2. If 0 < á� â, 1,

��x� y�� � ��x�� � ��y��. If 1 < á� â, 2, ��x� y�� � ��x�� � ��y�� � 1.

Therefore, ��x� y�� > ��x�� � ��y��.
4. (a) x � n� á, with n and integer and á real, 0 < á, 1=2;

(b) x any real number;

(c) x an integer;

(d) x real, 1 < x , 10
9

.

5. 529, 263, and 131.

6. n � 30.

7. 249

8. 150

9. ��10 000/7�� ÿ ��1000/7�� � 1428 ÿ 142 � 1286.

10. ��1000/3�� ÿ ��1000/12�� � 333 ÿ 83 � 250.

11. From the inclusion±exclusion principle, 10 000ÿ ��10 000=3�� ÿ
��10 000=5�� ÿ ��10 000=7�� � ��10 000=15�� � ��10 000=21�� �
��10 000=35�� ÿ ��10 000=105�� � 4659.

12. 369 693 097 digits.

13. If the divisors of k, for k � 1, . . . , n, are listed, k is counted exactly

��n=k�� times.

14.
X1
k>1

��
2n

pk

��
ÿ 2

��
n

pk

�� !
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15. The result follows from a generalization of Theorem 3.13 and the fact

that ��n�� �Pn
k�11.

Exercises 3.6

1. One number in any set of three consecutive integers must be divisible

by 3.

2. No, since for n . 2 n2 ÿ 1 � (n� 1)(nÿ 1).

3. Suppose that there are only ®nitely many primes of the form 4k � 3,

say q1, . . . , qr, and consider N � 4(q1 � � � qr)ÿ 1 � 4((q1 � � � qr)

ÿ 1)� 3. The product of primes of the form 4k � 1 is always a

number of the form 4m� 1. Thus if N is composite one of its factors

must be of the form 4r � 3. However, no prime of the form 4r � 3

divides N, a contradiction.

4. Suppose that there are only ®nitely many primes of the form 4k � 1,

say q1, . . . , qr, and consider N � (q1 � � � qr)
2 � 1. N . qi, for

1 < i < r, hence N cannot be prime. Any number of the form a2 � 1

has, except possibly for the factor 2, only prime factors of the form

4m� 1. Since division into N by each prime factor of the form 4k � 1

leaves a remainder 1, N cannot be composite, a contradiction. Hence,

the number of primes of the form 4k � 1 must be in®nite.

5. No, 333 333 331 � 17 . 19 607 843.

6. A(50) � 4:63; ln(50) � 3:91.

7. limx!1

�x

2

dt

ln(t)
x

ln(x)

� lim
x!1

ln(x)

ln(x)ÿ 1
� 1:

8. According to Euler's formula,

æ(6) � 24 . ð6 . jB2nj
6!

�
16 . ð6 .

1

42

� �
720

� ð6

945
:

9. ó ( p� 2) � p� 2� 1 � p� 1� 2 � ó ( p)� 2.

10. 17 . 19 � 323 and 83 691 159 552 021 � 323 . 259 105 757 127.

11. If p � 3k � 1, then p� 2 � 3(k � 1) which is not prime. Hence,

p � 3k � 2, then 2 p� 2 � 6(k � 1), but p is odd, hence

p� 1 � 3(k � 1) is even implying that k � 1 is even, hence,

12j(2 p� 2).

12. Yes, (2n� 1)(2nÿ 1) � 4n2 ÿ 1.

13. 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127.
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14. (41, 43, 47).

15. (101, 103, 107, 109) or (191, 193, 197, 199).

16. 76 883, 6883, 883, 83, and 3 are prime.

17. 59 393 339, 5 939 333, 593 933, 59 393, 5939, 593, 59 and 5 are prime.

18. 521, since 125 � 53;

487 since 784 � 282;

691 since 196 � 142;

1297, since 7921 � 892;

1861, since 1681 � 412;

4441, since 1444 � 382;

4483, since 3844 � 622;

5209, since 9025 � 952;

5227, since 7225 � 852;

9049, since 9409 � 972;

806 041, since 140 608 � 523.

19. 11, 13, 17, 31, 37, 71, 73.

20. The 3-digit palindromic primes are 101, 131, 151, 181, 191, 313, 353,

373, 383, 727, 757, 787, 797, 919, and 929.

21. 1441 � 11 . 131 and 3443 � 11 . 313.

22. 113, 131, and 311 are prime.

23. 1423, 2341, 2143, and 4231 are prime; 1847, 8147, 8741, 1487, 7481,

4817, 4871, and 7841 are prime.

25. 1111 is prime and 1111 . 3304 � 3 670 744 � 2 . 2 . 2 . 7 . 11 . 59 .

101, sd(3 670 744) � 31 � sd(2 . 2 . 2 . 7 . 11 . 59 . 101).

26. 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191.

27. 5, 11, 23, 47

28. 2 . 3 . 5 . 7 . 11 . 13� 1 � 30 031 and 30 047ÿ 30 030 � 17 � f 6.

2 . 3 . 5 . 7 . 11 . 13 . 17� 1 � 510 511 and 510 529ÿ 510 510 � 19

� f7. 2 . 3 . 5 . 7 . 11 . 13 . 17 . 19� 1 � 9 699 691 and 9 699 713 ÿ
9 699 690 � 23 � f 8. Yes.

29. 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257 are

prime, but f (16) � 289 � 172.

30. 13, 19, 29, 43, 61, 83, 109, 139, 173, and 211 are prime but

f (11) � 253 � 11 . 23.

31. f (25) � 251, f (30) � 131, f (40) � 41, f (60) � 461 are prime but

f (80) � 1681 � 412.

32. f ([( pÿ 1)!� 1]=k, pÿ 1) � p.

33. f (n, n) � 2.

34. 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79,

85, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169,

171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259,

261, 267, 273, 283, 285, 289, 297.
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35. 6 � 3� 3,

8 � 7� 1,

10 � 7� 3,

12 � 9� 3,

14 � 13� 1,

16 � 15� 1,

18 � 15� 3,

20 � 13� 7,

22 � 21� 1,

24 � 21� 3,

26 � 25� 1,

28 � 25� 3,

30 � 21� 9,

32 � 31� 1,

34 � 31� 3,

36 � 33� 3,

38 � 37� 1,

40 � 37� 3,

42 � 37� 5,

44 � 43� 1,

46 � 43� 3,

48 � 33� 15,

50 � 49� 1.

36. 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, 23, 28, 30, 32, 35.

37. 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, 24, 25, 29, 30, 35.

38. 2, 5, 7, 9, 11, 12, 13, 15, 19, 23, 27, 29, 35, 37, 41, 43, 45, 49, 51, 55,

59, 63, 65, 69, 75, 77, 79, 87, 91, 93, 97.

39. 2, 3, 5, 7, 8, 9, 11, 13, 19, 22, 25, 27, 28, 37, 39.

40. 1, 2, 4, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 36, 39.

41. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29.

42. 3, 4, 6, 9, 10, 17, 18, 25, 30, 32, 37, 44, 45, 46, 58.

43. 2, 3, 6, 12, 18, 24, 36, 48.

44. Suppose that 2n > 6; if 2nÿ 2 � p� q, where p and q are prime,

then 2n � 2� p� q, and 2n� 1 � 3� p� q. Hence, every positive

integer greater than unity is the sum of three or fewer primes.

Conversely if 2n > 4 then 2n� 2 � p� q� r, where p, q, r are

prime. Since one of p, q, r is even, say r � 2, we have 2n � p� q.

45. 4 � 2� 2,

6 � 3� 3,

8 � 5� 3,

10 � 7� 3,

12 � 7� 5,

14 � 7� 7,

16 � 11� 5,

18 � 13� 5,

20 � 17� 3,

22 � 11� 11,

24 � 13� 11,

26 � 13� 13,

28 � 23� 5,

30 � 23� 7,

32 � 29� 3,

34 � 31� 3,

36 � 31� 5,

38 � 31� 7,

40 � 37� 3,

42 � 37� 5,

44 � 37� 7,

46 � 41� 5,

48 � 41� 7,

50 � 47� 3.

46. 10 � 3� 7 � 5� 5,

16 � 13� 3 � 11� 5,

18 � 13� 5 � 7� 11.

47. 22 � 11� 11 � 19� 3 � 17� 5,

24 � 7� 17 � 19� 5 � 13� 11,

26 � 23� 3 � 19� 7 � 13� 13.

48. 7 � 2 . 2� 3,

9 � 2 . 2� 5,

11 � 2 . 2� 7,

13 � 2 . 3� 7,

15 � 2 . 5� 5,

17 � 2 . 5� 7,

19 � 2 . 7� 5,

21 � 2 . 5� 11,

23 � 2 . 5� 13,

25 � 2 . 11� 3,

27 � 2 . 11� 5,

29 � 2 . 11� 7,

31 � 2 . 13� 5,

33 � 2 . 13� 7,

35 � 2 . 11� 13,
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37 � 2 . 17� 3,

39 � 2 . 17� 5,

41 � 2 . 17� 7,

43 � 2 . 19� 5,

45 � 2 . 19� 7,

47 � 2 . 17� 13,

49 � 2 . 13� 23.

49. ð(109)=109 � 50 847 478=109 � 0:050 847 7 or about 5%.

50. (æ(s))2 �
X1
u�1

1

us

 ! X1
v�1

1

vs

 !
�
X1
n�1

ô(n)

ns
, where u . v � n.

51. æ(s) . æ(sÿ 1) �
X1
u�1

1

us

 ! X1
v�1

1

vsÿ1

 !
�

X1
u�1

1

us

 ! X1
v�1

v

vs

 !

�
X1
n�1

ó (n)

ns
, where u . v � n.

52. æ(s) . æ(sÿ k) �
X1
u�1

1

us

 ! X1
v�1

1

vsÿk

 !
�

X1
u�1

1

us

 ! X1
v�1

vk

vs

 !

�
X1
n�1

ó k(n)

ns
, where u . v � n.

53.
X1
n�1

ì(n)

ns

 ! X1
n�1

1

ns

 !
�
X1
n�1

X1
kjn

ì(k)

 !
ns

�
X1
n�1

í(n)

ns
� 1:

Exercises 3.7

1. gcd(am, bn) � pminfm, ng.
2. gcd(a� b, p4) � p and gcd(ab, p4) � p3.

3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 6 11 17 24 33 43 54 67 81 96 113 131 150

1 4 15 32 65 108 175 256 369 500

1 16 81 256 625

4.

1 16 81 256 625 1296 2401 4096

15 65 175 369 671 1105 1695

50 110 194 302 434 590

60 84 108 132 156

24 24 24 24

5. If n is in the array, let r and c denote, respectively, the row and column

indicating n's position in the array. Since the numbers in each row and

column form an arithmetic progression, n � 4� 3(cÿ 1) �
(2c� 1)(r ÿ 1). Hence, 2n� 1 � 2[4� 3(cÿ 1)� (2c� 1)(r ÿ 1)]

� 1 � (2r � 1)(2c� 1), which is composite and odd. In addition, all

odd composite numbers can be obtained in this manner. If p is an odd
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prime, then m � ( pÿ 1)=2 is a positive integer that cannot appear in

the array.

6. n is a positive integer such that n� 1 is not an odd prime.

7. The order of the factors counts. Hence, the number of solutions to

xy � n, d2(n), equals ô(n). Similarly, d1(n) � 1.

8. ô(24) � 24ÿ t(23, 1)ÿ t(22, 2)ÿ t(21, 3)ÿ t(20, 4)

ÿ t(19, 5)ÿ t(18, 6)ÿ t(17, 7)ÿ t(16, 8)

ÿ t(15, 9)ÿ t(14, 10)ÿ t(13, 11)ÿ t(12, 12)

� 24ÿ 1ÿ 2ÿ 2ÿ 3ÿ 1ÿ 2ÿ 1 ÿ1ÿ 1ÿ 1ÿ 1ÿ 0 � 8.

9. è(10)� è(9)� è(7)� è(4)� è(0) � è(10)� 13� 8� (ÿ5)� (ÿ10)

� 0. Hence, è(10) � ÿ6. è(24) � è(23) � è(21) � è(18) � è(14) �
è(9) � è(3) � è(24) � 24 � 32 � (ÿ13) � (ÿ8) � 13 � 4 � 0.

Hence, è(24) � ÿ52.

10. Let m � 2t � 1 denote the largest odd divisor of n. For any proper odd

divisor 2r � 1 of m, with n=(2r � 1) � s, we have that (s ÿ
r) � � � � � (sÿ 1)� s� (s� 1) � � � � � (s� r) � (2r � 1)s � n. In

addition, if n � 2á pá1

1 pá2

2 � � � pá r
r , where the pi, for 1 < i < r, are

odd, is the canonical representation for n, we have that m � t � (t �
1) � pá1

1 pá2

2 � � � pá r
r . Hence, (t ÿ (2á ÿ 1)) � � � � � (t ÿ 1) � t � (t

� 1) � (t � 2) � � � � � (t � (2á ÿ 1)) � (t � 2á) � 2á�1 . t � 2á �
2á(2t � 1) � 2ám � n.

11. Suppose S � 1� 1
2
� 1

3
� 1

4
� � � � � 1=n is an integer. Let m be the

largest integer such that 2m < n and P � 1 . 3 . 5 � � � (2r � 1), with

2r � 1 < n. Then, each term of the sum 2mÿ1 . P . S is an integer

except 2mÿ1 . P=2m. Hence, S is not an integer.

12. The area of the polygonal region equals I � B=2ÿ 1.

13. The area of the polygonal region remains equal to I � B=2ÿ 1.

15. 1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, . . . : [Beatty

sequence]

16. 3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 49, 51, 54, 58, 61, 64,

68.

17. If an denotes the nth term of the sequence, the positive integer k ®rst

appears in the sequence when

n � 1� 2 � � � � � (k ÿ 1)� 1 �
��

(k ÿ 1)k

2

��
� 1:

Thus

an � k for n �
��

(k ÿ 1)k

2

��
� 1� r,

where r � 0, 1, . . . , k ÿ 1. Hence,
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0 < nÿ (k ÿ 1)k

2
ÿ 1 < k ÿ 1,

or

k2 ÿ k � 2

2
< n <

k2 � k

2
:

Thus,

(2k ÿ 1)2 � 7 < 8n < (2k � 1)2 ÿ 1,

or

(2k ÿ 1)2 < 8nÿ 7 < (2k � 1)2 ÿ 8 ,(2k � 1)2:

So

2k ÿ 1 < (8nÿ 7)1=2 < 2k � 1,

or

k <

��
1� ��������������

8nÿ 7
p

2

��
< k � 1:

Therefore,

an �
��

1� ��������������
8nÿ 7
p

2

��
:

18. The result follows directly from the previous exercise.

19. The only factors of pn! divisible by p are p, 2 p, 3 p, . . . , pnÿ2 p,

( pnÿ2 � 1) p, . . . , 2 pnÿ2 p, (2 pnÿ2 � 1) p, . . . , 3 pnÿ2 p, . . . , pn. The

number of these factors is pn. Since p is prime, after dividing each of

these factors by p, there remain only the quotients from the factors

pnÿ1, 2 pnÿ1, 3 pnÿ1, . . . , pn still divisible by p, and the number of

these is pnÿ1. Dividing these by p, there remain only the quotients

from the factors pnÿ2, 2 pnÿ2, 3 pnÿ2, . . . , pn still divisible by p, and

the number of these is pnÿ2. Continuing this process, eventually there

remains only one quotient, namely that from pn, divisible still by p.

Therefore pn! is divisible by p to the power pnÿ1� pnÿ2 � � � �
� p� 1 � ( pn ÿ 1)=( pÿ 1).

20. From the previous exercise, x � 2n ÿ 1.

21. If n � 2á . m, where m is odd, any factor of n which gives an odd

quotient must have 2á as an element, and therefore is of the form

2á . d, where d is any odd divisor. Therefore, A �P2á . d �
2á
P

d � 2á . C. If r is any factor of n giving an even quotient, then r

must contain a power of 2 not greater than áÿ 1. Therefore, r is of the

form 2â . d, where â,á. Thus, corresponding to any odd factor d, the

sum of divisors giving an even quotient is (1� 2� 22 � � � � �
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2áÿ1)d � (2á ÿ 1)d. Hence, B � (2á ÿ 1)
P

d � (2á ÿ 1)C and A �
B� C.

23. If p is prime,

ô2( pá) � ô(1)� ô( p) � � � � � ô( pá) � 1� 2 � � � � � (á� 1)

� (á� 1)(á� 2)

2
� á� 2

2

� �
:

Since ô2 is multiplicative the result is established.

24:
ð2

8
�
��

T

dudv �
��

S

(1ÿ x2 y2)ÿ1dxdy

� 1

12
� 1

32
� 1

52
� � � � � 1ÿ 1

22

� �
æ(2):

The Jacobian of the transformation is 1ÿ x2 y2.

Exercises 4.1

1. No, 10 . 11 � 110 and ó (110) � ó (2 . 5 . 11) � 216 , 220 � 2 . 110.

2. If ó (n) > 2n, then ó (kn) . k . ó (n) > k . (2n) � 2kn, hence, all mul-

tiples of perfect and abundant numbers are abundant.

3. (a) The primes greater than 2 are odd and de®cient,

(b) number of the form 2 p, where p . 5 is prime, are even and

de®cient.

4. Suppose ó (n) � 2n, djn, d 6� n and ó (d) > 2d; then 2n � ó (n) �
ó (d . (n=d)) . 2d(n=d) � 2n, a contradiction.

5. 6� 1102,28� 11 1002,496� 111 110 0002,8128� 1 111 111 000 0002.

(2 pÿ1(2 p ÿ 1)) to base 2 is p ones followed by pÿ 1 zeros.

6. r(137 438 691 328) � 1.

7. 2 pÿ1(2 p ÿ 1) � t2 pÿ1 .

8. 2 pÿ1(2 p ÿ 1) � p6
2 pÿ1 .

9.
X
djn

1

d
�

X
djn

d

n
� ó (n)

n
� 2n

n
� 2.

10. If n � 2 pÿ1(2 p ÿ 1),
Y
djn

d � 20�1�����( pÿ1)(2 p ÿ 1) p . 20�1�����( pÿ1)

� (2 p ÿ 1) p[2 p( pÿ1)=2]2 � (2 p ÿ 1) p(2 pÿ1) p � n p.

11. (1 398 269)log(2)� 1 � 420 921.

12. If n � pá and 2 pá � ó ( pá) � ( pá�1 ÿ 1)=( pÿ 1) then pá�1 �
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2 pá�1 ÿ 2 pá � 1 or pá�1 � 2 pá ÿ 1. Hence, p � 1, a contradiction.

If n � pq and 2 pq � ó ( pq) � ( p� 1)(q� 1) then one of p� 1 and

q� 1 must be even. Thus, without loss of generality, q� 1 � 2 p and

p� 1 � q, by the Fundamental Theorem of Arithmetic. Hence, p � 2

and q � 3.

13. If n � p1 � � � pr and ó (n) � 2 p1 � � � pr � ( p1 � 1) � � � ( pr � 1), with

p1 , p2 , � � � , pr, then we must have 2 p1 � pr � 1, p2 � p1 � 1,

p3 � p2 � 1, � � � , pr � prÿ1 � 1, as in the previous answer, with

n � 6 as the only solution.

14. From Exercise 1.4.5, 2nÿ1(2n ÿ 1) � 13 � 33 � 53 � � � � �
(2(n�1)=2 ÿ 1)3 � 13 � � � � � (2 . 2(nÿ1)=2 ÿ 1)3, the sum of the ®rst

2(nÿ1)=2 odd cubes.

15. For any positive integer k, the units digit of 24k is 6, of 24k�1 ÿ 1 is 1,

of 24k�2 is 4, and of 24k�3 ÿ 1 is 7. Hence, the units digit of

24k(24k�1 ÿ 1) is 6 and that of 24k�2(24k�3 ÿ 1) is 8.

16. If p is an odd prime, 2 pÿ1 ÿ 1 is divisible by 3. Hence, 2 pÿ1 � 3k � 1

for some k. Thus, 2 p � 6k � 2 and 2 p ÿ 1 � 6k � 1. Hence,

2 pÿ1(2 p ÿ 1) � (3k � 1)(6k � 1) � 18k2 � 9k � 1 � 9M � 1.

17. ó (ó (6)) � ó (12) � 28. Suppose that n is even, then n � 2 pÿ1(2 p ÿ 1)

and ó (ó (n)) � 2 p(2 p�1 ÿ 1) is even and perfect. Hence, 2 p�1 ÿ 1 and

p� 1 are prime. Thus, p � 2 and n � 6. If n is odd then ó (n) � 2n

implies that ó (ó (n)) � 6n � 2 pÿ1(2 p ÿ 1) so n � 1.

18. The Lucas±Lehmer sequence generated is 4, 14, 67, 42, 111, 0.

19. If ó (2 . 3á) � 2 . 2 . 3á, 3(3á�1 ÿ 1)=2 � 4 . 3á. Hence, 3á�1 ÿ 1 �
8 . 3áÿ1, which is true only if á � 1.

20. 6, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51.

21. n is product perfect if ô(n) � 4.

22. One.

Exercises 4.2

1. The digital roots are, respectively 3, 5, 8, 5, 8, 5.

2. n � 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 18, 20, 24, 26.

3. F0 � F1 ÿ 2. Suppose that
Y

0<n<k

Fn � Fk�1 ÿ 2. Hence,

Y
0<n<k�1

Fn � (Fk�1 ÿ 2)Fk�1 � (22 k�1 ÿ 1)(22 k�1 � 1) � 22 k�2 ÿ 1 �

Fk�2 ÿ 2.

4. The last digit of F2 � 222 � 1 � 17 is 7. If the last digit of
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Fn � 22 n � 1 is 7, the last digit of 22 n

is 6. Therefore the last digit of

Fn�1 � 22 n�1 � 1 � (22 n

)2 � 1 is 7.

5. If a prime p divides gcd(Fm, Fn), where n � m� k, then rp �
22 n � 1 and we have 22 n � 22 m� k � (22m

)2 k � ( pr ÿ 1)2 k

, which is not

divisible by p.

6. Let n � m� k; then Fm�k ÿ 2 � 22 m� k ÿ 1 � (22 m

)2 k ÿ 1. Since

(x� 1)j(x2n ÿ 1), (22 m � 1)j[(22 m

)2 k ÿ 1]. Therefore, Fm divides

Fm�k ÿ 2.

7. F1 � 5. If Fn � 22 n � 1 � 12k � 5, 22 n � 12k � 4. Therefore,

Fn�1 � 22 n�1 � 1 � (22 n

)2 � 1 � (12k � 4)2 � 1 � 12m� 5.

8. If Fn � 22 n � 1 � (2k � 1)2, 22 n � 4k(k � 1), a contradiction since k

or k � 1 is odd.

9. If Fn � 22 n � 1 � (2k � 1)3, 22 n � 2k(4k2 � 6k � 3), a contradiction

since 4k2 � 6k � 3 is odd.

10. Suppose 22 n � 1 � k(k � 1)=2. Multiplying both sides of the equation

by 2, we obtain 22 n�1 � 2 � k(k � 1). Hence, 22 n�1 � (k � 2)(k ÿ 1),

a contradiction, since one of the factors on the right is odd.

Exercises 4.3

1. (a) 220 � 22 . 5 . 11, 284 � 22 . 71, and ó (220) � 504 � ó (284).

(b) 1184 � 25 . 37, 1210 � 2 . 5 . 112, and ó (1184) � 2394 �
ó (1210).

(c) 17 296 � 24 . 23 . 47, 18 416 � 24 . 1151, and ó (17 296) � 35 712

� ó (18 416).

(d) 176 272 � 24 . 23 . 479, 180 848 � 24 . 89 . 127, and ó (176 272)

� 357 120 � ó (180 848).

2. If
X
djm

d �
X
djn

d � m� n then

X
djm

1

d
�

X
d=m

d

m
� m� n

m

and

X
djn

1

d
�

X
djn

d

n
� m� n

n
:

Hence,
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1X
djm

d
� 1X

djn
d
� m

m� n
� n

m� n
� m� n

m� n
� 1:

3. (a) The sum of the digits of the pair (63 020, 76 084) is 36;

(b) the sum of the digits of the pair (652 664, 643 336) is 54.

4. 48 � 24 . 3 and 75 � 3 . 52; ó (48) � 124 � ó (75). 140 � 22 . 5 . 7 and

195 � 3 . 5 . 13; ó (140) � 336 � ó (195). 1575 � 32 . 52 . 7 and

1648 � 24 . 103; ó (1575) � 3224 � ó (1648).

5. ó (25 . 32 . 47 . 109) � ó (25 . 32 . 7 . 659) � ó (25 . 32 . 5279)

� 4 324 320 � 1 475 424� 1 328 544� 1 520 352.

6. ó (22 . 32 . 5 . 11) � ó (25 . 32 . 7) � ó (22 . 32 . 71) � 6552.

7. s(123 228 768) � 103 340 640� 124 015 008 � 227 355 648

s(103 340 640) � 123 228 768� 124 015 008 � 247 244 377

s(124 015 008) � 123 228 768� 103 340 640 � 276 569 408

Exercises 4.4

1. ó (120) � ó (23 . 3 . 5) � 3 . 120 � 360.

ó (672) � ó (25 . 3 . 7) � 3 . 672 � 2016:

ó (29 . 3 . 11 . 31) � 1023 . 4 . 12 . 32 � 3(29 . 3 . 11 . 31) � 3 .

523 776.

2. Suppose n is squarefree and 3-perfect. Since n � p1 � � � pr and

ó (n) � 3n, 3 p1 � � � pr � ( p1 � 1) � � � ( pr � 1), a contradiction, since

2rÿ1j( p1 � 1) � � � ( pr � 1), but 2rÿ1 6 j(3 p1 � � � pr), unless r < 2,

which is easily eliminated.

3. ó (30 240)� ó (25 . 33 . 5 . 7)� 63 . 6 . 8 . 40� 120 960� 4 . 30 240:

4. ó (14 182 439 040) � 255 . 121 . 6 . 8 . 133 . 18 . 20 � 70 912 195 200

� 5 . 14 182 439 040.

5. If n is k-perfect then ó (n) � kn. Hence,
ó (n)ÿ n

n
� knÿ n

n
� k ÿ 1.

6. 2 . ó (21) � 2 . 32 � 3 . 21� 1 � 64.

2133 � 33 . 79 and 2 . ó (2133) � 2 . 3200 � 6400 � 3 . 2133� 1.

19 521 � 34 . 241 and 2 . ó (19 521) � 2 . 29 282 � 58 564 � 3 .

19 521� 1.

7. 3 . ó (325) � 3 . 434 � 1302 � 4 . 325� 2.

8. 36 � 6� 12� 18; 40 � 10� 20� 2� 8;

770 � 35� 5� 385� 154� 110� 70� 11;
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945 � 3� 7� 135� 105� 189� 315� 21� 27� 63� 45� 35.

9. 770 and 945 are semiperfect and none of their divisors are semiper-

fect.

10. ó (70) � 144 . 140 � 2 . 70:

11. 2161 038 ÿ 2 � 2(2161 037 ÿ 1) � (29)29.617 ÿ 129.167 � (29 ÿ 1)(. . .) �
511(. . .) � 7 . 73(. . .) and 2161 037 ÿ 1 � (229)9�617 ÿ 19:617 � (229ÿ
1)(. . .) � 1103 . 486 737(. . .). Hence, the primes 73 and 1103 both

divide 2161 037 ÿ 1.

12. 1 � 1,

2 � 2,

3 � 3,

4 � 4,

5 � 4 � 1,

6 � 4 � 2,

7 � 4 � 3,

8 � 6 � 2,

9 � 6 � 3,

10 � 6 � 4,

11 � 8 � 3,

12 � 8 � 4,

13 � 12 � 1,

14 � 12 � 2,

15 � 12 � 3,

16 � 12 � 4,

17 � 12 � 3 � 2,

18 � 12 � 6,

19 � 12 � 6 � 1,

20 � 12 � 8,

21 � 12 � 8 � 1,

22 � 12 � 8 � 2,

23 � 12 � 8 � 3.

13. The result follows since it is possible using the binary system to

represent any integer from 1 to 2 p ÿ 1 as a sum of 1, 2, . . . , 2 pÿ1.

14. 23 � 8� 6� 4� 3� 2 � 12� 8� 3.

15. If n is perfect then ó (n) � 2n and ó (n)ÿ nÿ 1 � nÿ 1.

16. 140 . ô(140)=ó (140) � 5.

17. If n is perfect ó (n) � 2n and ô(n) is even. Hence,

n . ô(n)

ó (n)
� n . 2r

2n
� r:

18. á(60) � 168ÿ 120 � 48; ä(26) � 52ÿ 42 � 10.

19. A( pá) � ó ( pá)

ô( pá)
� pá�1

( pÿ 1)(á� 1)
.

20. 1, 3, 5, 6, 7, 11, 13, 14, 15, 17.

21. H( pá) � ( pÿ 1)(á� 1)

pá�1 ÿ 1
pá.

22. H(1) � 1, H(4) � 12
7

, H(6) � 2, and H( p) � 2 p=( p� 1) , 2, for p a

prime.

23. H(2nÿ1(2n ÿ 1)) � n.

24. G( pá) � (1 . p . p2 � � � pá)á�1 � pá(á�1)2=2.

25. A(n) and H(n) are multiplicative because ó and ô are multiplicative.
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However, G(6) � 68 6� 64 � G(2) . G(3):

26. ó (2n)� 1 � (2n�1 ÿ 1)=(2ÿ 1)� 1 � 2n�1 � 2(2n).

27. ó (ó (16)) � ó (31) � 32 � 2 . 16.

28. 90 � 2 . 32 . 5 and ó�(90) � 180;

87 360 � 26 . 3 . 5 . 7 . 13 and ó�(87 360) � 174 720.

29. The result follows since ó� is multiplicative and ó�( pá) � pá � 1.

30. n � 32.

31. ó�(114) � ó�(126) � 114� 126 � 240:

Exercises 5.1

1. If a � b (mod m), then a � b� km for some integer k. Hence,

a� c � b� c� km or a� c � b� c (mod m). Similarly, a . c �
b . c� ckm or a . c � b . c (mod m). The third property follows since

an � (b� km)n � bn (mod m).

2. For i � 1, . . . , n, suppose that ai � bi (mod m). There exist ki such

that ai � bi � kim. The additive case may be handled without using

induction sinceXn

i�1

ai �
Xn

i�1

(bi � kim) �
Xn

i�1

bi �
Xn

i�1

ki

 !
m:

Hence,
Xn

i�1

ai �
Xn

i�1

bi (mod m). We have already shown that if a � b

(mod m) and c � d (mod m), then ac � bd (mod m). Suppose thatQn
i�1 ai �

Qn
i�1 bi and an�1 � bn�1 (mod m). The result follows sinceYn�1

i�1

ai �
Yn

i�1

ai

 !
an�1 �

Yn

i�1

bi

 !
bn�1 �

Yn�1

i�1

bi (mod m):

3. If a � b (mod m1), a � b (mod m2), and gcd(m1, m2) � 1, then

aÿ b � rm1, aÿ b � sm2, and m1u� m2v � 1. Multiplying the lat-

ter equation by aÿ b, we obtain (aÿ b)m1u� (aÿ b)m2v � a

ÿb: Therefore, aÿ b � sm2 m1u� rm1 m2v � (su� rv)m2 m1. Thus,

m1 m2 divides aÿ b or a � b (mod m1 m2).

4. Suppose a � b (mod m) and d divides m, where d . 0. There are

integers s and t such that a � b� cm and dt � m. Hence

a � b� c(dt) � b� (ct)d. Therefore, a � b (mod d).

5. The result follows directly from the previous exercise.

6. If a � b (mod m) and c � d (mod m) there exist integers s and t such

that a � b� sm and c � d � tm. Hence ax � bx� sxm and

cy � dy� tym. Thus, ax� cy � (bx� sxm)� (dy� tym) � bx �
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dy� (sx� ty)m, implying that ax� cy � bx� dy (mod m).

7. If a � b (mod m) then there is an integer k such that a � b� km or

b � aÿ km. Hence gcd(a, m) divides gcd(b, m) and gcd(b, m) di-

vides gcd(a, m). Thus, gcd(a, m) � gcd(b, m).

8. If a2 � b2 (mod p), where p is prime, then there exists an integer k

such that a2 ÿ b2 � (a� b)(aÿ b) � kp. Hence, since p is prime,

from Euclid's Lemma, either pj(a� b) or pj(aÿ b).

9. 47 � 5, 86 � 2, 22 � 1, ÿ14 � 0, 32 � 4, 20 � 6, and 143 � 3

(mod 7).

10. ÿ88, ÿ69, ÿ50, ÿ31, ÿ12, 7, 26, 45, 64, and 83.

11. 0 � 7 . 0, 1 � 7 . 8, 2 � 7 . 5, 3 � 7 . 2, 4 � 7 . 10, 5 � 7 . 7,

6 � 7 . 4, 7 � 7 . 1, 8 � 7 . 9, 9 � 7 . 6, and 10 � 7 . 3 (mod 11).

12. If m is even then m � 2m � 0 (mod m) and the integers 2, 4, 6,

. . . , 2m are not all distinct. If m is odd, gcd(2, m) � 1. Since 2r � 2s

(mod m) for 1 < r, s < m implies r � s (mod m), it follows

2, 4, . . . , 2m are distinct.

13. If m . 2, then (mÿ 1)2 � 1 (mod m). Hence f12, 22, 32, . . . , m2g
does not contain m distinct elements modulo m.

14. 1941 � 2 (mod 7), 19413 � 1 (mod 7). Hence, 19411963 �
19413.654�1 � 1941 � 2 (mod 7). Similarly, 1963 � 3 (mod 7),

19636 � 1 (mod 7). Hence, 19631991 � 19636.331�5 � 19635 � 35

� 243 � 5 (mod 7). Therefore, 19411963 � 19631991 � 2� 5 � 0

(mod 7).

15. 910 � 1 (mod 100). Hence, 999 � 9387 420 489 � 910.38 742 048�9 �
138 742 048 . 99 � 1 . 387 420 489 � 89 (mod 100). Therefore, the last

two digits of 999

are 89.

16. 53103 � 10353 � 53 . (532)51 � 103 . (1032)26 � 53(1)51 �
103(1)26 � 53� 103 � 156 � 0 (mod 39).

17. 111333 � 333111 � (ÿ1)333 � 333 . (3332)55 � ÿ1 � 4 . 255 � ÿ1 �
4 . (23)18 2 � ÿ1� 8 � 7 � 0 (mod 7).

18. 192 � 1932 � 20 (mod 31),

194 � 1964 � 28 (mod 31),

198 � 19128 � 9 (mod 31),

1916 � 19256 � 19 (mod 31).

Therfore, 19385 � 19256�128�1 � 19 . 9 . 19 � 25 (mod 31).

19. 397 � (34)24 . 3 � 124 . 3 � 3 (mod 10). Hence, the last digit is 3.

20. 31000 � (340)25 � 125 � 1 (mod 100). Hence, the units digit is 1.

21. 1!� 2! � � � � � 100! � 1� 2� 6� 24� 0 � � � � � 0 � 3 (mod 15).

22. 15 � 25 � � � � � 1005 � 1 � 0 � 3 � 0 � 1 � � � � � 3 � 0 � (1 � 0

� 3� 0) . 25 � 0 (mod 4).
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23. 63!ÿ 61! � (63 . 62ÿ 1)61! � 71 . 55 . 61! � 0 (mod 71).

24. 52n� 3 . 25nÿ2 � (52)n� 3 . (25)n . 2ÿ2 � 4n � 3 . 4n . 2 � 7 . 4n � 0

(mod 7).

25. 3n�2 � 42n�1 � 9 . 3n � (16)n . 4 � 9 . 3n � 4 . 3n � 13 . 3n � 0

(mod 13).

26. If n � 2k � 1, then n2 ÿ 1 � (2k � 1)2 ÿ 1 � 4k2 � 4k �
4k(k � 1) � 8m since either k or k � 1 is even. Therefore, n2 ÿ 1 � 0

(mod 8).

27. a � 0, b � 5, c � 16, d � 28, and e � 4. Therefore, Easter fell on

April 23, 1916.

29. If x � 0 (mod 12), then x � 0 (mod 2).

If x � 1 (mod 12), then x � 1 (mod 4).

If x � 2 (mod 12), then x � 0 (mod 2).

If x � 3 (mod 12), then x � 0 (mod 3).

If x � 4 (mod 12), then x � 0 (mod 2).

If x � 5 (mod 12), then x � 1 (mod 4).

If x � 6 (mod 12), then x � 0 (mod 2).

If x � 7 (mod 12), then x � 1 (mod 6).

If x � 8 (mod 12), then x � 0 (mod 2).

If x � 9 (mod 12), then x � 0 (mod 3).

If x � 10 (mod 12), then x � 0 (mod 2).

If x � 11 (mod 12), then x � 11 (mod 12).

30. (3n)3 � 0 (mod 9), (3n� 1)3 � 1 (mod 9), and (3n� 2)3 � 8

(mod 9).

31. The result follows immediately from the previous exercise.

32. If 0 , ck , b, 0 < ci , b, for i � 1, 2, . . . , k ÿ 1, and b . 1 is a posi-

tive integer, then ckbk � � � � � c1b� c0 � c0 � � � � � ck (mod bÿ 1)

33. Suppose that there exist integers u and v such that n � r � mu and

n � s� (m� 1)v. Hence, n(m� 1) � r(m� 1)� m(m� 1)u and

nm2 � sm2 � m2(m� 1)v. Combining and simplifying, we obtain

n � r(m� 1)� m2s� m(m� 1)(u� vm2 ÿ n). Therefore, n � (m

� 1)r � m2s (mod m(m� 1)).

Exercises 5.2

1. If 7 divides (2a� b) then 2a� b � 7k. Hence, 100a � b �
98a� 7k � 7(14a� k). Conversely, if 7 divides (100a� b) then

7s � 100a� b � 14a(7)� 2a� b. Hence, 2a� b � 7(sÿ 14a).
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2. From the proof of Theorem 5.8, 10 � 1 (mod 9), hence f (10) � f (1)

(mod 9) so a � s (mod 9). Therefore, aÿ s � 0 (mod 9).

3. (a) x � 2, (b) x � 5, (c) x � 4.

4. From Theorem 5.8, 9jRn if and only if the number of ones in Rn is a

multiple of 9. That is, if and only if 9jn.

5. From Theorem 5.8, 11 divides Rn if and only if the number of ones in

Rn is even. That is, if and only if n is even.

6. 691 504 249 989, 13 830 085 087, 276 601 787, 5 532 121, 110 663,

2275, 119, 21, which is divisible by 7. Therefore, 691 504 249 989 is

divisible by 7.

7. 67 911 603 138 353, 6 791 160 313 847, 679 116 031 412,

67 911 603 149, 6 791 160 314, 679 116 035, 67 911 623, 6 791 174,

679 133, 67 925, 6 812, 639, 104, 26, which is not divisible by 13.

Therefore, 67 911 603 138 353 is not divisible by 13.

8.

5

2 8

7

, 5 6� 7: Therefore, a mistake has been made:

9. Drop the units digit from the number and subtract 5 times it from what

remains. The result is divisible by 17 if and only if the original number

is divisible by 17.

10. Let n � 7 . 541. Since log(n) � log(7)� 41 . log(5) � 29:5, n has 30

digits. The only 30-digit numbers not having four repeated digits are

those in which each digit occurs exactly three times. However, each of

these is divisible by 3. Since n � 1 . 241 � 2 (mod 3), 3 6 jn. Therefore,

in the decimal representation of n at least one digit appears at least

four times.

Exercises 5.3

1. (a) ö(406) � ö(2 . 7 . 29) � 168.

(b) ö(756) � ö(22 . 33 . 7) � 216.

(c) ö(1228) � ö(22 . 307) � 612.

(d) ö(7642) � ö(2 . 3821) � 3820:

2. f1, 5, 7, 11, 13, 17g
3. ö(25 930) � ö(2 . 5 . 2593) � 10 368:

ö(25 935) � ö(3 . 5 . 7 . 13 . 19) � 10 368:

ö(25 940) � ö(2 . 2 . 5 . 1297) � 10 368:

ö(25 942) � ö(2 . 7 . 17 . 109) � 10 368:

4. ö( p� 2) � p� 1 � pÿ 1� 2 � ö( p)� 2.

5. If n is prime, (ö(n)ó (n)� 1)=n � n.

360 Answers to selected exercises



6. 1 � ö( p) � � � � � ö( pn) � 1 � ( p ÿ 1) � ( p2 ÿ p) � � � � � ( pn ÿ
pnÿ1) � pn.

7. f ( pk) � ö( pk)=pk � ( pÿ 1)=p � ö( p)=p � f ( p):

8. (a) If n . 2 then there will always be a factor of the form p or pÿ 1

that is even, hence, ö(n) is even, thus, n � 1 or 2;

(b) n is prime;

(c) n � 1, 2r, or 2r3s, where r and s are positive integers;

(d) n has at least two district odd prime factors, or one prime factor of

the form 4k � 1, or is divisible by 4, except 4 itself;

(e) n � 2k�1;

(f ) n � 2k ;

(g) there are none;

(h) power of 2 dividing n plus number of distinct prime factors of the

form 4r � 3 plus twice number of distinct prime factors of the

form 4r � 1 is at least k if n is odd or k � 1 if n is even.

9. ö(n2) � n2
Y
pjn2

1ÿ 1

p

� �
� n . n

Y
pjn

1ÿ 1

p

� �
� nö(n).

10. ö(11k . p) � 10 . 11kÿ1 . ( pÿ 1).

11. ö(22k�1) � (2k)2.

12. ö(125) � 100. Hence, a100 � 1 if 5 6 ja, and a100 � 0 if 5ja.

13. 5 ,ö(100) < 36:7; 15:8 ,ö(1000) < 81:3.

14. The average is 30.34; 6n=ð2 � 60:79.

15. The numbers k which are less than n and coprime to n occur in pairs

(k, pÿ k) whose sum is p and there are ö(n)=2 such pairs.

16. If n is nonsquare its divisors pair up and one of them is less than
���
n
p

.

Thus the divisors d of n and their pairs would be less than but not be

coprime to n. If n is square only
���
n
p

, 2
���
n
p

, . . . , (
���
n
p ÿ 1)

���
n
p

are less

than n and not coprime to n.

17. The result follows from Theorem 5.12 and the fact that if k < n, then

ö(k) occurs as often as there are multiples of k that are less than n.

18. 36.

19. If n � pá, ö( pá)� ó ( pá) � páÿ1( pÿ 1)� (1� p � � � � � páÿ1 �
pá) � 2 pá � 1� p � � � � � páÿ2 > 2 pá.

20. Whenever n is 1 or a prime.

21. Since gcd(m, n) � 1,

f (mn) � ó (mn)ö(mn)

(mn)2
� ó (m)ó (n)ö(m)ö(n)

(mn)2
� ó (m)ö(m)

m2

ó (n)ö(n)

n2

� f (m) f (n):
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22:
p

k

� �
� p!

k!( pÿ k)!

is an integer and none of the factors in the denominator divides the p

in the numerator.

23. (a) 1 pÿ1 � � � � � ( pÿ 1) pÿ1 � 1 � � � � � 1 � pÿ 1 � ÿ1 (mod p).

(b) 1 p � � � � � ( p ÿ 1) p � 1 � 2 � � � � � ( p ÿ 1) � p( p ÿ 1)=2

� 0 (mod p).

24. If gcd(m, n) � 1, mö(n) � 1 (mod n) and nö(m) � 1 (mod m). Hence,

there exist integers r and s such that mö(n) ÿ 1 � ns and

nö(m) ÿ 1 � ms. Multiplying, we obtain mö(n) nö(m) ÿ mö(n)ÿ
nö(m) � 1 � rsmn. Thus, mö(n) � nö(m) ÿ 1 � nm(ÿrs� mö(n)ÿ1

nö(m)ÿ1). Therefore, mö(n) � nö(m) � 1 (mod mn).

25. Since ö(62) � 30, multiplying both sides of the congruence by 4129

yields 4130x � 4129 . 53 (mod 62). Therefore, x � 4129 . 53 �
(41)2.14�1 . 53 � (7)14 . 41 . 53 � 9 . 41 . 53 � 27 (mod 62).

26. 6601 � 7 . 23 . 41, and 6, 22, and 40 each divide 6600. Hence, if

gcd(a, 6601) � 1, a6600 is congruent to 1 modulo 7, 23, and 41.

Therefore, a6600 � 1 (mod 6601)

27: 1 . ì(105)� 3 . ì(35)� 5 . ì(21)� 15 . ì(7) � ÿ1� 3� 5ÿ 15

� ÿ8 � (ÿ1) . 48

6
� ì(7) . ö(105)

ö(7)
�

ì
105

15

� �
. ö(105)

ö
105

15

� � :

28. Since ö and ô are multiplicative let n � pá,X
dj pá

ö(d) . ô
pá

d

� �
� 1 . (á� 1)� ( pÿ 1)á� p( pÿ 1)á � � � �

� páÿ1( pÿ 1) . 1 � 1� p � � � � � pá � ö( pá):

29. Since ö and ó are multiplicative let n � pá,X
dj pá

ö(d) . ó
pá

d

� �
� 1 . (1� p � � � � � páÿ1)

� ( pÿ 1)(1� p � � � � � páÿ2) � � � � � páÿ1( pÿ 1) . 1

� (1� p � � � � � páÿ1)� ( p� p2 � � � � � páÿ1)

ÿ (1� p � � � � � páÿ2)� pá ÿ páÿ1 � npá:

30. If n is prime, ó (n) � n� 1, ö(n) � nÿ 1, and ô(n) � 2. Hence,

ó (n)� ö(n) � n . ô(n). Suppose ó (n)� ö(n) � n . ô(n) and n . 1 is

not prime. Thus, ó (n) , n, ô(n) � k > 3, and there exists a divisor d�
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of n such that kd�, n and nÿ d� > 1. Therefore, n . ô(n) ÿ ó (n) �
kn ÿ Pdjnd � Pdjn(n ÿ d) > (n ÿ 1) � (n ÿ d�) � 0 > n ÿ
1� 1 > n .ö(n), a contradiction.

31. 12 � 6� 4� 3ÿ 1 � ô(12)� ö(12)� î(12)ÿ 1.

32. Both equal 4.

33. Both equal 3.

34. Let n � pá.X
dj pá

ì2(d)

ö(d)
� ì2(1)

ö(1)
� ì2( p)

ö( p)
� � � � � ì2( pá)

ö( pá)
� 1� 1

pÿ 1

� pá

pá ÿ páÿ1
� pá

ö( pá)
:

35. 1
2

P10
k�1ö(k) � 15; 3(10=ð)2 � 30:4.

36. F 7 � {0
1
, 1

7
, 1

6
, 1

5
, 1

4
, 2

7
, 1

3
, 2

5
, 3

7
, 1

2
, 4

7
, 3

5
, 2

3
, 5

7
, 3

4
, 4

5
, 5

6
, 6

7
, 1

1
}.

37. It is true for the ®rst row. Suppose it is true for the (nÿ 1)st row. Any

consecutive fractions on the nth row will be of the form
a

b
,

c

d
,

a

b
,

a� c

b� d
,

or

a� c

b� d
,

c

d
,

where a=b and c=d are consecutive fractions on the (nÿ 1)st row,

hence, ad ÿ bc � 1. In the second case, ab� ad ÿ baÿ bc � 1. In

the third case, ad � cd ÿ bcÿ dc � 1.

38. If a=b , c=d, then ad , bc. Hence, ab� ad , ba� bc and ad �
cd , bc� cd. Therefore,

a

b
,

a� c

b� d
,

c

d
:

39.
c

d
ÿ a

b
� ad ÿ bc

bd
� 1

bd
:

40.
x

y
� ma� nc

mb� nd
:

Exercises 5.4

1. (a) x � 18 (mod 29).

(b) x � 4� 16t, for t � 0, 1, 2, 3.

Hence, x � 4, 20, 36, 52 (mod 64).

(c) x � 56 (mod 77).
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(d) No solution.

(e) x � 14 (mod 29).

2. x � ÿ36ÿ 51t; y � 3� 4t.

3. x � 2ÿ 3t; y � 2t.

4. 51 horses and 9 cows or 9 horses and 71 cows.

5. 17 p� 15a � 143 or 17 p � 143 (mod 15), implying that p � 4

(mod 15). Therefore, a � 5 and p � 4.

6. x� y � 100, x � 0 (mod 7), x � 0 (mod 11). Hence, 7S � 11t � 100.

Thus, S � 8 (mod 11) and t � 4 (mod 7). Therefore, x � 44 and

q � 56 is a solution.

7. x � 49 (mod 61).

8. x� y� z � 100,

3x� 2y� z

2
� 100

or

x� y� z � 100,

6x� 4y� z � 200:

Therefore,

x � 2� 3t,

y � 30ÿ 5t,

z � 68� 2t:

Solutions (m, w, c) are given by (2, 30, 68), (5, 25, 70), (8, 20, 72),

(11, 15, 74), (14, 10, 76), (17, 5, 78), and (20, 0, 80).

9. x� y� z � 100,

5x� y � z

20
� 100,

or

x� y� z � 100,

100x� 20y� z � 2000:

Therefore, buying 100 chickens is a solution.

10. We seek solutions to

x� y� z � 41 and 4x� 3y� 1

3
z � 40

or equivalently to

x� y� z � 41 and 12x� 9y� z � 120:

Subtracting, we obtain 11x� 8y � 79. Hence, 8y � 79 � 2 (mod 11),

implying that y � 3 (mod 11). Thus, y � 3� 11t, x � 5ÿ 8t,

z � 33ÿ 3t. Therefore, there were 5 men, 3 women, and 33 children.

11. No integral solutions.
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12. x � 18, y � 0, z � 12:

13. 5.

14. 59.

15. 1103.

16. x � 1982 � 2 (mod 6);

x � 1978 � 4 (mod 7);

x � 32 (mod 42). Therefore x � 2006.

17. x � 3 (mod 17),

x � 10 (mod 16),

x � 0 (mod 15).

Therefore, x � 3930 (mod 4080).

18. x � 6 (mod 23),

x � 7 (mod 28),

x � 8 (mod 33).

Therefore, x � 17 003 (mod 21 252) or 46� years.

19. x � ÿ7, y � 2, z � 3.

20. x � 7, y � 1, z � 1.

21. x � 114, y � 87, z � 39.

22. We have n2 � n (mod 25 . 55). We solve n(nÿ 1) � 0 (mod 32) and

n(nÿ 1) � 0 (mod 3125) and use the Chinese Remainder Theorem to

obtain n � 8 212 890625 � 90 625 (mod 100 000).

23. None.

Exercises 5.5

1. Let the integers be a1, . . . , an and consider a1 � a2, a1 � a3, . . . ,

a1 � an. If one of these is divisible by n then we are done. If two of

them, say a1 � ai and a1 � aj, have the same remainder modulo n then

(a1 � ai)ÿ (a1 � aj) � ai ÿ aj is divisible by n. Otherwise the re-

mainders 1, 2, . . . , nÿ 1 must be counted once each when dividing

the numbers by n, so one of them must have the same remainder as

a1 ÿ a2, say it is a1 � ak . Hence, (a1 � ak) ÿ (a1 ÿ a2) � ak � a2 is

divisible by n.

2. Let the numbers be a1, a2, . . . , an and consider the numbers

a1 � a2, a1 � a2 � a3, . . . , a1 � a2 � � � � � an. When divided by n

each of the numbers must leave a remainder from 0 to nÿ 1. So either

one gives a remainder 0, and hence is divisible by n, or two have the

same remainder and subtracting the smaller from the larger gives the

desired sum.

3. Suppose gcd(nai � mbj, mn) � d and p is a prime such that pjd.

Chapter 5 365



Since pjmn, pjm or pjn. If pjm then p 6 jn since gcd(m, n) � 1: We

have pj(nai � mbj), hence, pjnai implying thay pjai. A contradiction

since gcd(ai, m) � 1. Therefore, gcd(naj � mbj, mn) � 1.

4. No two elements in T can be congruent since gcd(ai, m) � 1 and

gcd(bj, n) � 1. Thus, every integer coprime to mn is counted exactly

once and ö(m)ö(n) � ö(mn).

5. Let n � 2k pá1

1 pá2

2 � � � pá r
r and m � pá1

1 pá2

2 � � � pá r
r , where pi, for

i � 1, 2, . . . , r, are odd primes.

ö(2n) � ö(2k�1 pá1

1 pá2

2 � � � pá r

r )

� ö(2k�1)ö( pá1

1 pá2

2 � � � pá r

r )

� 2kö( pá1

1 pá2

2 � � � pá r

r )

� 2 . 2kÿ1ö( pá1

1 pá2

2 � � � pá r

r )

� 2 . ö(2k)ö( pá1

1 pá2

2 � � � pá r

r )

� 2 . ö(2k pá1

1 pá2

2 � � � pá r

r )

� 2ö(n):

ö(2m) � ö(2 pá1

1 pá2

2 � � � pá r

r )

� ö(2)ö( pá1

1 pá2

2 � � � pá r

r )

� ö( pá1

1 pá2

2 � � � pá r

r )

� ö(m):

6. Let n � 3k pá1

1 pá2

2 � � � pá r
r and m � pá1

1 pá2

2 � � � pá r
r , where pi, for

i � 1, 2, . . . , r, are primes with none equal to 3.

ö(3n) � ö(3k�1 pá1

1 pá2

2 � � � pá r

r )

� ö(3k�1)ö( pá1

1 pá2

2 � � � pá r

r )

� 2 . 3k . ö( pá1

1 pá2

2 � � � pá r

r )

� 3 . ö(3k)ö( pá1

1 pá2

2 � � � pá r

r )

� 3 . ö(3k pá1

1 pá2

2 � � � pá r

r )

� 3ö(n):

ö(3m) � ö(3 pá1

1 pá2

2 � � � pá r

r )

� ö(3)ö( pá1

1 pá2

2 � � � pá r

r )

� 2 . ö( pá1

1 pá2

2 � � � pá r

r )

� 2ö(m):

7. (a) Ëc(24) � 4, (b) Ëc(81) � 54, (c) Ëc(341) � 36, (d) Ëc(561) � 16,

(e) Ëc(26 . 34 . 52 . 7 . 19) � lcm(32, 54, 20, 6, 18) � 2480.
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8. x � 2, y � 3, z � 4, w � 5.

9. 77w � 707 (mod 3). Therefore, a solution is given by w � 1� 3s,

z � t, y � 6� 2s� 6t � 9u, x � 16ÿ 11sÿ 9t ÿ 11u.

10. x � 5� 8t, y � 3ÿ 11t, z � 33ÿ 3t, or x � 20ÿ t ÿ 6s, y � 2t,

z � ÿt � 5s.

11. x� y� z � 100 and x=2� 3y� 10z � 100, or x� y� z � 100 and

x� 6y� 20z � 200. Thus, x � 80� 14t, y � 20ÿ 19t, z � 5t.

12. For any integer n, Fermat's Little Theorem implies that 7 divides

n7 ÿ n. If n � 3k, 3k � 3, or 3k � 2 or n � 2k or 2k � 1, 6 divides

n7 ÿ n � n(n3 ÿ 1)(n3 � 1). Hence, 42 divides n7 ÿ n.

13. If n � pá,

X
dj pá

d . ö(d) . ó
pá

d

� �
� 1 . 1 . (1� p � � � � � pá)

� p( pÿ 1)(1� p � � � � � páÿ1)

� p2( p2 ÿ p)(1� p � � � � � páÿ2) � � � �
� pá( pá ÿ páÿ1) . 1

� 1� p2 � p4 � � � � � p2á �
X
dj pá

d2:

14. If n � pá,
P

dj pá ì(d) . ö(d) � ì(1)ö(1)� ì( p)ö( p) � 1� (ÿ1)

p( pÿ 1) � 2ÿ p.

15. 264 � 1 � 0 (mod 1071 . 28 � 1). Suppose that (ÿ1071)n � 264ÿ8n

� 0 (mod 1071 . 28 � 1). It follows that (ÿ1071)n�1 � 264ÿ8(n�1)

� (ÿ1071)n�1 � 264ÿ8(n�1) ÿ 264ÿ8(n�1)(1071 . 28 � 1) � (ÿ1071) 3

[(ÿ1071)n � 264ÿ8n] � 0 (mod 1071 . 28 � 1).

16. For 0 < r < 9, ÿr � 10ÿ r.

17. 1ÿ1 � 1, 2ÿ1 � 6, 3ÿ1 � 4, 4ÿ1 � 3, 5ÿ1 � 9, 6ÿ1 � 2, 7ÿ1 � 8,

8ÿ1 � 7, 9ÿ1 � 5.

18. 1ÿ1 � 1, 5ÿ1 � 5, 7ÿ1 � 7, 11ÿ1 � 11.

19. aaÿ1 � e, eaÿ1 � aÿ1, and a(bÿ1)ÿ1 � ab are in H. Elements in H

are associative because they are elements of G.

20. The multiples of r, where 0 < r < mÿ 1.

21. 0, 2, 3, 4, have no multiplicative inverses in Z6.

22. 1ÿ1 � 1, 2ÿ1 � 4, 3ÿ1 � 5, 4ÿ1 � 2, 5ÿ1 � 3, 6ÿ1 � 6.

23. Let 1 < r < m, and c be such that ac � 1 (mod m). If x � (r ÿ b)c,

then ax � r ÿ b, or ax� b � r.
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Exercises 6.1

1. (a) x � 0, 1, 2, 3, 4 (mod 5),

(b) no solution.

2. (a) x � 2, 3 (mod 5) and x � 2, 4, 5 (mod 7). Hence, x � 2, 32, 12,

23, 18, 33 (mod 35).

(b) x � 1, 3 (mod 5) and x � 1, 2, 6 (mod 9). Hence, x � 1, 6, 11, 28,

33, 38 (mod 45).

(c) x � 1, 3, 5 (mod 7) and x � 1, 3, 5 (mod 11). Hence, x � 1, 3, 5,

12, 36, 38, 45, 47, 71 (mod 77).

3. (a) x1 � 5, 6 (mod 11), hence, x � 38 and 83 (mod 121).

(b) x1 � 5 (mod 7) and x2 � 40 (mod 49). Hence, x � 89 (mod 343).

(c) No solution.

4. x � 1, 3 (mod 6) and x � 5, 12 (mod 17). Hence, x � 73, 97, 39, 63

(mod 102).

5. 16! �
(16)(15 . 8)(14 . 11)(13 . 4)(12 . 10)(9 . 2)(7 . 5)(6 . 3)(1) � (ÿ1)
. (1) � � � (1) � ÿ1 (mod 17).

6. 17 is prime, hence, 16! � 16 . 15! � (ÿ1) . 15! � ÿ1 (mod 17).

Therefore, 15! � 1 (mod 17).

7. 437 � 19 . 23. Since 23 is prime, ÿ1 � 22! � 22 . 21 . 20 . 19 .

18! � (ÿ1)(ÿ2)(ÿ3)(ÿ4) . (18!) � 18! (mod 23). From Wilson's

Theorem, 18! � ÿ1 (mod 19). Hence, 18! � ÿ1 (mod 437).

8. Since ( pÿ k)� k � 0 (mod p), ( pÿ k) � ÿk (mod p). From Wil-

son's Theorem ( pÿ 1)! � ÿ1 (mod p). Substituting, we obtain

12 . 32 � � � ( pÿ 2)2 � (ÿ1)( p�1)=2 (mod p) and 22 . 42 � � � ( pÿ 1)2 �
(ÿ1)( p�1)=2 (mod p).

9. The two incongruent solutions are 1 and pÿ 1.

10. (x99 � x98 � x97 � � � � � x� 1) . x(xÿ 1) � x101 ÿ x � 0 (mod 101).

Hence, x99 � x98 � x97 � � � � � x� 1 has 99 solutions modulo 101.

11. In Z�p, pÿ 1 is its own inverse. Every other element has a distinct

inverse. Therefore, ( pÿ 1)! � ( pÿ 1) . 1 . 1 � � � 1 � pÿ 1 � ÿ1

(mod p).

12. From Wilson's Theorem ( pÿ 1)! � ÿ1 (mod p), 1 . 2 . 3 � � � ( pÿ 2)

� 1 (mod p), and 1 � 2 � � � � � (k ÿ 1) � (k � 1) � � � � � ( p ÿ
1) � ÿk (mod p) for k � 2, . . . , pÿ 2. If each fraction in the sum is

replaced by an equivalent fraction with denominator ( pÿ 1)! and the

fractions added together the numerator will be congruent modulo p to

1� 2 � � � � � ( pÿ 1) which is congruent to 0 modulo p. Therefore,

368 Answers to selected exercises



1� 1

2
� 1

3
� � � � � 1

pÿ 1
� 0 (mod p):

13. k � 1, when p � 2 or 3; never.

Exercises 6.2

1. 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28.

2. (a) ÿ1, (b) 1, (c) 1, (d) ÿ1, (e) 1, (f) ÿ1, (g) ÿ1, (h) 1.

3. (b), (c), (e) and (h).

4. (a) Yes, since
9

19

� �
� 1; x � 5 and 17 (mod 19).

(b) Yes, since
16

17

� �
� 1; x � 13 and 16 (mod 17).

(c) No, since
6

61

� �
� ÿ1.

5. (a)
21

221

� �
� 3

221

� �
7

221

� �
� 3

17

� �
3

13

� �
7

17

� �
7

13

� �
� ÿ1� � 1� � ÿ1� � ÿ1� � � ÿ1.

(b)
215

253

� �
� 43

23

� �
43

11

� �
5

23

� �
5

11

� �
� ÿ1� � ÿ1� �(ÿ1)(1) � ÿ1.

(c)
631

1099

� �
� 631

157

� �
631

7

� �
� 3

157

� �
1

7

� �
� 1

3

� �
� 1.

(d)
1050

1573

� �
� 2

11

� �2
2

13

� �
525

11

� �
525

13

� �

� (1)(ÿ1)(1)
5

13

� �
� 1:

(e)
89

197

� �
� 197

89

� �
� 19

89

� �
� 89

19

� �
� 13

19

� �
� 19

13

� �
� 6

13

� �
� 2

13

� �
3

13

� �
� (1)(ÿ1) � ÿ1.

6. Half the values of (a
p
) equal 1 and the other half equal ÿ1. Hence, their

sum is zero.

7. gcd(a, p) � gcd(b, p) � 1 implies gcd(ab, p) � 1. Thus,
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ab

p

� �
� a

p

� �
b

p

� �
:

The only possibilities are

QR � QR . QR, QR � QNR . QNR, QNR � QNR . QR, and

QNR � QR . QNR:

8. If p � 1� 4k, then

ÿ1

p

� �
� (ÿ1)( pÿ1)=2 � (ÿ1)2k � 1:

9:
p

q

� �
q

p

� �
� p

q

� �
2qÿ 1

p

� �
� p

q

� � ÿ1

p

� �
� (ÿ1)

1
2
( pÿ1)1

2
(2 pÿ2)

� (ÿ1)( pÿ1)2=2 � 1:

Hence,

p

q

� �
� ÿ1

p

� �
:

10:
p

q

� �
� q

p

� �
(ÿ1)

1
2
(3�4 tÿ1)1

2
(3�4sÿ1) � ÿ q

p

� �
:

11. If 4n2 � 4 � 0 (mod 19) then 4n2 � ÿ4 (mod 19). Hence, n2 � ÿ1

(mod 19) which is impossible.

12. If 0 < k < p, then ( pÿ k) � ÿk (mod p). Hence, ( pÿ 1)( pÿ 2)

� � � ( pÿ k) � (ÿ1)k(k)! (mod p). If h � pÿ k ÿ 1, then

h! � ( pÿ k ÿ 1)! and ( pÿ 1)! � (ÿ1)k(k!)(h!) (mod p). Therefore,

h!k! � (ÿ1)k( pÿ 1)! � (ÿ1)k�1 (mod p).

13. If p � 1 (mod 4), then p � 1� 4r for some integer r. If h � k � 2r,

then h� k � 4r and [(2r)!]2 � (ÿ1)2k�1 � ÿ1 (mod p).

Exercises 6.3

1. Since ö(ö(m)) � 1, m � 2, 3, 4, or 6.

2. F3 � 257 and 3(257ÿ1)=2 � 3128 � (320)6 . 38 � 1236 . 136 � 17 . 136

� ÿ1 (mod 257).

3. See Table A.2.

4. 514 � 1 (mod 29).

5. They are 21, 23, 25, 29, 211, 213, 215, 217, 219, 223, 225, and 227, or 2, 3,

8, 10, 11, 14, 15, 18, 21, 24, 26, 27.

6. See Table A.3.

7. (a) gcd(4, 28) � 4. Hence, the fourth power residues are 24, 28, 212,
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216, 220, 224, and 228, or 1, 7, 16,

20, 23, 24 and 25.

(b) gcd(7, 28) � 7. Hence, the seventh power residues are 27, 214, 221,

and 228, or 1, 12, 17, and 28.

8. x7 � 12 (mod 29) or 7I(x) � 7 (mod 28), or I(x) � 1 (mod 4). Hence,

I(x) � 1, 5, 9, 13, 17, 21, 25, and x � 21, 25, 29, 213, 217, 221, and 225,

or 2, 3, 11, 14, 17, 21, and 24.

9. 9 . I(x) � 7 (mod 28). Hence, ÿI(x) � 21 (mod 28), implying that

I(x) � ÿ21 � 7 (mod 28). Therefore, x � 12 (mod 29).

10. (a) x � 8 (mod 17), (b) x � 10 (mod 17), (c) no solution.

11. See Table A.4. (a) x � 7 (mod 11), (b) x � 5, 6 (mod 11), (c) no

solution.

12. I(x) � I(324 . 513) � 24 . I(3)� 13 . I(5) � 24� 65 � 89 � 9 (mod

Table A.2.

k 2k 2k

1 2 2
2 4 4
3 6 8
4 8 16
5 10 3
6 12 6
7 14 12
8 16 24
9 18 19

10 20 9
11 22 18
12 24 7
13 26 14
14 28 28
15 1 27
16 3 25
17 5 21
18 7 13
19 9 26
20 11 23
21 13 17
22 15 5
23 17 10
24 19 20
25 21 11
26 23 22
27 25 15
28 27 1

Table A.3.

k I(k)

1 28
2 1
3 5
4 2
5 22
6 6
7 12
8 3
9 10

10 23
11 25
12 7
13 18
14 13
15 27
16 4
17 21
18 11
19 9
20 24
21 17
22 26
23 20
24 8
25 16
26 19
27 15
28 14
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16). Hence, x � 14 (mod 17).

13. x � 4 (mod 29).

14. If q is a primitive root modulo p, then qb is also a primitive root if and

only if gcd(b, ö(n)) � 1. Hence,X
gcd(b,ö(n))�1

qb � q
P

gcd(b,ö( n))�1 b � qk( pÿ1) � (q( pÿ1))k � 1k � 1 (mod p):

15.
7

p

� �
� p

7

� �
(ÿ1)6( pÿ1)=2 � 28k � 3

7

� �
(ÿ1)6(7k�1) � 3

7

� �
� 1.

16:
3

p

� �
� p

3

� �
(ÿ1)( pÿ1)=2:

If p � 1� 12k or p � 11� 12k,
p

3

� �
� 1. If p � 5� 12k or

p � 7� 12k,
p

3

� �
� ÿ1.

17:
5

p

� �
� p

5

� �
(ÿ1)( pÿ1)=2 � p

5

� �
:

If p � 1� 10k or p � 9� 10k,
5

p

� �
� 1. If p � 3� 10k or

p � 7� 10k,
5

p

� �
� ÿ1.

Exercises 6.4

1. Using indices modulo 13, the equation 3n � 12 (mod 13) leads to the

equation 3n � 7 (mod 12) which has no solutions. Using indices

modulo 29, the least solution to the equation 3n � 28 (mod 29) is

n � 14.

2. If d divides pÿ 1, x pÿ1 ÿ 1 � (xd ÿ 1)(xd (kÿ1) � � � � � xd � 1) and

the expression in the second set of partentheses on the right has at

most d(k ÿ 1) solutions. Thus xd ÿ 1 has at least ( pÿ 1)ÿ
d(k ÿ 1) � d solutions. By Lagrange's Theorem it has at most d

solutions. Hence, it has exactly d solutions.

3. If q is a primitive root of the odd prime p, it follows from Theorem

6.3 and Theorem 6.20 that q(( pÿ1)=d)k , for k � 1, 2, . . . , d, are d

Table A.4.

k 1 2 3 4 5 6 7 8 9 10
I(k) 2 4 8 5 10 9 7 3 6 1
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incongruent solutions to xd ÿ 1 � 0 (mod p).

4. From Theorem 6.10, if p is of the form 8k � 3, 2 is a QNR of p.

Every primitive root of p is a QNR of p. In addition, there are

( pÿ 1)=2 � q QNRs of p and ö( pÿ 1) � qÿ 1 primitive roots of p.

From Theorem 6.7, pÿ 1 is a QNR of p and is not a primitive root of

p since it has order 2. Hence, all other QNRs, including 2, are

primitive roots of p.

5. As in the previous exercise, we need only show that ÿ2 is a QNR of p.

However, from Theorem 6.10, 2 is a QR of p and ÿ1 is a QNR of p.

Hence, their product 2 . (ÿ1) is a QNR of p.

6. The order of 3 must be a divisor of ö( pÿ 1) � 4q. However, 3 is a

QNR of p. Since 32q � ÿ1 (mod p), the order of 3 cannot be 1, 2, 4,

or 2q. In addition, p does not divide 34 ÿ 1. Thus the order of 3 cannot

be 4. Therefore, the order of 3 is 4q and 3 is a primitive root of p.

7. gcd(k, pÿ 1) � 1 if and only if gcd(( pÿ 1)ÿ k, pÿ 1) � 1. Since

q( pÿ1)ÿk qk � q pÿ1 � 1 (mod p), q( pÿ1)ÿk � ÿqk (mod p). There-

fore, the sum of all primitive roots is 0.

8. See Table A.5.

9. Z�p is generated by any primitive root of p.

10. 2 is a primitive root of 13. Hence, the primitive roots of 13 are 21(2),

25(6), 27(11), and 211(7). Therefore, the generators of Z�13 are 2, 6, 7,

and 11.

11. The subgroups of Z�13 are f1g, f1, 26g, f1, 24, 28g, f1, 22, 24, 26, 28,

210g, and Z�13. That is, they are f1g, f1, 12g, f1, 3, 9g, f1, 3, 4, 9, 10,

12g, and Z�13.

Table A.5.

p

q 3 5 7 11 13 17 19 23 29

3 ÿ1 1 ÿ1 1 ÿ1 1 ÿ1 ÿ1
5 ÿ1 ÿ1 1 ÿ1 ÿ1 1 ÿ1 1
7 ÿ1 ÿ1 1 ÿ1 ÿ1 ÿ1 1 1

11 1 1 ÿ1 ÿ1 ÿ1 ÿ1 1 ÿ1
13 1 ÿ1 ÿ1 ÿ1 1 ÿ1 1 1
17 ÿ1 ÿ1 ÿ1 ÿ1 1 1 ÿ1 ÿ1
19 ÿ1 1 1 1 ÿ1 1 1 ÿ1
23 1 ÿ1 ÿ1 ÿ1 1 ÿ1 ÿ1 1
29 ÿ1 1 1 ÿ1 1 ÿ1 ÿ1 1
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Exercises 7.1

1. 33 34 32 11 33 24 43 11 33 24 43 31 11 33 14

2. its greek to me
3. (a) l kdyh dvhfuhw,

(b) vlf vhpshu wbudqqlv,

(c) vhqg khos.
4. (a) all men are mortal,

(b) Periculum in mora (He who hesitates is lost),

(c) invito patre sideraverso (Against my father's will, I study the

stars).

5. There are 27xs and 23ms. If we assume e in the plaintext became x in

the ciphertext then k � 19 and we obtain:

we hold these truths to be self evident thatall men are cre-
ated equalthat theyare endowed by their creatorwith cer-
tain unalienable rights that among these are life liberty
andthe pursiut of happiness

6. hbgtg iaeky dgirh bgynn isgxx
7. study hard forthe final exam
8. k � 14.

9. Assuming e was enciphered as p, the most common letter in the

ciphertext, k � 11. Hence, P � C � 15. The plaintext message reads

numbertheory is useful for enciphering messages.
10. We have 15 � 4a� b (mod 26) and 2 � 19a� b (mod 26). There-

fore, a � 13, and b � 15.

11. If e and t are enciphered as l and u, respectively, 4a� b � 11

(mod 26) and 19a� b � 20 (mod 26). Hence, a � 11 and b � 19.

Therefore, P � 19(C ÿ 19) � 19C � 3 (mod 26).

when the one great scorercomes towrite against yourname
the mark is not for whether you won or lost but how you
played the game

12. dressed to the nines
13. twenty three skiddoo
14. neverwas so much owed by so many to so few^wsc

Exercises 7.2

1. iducrofphopfbhg
2. surrender at once
3. mben qd jhg
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4. here we are not afraid to follow the truth wherever it
may lead nortolerate error as long as reason is free to com-
bat itÐJefferson

5. mvmpq vwsekoyhmt mzlit jlk
6. are you lost
7. il importe de cherchertoujours laverite.
8. how do i love thee, let me count theways.
9. april is the cruelest month.

10. fhx dzalx uaze rhjps.
11. de mortuis nihil nisi bonumxx; (say) nothing but good about the

dead.

12. kvc gif kzg xkd erv
13. good luck
14. See Table A.6.

hqbasdgltplq.
15. if i should die thinkonly this of me that there is some corner

ofa foreign field that is forever england. Ð Rupert Brooke.

Exercises 7.3

1. 12 635 8645

2. icu too

3.
7 12

8 15

� �ÿ1

� 1

9

� �
15 ÿ12

ÿ8 7

� �
� 3 . 15 14

18 7

� �
� 19 16

2 21

� �

(mod 26).

4. zolwnwcokroihpa ppeoi hpvix.
5. the houston eulers.

6. A . 19 7

7 4

� �
� 25 20

8 6

� �
(mod 26),

A � 25 20

8 6

� �
4 19

19 19

� �
� 12 23

16 6

� �
(mod 26).

Table A.6.

K E L V IJ

N A B C D
F G H M O
P Q R S T
U W X Y Z
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7. A �
0 5 7

22 12 23

6 3 9

0@ 1A 19 6 4

7 13 17

4 3 4

0@ 1Aÿ1

�

0 5 7

22 12 23

6 3 9

0@ 1A ÿ1 ÿ12 0

12 ÿ8 9

5 5 13

0@ 1A � 15 19 6

3 15 17

ÿ3 1 14

0@ 1A(mod 26).

Exercises 7.4

1. 0793 0082 0003 2251 0815 0481

2. 0569 1608 0044 0927 1946 2766 0244 2766 2437

2131 1539

3. 6505 4891 3049 0532

4. eÿ1 � 71 (mod 3372);

the end is near.
5. eÿ1 � 33 (mod 2590);

wahoowah.
6. eÿ1 � 109 (mod 2670);

meet me tonightat the hatand feathers.
7. p � 3019, q � 1453, t � 3 505 709.

8. p � 2153, q � 1867, t � 708 641.

9. k � 1817 � 6117.31 (mod 8461).

Exercises 8.1

1. x2 � y2 � 4a2 m2

(m2 � 1)2
� a2(m2 ÿ 1)2

(m2 � 1)2
� a2(m2 � 1)2

(m2 � 1)2
� a2.

2. 8650 � 892 � 272 � 932 � 12.

3. See Table A.7.

4. Suppose that x � 2n� 1. If y � 2m then n � x2 � y2 is of the form

4k � 1. If y � 2m� 1, then n � x2 � y2 is of the form 4k � 2. In

neither case is n a multiple of 4.

5. If n � 12� 16k � x2 � y2, then both x and y are even, say x � 2r

and y � 2s. It follows that 3� 4k � r2 � s2, contradicting Theorem

8.1.

6. Suppose that n � 8k � 6 � x2 � y2. If x � 2r and y � 2s, then

6 � 4(r2 � s2)ÿ 8k, implying that 4 divides 6. If x � 2r � 1 and

y � 2s, then 8k � 6 � 4r2 � 4r � 1� 4s2 so 8k � 5 � 4(r2 � s2

� r), implying that 4 divides 5. If x � 2r � 1 and y � 2s� 1, then

8k � 6 � 4r2 � 4r � 1 � 4s2 � 4s� 1, or 8k � 4 � 4r2 � 4s2 �
4r � 4s, or 2k � 1 � r(r � 1)� s(s� 1), an even number, a contra-
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diction. Therefore, n cannot be written as a sum of squares.

7. Suppose that n � 8k � 7 � x2 � y2. If x � 2r and y � 2s, then

7 � 4(r2 � s2)ÿ 8k, implying that 4 divides 7. If x � 2r � 1 and

y � 2s, then 8k � 7 � 4r2 � 4r � 1� 4s2 so 8k � 6 � 4(r2 � s2

� r), implying that 4 divides 6. If x � 2r � 1 and y � 2s� 1, then

8k � 7 � 4r2 � 4r � 1� 4s2 � 4s� 1, or 8k � 5 � 4r2 � 4s2 �
4r � 4s, implying that 4 divides 5. Therefore, n cannot be written as a

sum of two squares.

8. Suppose that 6n � x2 � y2. Clearly, x and y must be of the form 3k,

3k � 1, or 3k � 2. The only case not leading to a divisibility contra-

diction is the case where x and y are both multiples of 3.

9. If n � x2 � y2, then 2n � (x� y)2 � (xÿ y)2.

10. 50 is the smallest such number; 50 � 12 � 72 � 52 � 52.

11. 425 � (92 � 22)(22 � 12) � 202 � 52 � 192 � 82 � 162 � 132.

12. 22k�1 � (2k)2 � (2k)2.

Table A.7.

n h(n) f (n) n h(n) f (n) n h(n) f (n) n h(n) f (n)

101 1 8 126 0 0 151 0 0 176 0 0
102 0 0 127 0 0 152 0 0 177 0 0
103 0 0 128 1 4 153 1 8 178 1 8
104 1 8 129 0 0 154 0 0 179 0 0
105 0 0 130 1 16 155 0 0 180 1 8
106 1 8 131 0 0 156 0 0 181 1 8
107 0 0 132 0 0 157 1 8 182 0 0
108 0 0 133 0 0 158 0 0 183 0 0
109 1 8 134 0 0 159 0 0 184 0 0
110 0 0 135 0 0 160 1 8 185 1 16
111 0 0 136 1 8 161 0 0 186 0 0
112 0 0 137 1 8 162 1 4 187 0 0
113 1 8 138 0 0 163 0 0 188 0 0
114 0 0 139 0 0 164 1 8 189 0 0
115 0 0 140 0 0 165 0 0 190 0 0
116 1 8 141 0 0 166 0 0 191 0 0
117 1 8 142 0 0 167 0 0 192 0 0
118 0 0 143 0 0 168 0 0 193 1 8
119 0 0 144 1 4 169 1 12 194 1 8
120 0 0 145 1 16 170 1 16 195 0 0
121 1 4 146 1 8 171 0 0 196 1 4
122 1 8 147 0 0 172 0 0 197 1 8
123 0 0 148 1 8 173 1 8 198 0 0
124 0 0 149 1 8 174 0 0 199 0 0
125 1 16 150 0 0 175 0 0 200 1 12
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13. If 22k � x2 � y2, and x and y are both even, both odd or one is even

and the other odd, a contradiction arises. Hence, one of x and y must

be 0 and the other 2k.

14. (a) 3185 � 5 . 72 . 13, ô(1, 3185) � 7, ô(3, 3185) � 5. Therefore,

f (3185) � 8.

(b) 7735 � 5 . 7 . 13 . 17, ô(1, 7735) � ô(3, 7735) � 8. Therefore,

f (7735) � 0.

(c) 72 581 � 181 . 401, ô(1, 72 581) � 4, ô(3, 72 581) � 0. Therefore,

f (72 581) � 16.

(d) 226 067 � 23 . 9829, ô(1, 226 067) � 2, ô(3, 226 067) � 2. There-

fore, f (226 067) � 0.

15. 6525 � 782 � 212. Thus, from Theorem 2.13, s � 78, t � 21,

y � 782 ÿ 212 � 5643, and x � 2 . 21 . 78 � 3276. Therefore, (3276,

5643, 6525) is a primitive Pythagorean triple.

16. 6370 � 772 � 212. Thus, from Theorem 2.13, s � 77, t � 21,

y � 772 ÿ 212 � 5488, and x � 2 . 21 . 77 � 3234. Therefore, (3234,

5488, 6370) is a Pythagorean triple.

17. If n cannot be expressed as the sum of three squares then

n � 4m(8k � 7). We have 2n � 2 . 4m(8k � 7) � 4m(8r � 6). Hence,

2n can be expressed as the sum of three integral squares.

18. 1729 � 13 � 123 � 93 � 103.

19. 40 033 � 163 � 333 � 93 � 343.

20. (a) none, 16 120 � 23 . 5 . 13 . 31.

(b) none; 56 144 � 24 . 11 . 319.

21. 870 � 122 � 12 � 142 � 232.

22. 33 � 43 � 53 � 63.

23. a � b � c � 18, d � 7.

24. n � 2 produces 102 � 112 � 122 � 365 � 132 � 142; n � 4 produces

362 � 372 � 382 � 392 � 402 � 7230 � 412 � 422 � 432 � 442.

25. Since x2 and y2 are congruent to 0 or 1 modulo 4, it follows that

x2 ÿ y2 is congruent to 0, 1, or 3 modulo 4. If n is congruent to 1 or 3

modulo 4, then

n � n� 1

2

� �2

ÿ nÿ 1

2

� �2

:

If n is congruent to 0 modulo 4, then

n � n

4
� 1

� �2

� n

4
ÿ 1

� �2

:

26. 22 n � 1 � (22 nÿ1 � 1)2 ÿ (22nÿ1

)2.
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27. If p is an odd prime, then

p � p� 1

2

� �2

ÿ pÿ 1

2

� �2

:

28. 113 � 72 � 82; 181 � 92 � 102; 313 � 122 � 132.

29. 509 � 122 � 132 � 142; 677 � 142 � 152 � 162; 1877 � 242 � 252

� 262.

30. 459 � 152 � 152 � 32.

32. Suppose that 3n � a2 � b2 � c2 � d2. Since x2 � 0 or 1 (mod 3), at

least one of a, b, c, d is congruent to 0 modulo 3. Let a be divisible by

3. Hence, s � 3r for some integer r. Since b2 � c2 � d2 � 0 (mod 3),

where b, c, d may be negative, b � c � d (mod 3). Therefore,

n � b� c� d

3

� �2

� a� cÿ d

3

� �2

� aÿ c� d

3

� �2

� a� bÿ d

3

� �2

:

33. If n � 192, 8n� 3 � 1539 � 372 � 112 � 72. Hence, 192 � t18

� t5 � t3.

34. If p 6 jxyz, then gcd(x, p) � gcd(y, p) � gcd(z, p) � 1 and

x pÿ1 � y pÿ1 � z pÿ1 � 1 (mod p). Hence, x pÿ1 � y pÿ1 � 1 �
1 � 2 6� 1 � z pÿ1 (mod p) and x pÿ1 � y pÿ1 6� z pÿ1.

35. If gcd(x, p) � gcd(y, p) � gcd(z, p) � 1 then xp � x, yp � y, zp � z

(mod p). Hence, xp � yp ÿ zp � x� yÿ z � 0 (mod p).

36. No, 1999 is a prime of the form 4k � 3.

37. No, 5 941 232 � 42(8 . 46 415� 7).

39. 4 � 53 ÿ 112; 5 � 32 ÿ 22; 7 � 24 ÿ 32; 8 � 24 ÿ 23; 9 � 52 ÿ 42;

10 � 133 ÿ 37; 11 � 62 ÿ 52; 12 � 24 ÿ 22; 13 � 28 ÿ 35.

Exercises 8.2

1. s6930 � t9800 � 48 024 900.

2. (a) (7, 4); (b) (161, 72); (c) (49, 20).

3. x2 � (3y2 ÿ y)=2 implies that 3y2 ÿ y � 2x2. Hence, 36y2 ÿ 12y �
24x2, or 36y2 ÿ 12y� 1 � 24x2 � 1. Hence, (6yÿ 1)2 � 24x2 � 1,

or z2 � 24x2 � 1.

4. Two solutions (x, z) are given by (1, 5) and (99, 485). Hence 1 and

9801 are square±pentagonal numbers.

5. 1 and 210.

6. 48 024 900 and 1 631 432 881.

7. If d � n2, the equation y2 ÿ (nx)2 � 1 would have no solutions.

8. Clearly, x and y cannot be of opposite parity. Suppose that they are
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both even, say x � 2r and y � 2s. We obtain 4s2 � 8r3 � 2 or

4(s2 � 2r3) � 2, a contradiction since 46 j2. Hence, both x and y must

be odd.

9. If (a, b) is a solution, then 3a2 � 2 � b2. Hence, b2 � 2 (mod 3), a

contradiction since 2 is not a quadratic residue of 3.

Exercises 8.3

1. It is re¯exive since under the identity transformation f � f . It is

symmetric. If f � g under the transformation x � au� bv, y �
cu� dv, then g � f under the transformation

u � d

Ä

� �
x� b

ÿÄ

� �
y, v � c

ÿÄ
� �

x� a

Ä

� �
y,

where Ä � ad ÿ bc � �1 and

d

Ä
.

a

Ä
ÿ b

ÿÄ
.

c

ÿÄ �
Ä

Ä2
� �1:

It is transitive. If f � g under the transformation x � au� bv,

y � cu� dv, and g � h under the transformation u � qw� rz,

v � sw� tz, where ad ÿ bc � qt ÿ rs � �1, then f � h under the

transformation x � (aq� bs)w� (ar � bt)z, y � (cq� ds)w� (cr �
dt)z, with (aq� bs)(cr � dt)ÿ (ar � bt)(cq� ds) � (ad ÿ bc)(qt ÿ
rs) � �1.

2. f (x, y) � ÿx2 � 2y2 � ÿ(2u � v)2 � 2(3u � 2v)2 � 14u2 � 20uv �
7v2 � g(u, v) since 2 . 2ÿ 1 . 3 � 1.

3. u � 4, v � ÿ5.

4. Use the transformation x � 3u� 2v, y � 4u� 3v.

5. Use the transformation x � 3uÿ 2v, y � 2uÿ v.

6. 2x2 � 5xy ÿ y2 � 2(5u � 2v)2 � 5(5u � 2v)(7u � 3v) ÿ (7u � 3v)2

� 176u2 � 143uv� 29v2.

7. Suppose that f (x, y) � ax2 � bxy� cy2, x � Au� Bv, and y �
Cu� Dv, with ADÿ BC � �1. Then f (x, y) � a(Au� Bv)2 �
b(Au � Bv)(Cu � Dv) � c(Cu � Dv)2 � (aA2 � bAC � cC2)u2 �
(2aAB� b(AD� BC)� 2cCD)uv� (aB2 � bBD� cD2)v2. The dis-

criminant equals (2aAB� b(AD� BC)� 2cCD)2 ÿ 4(aA2 � bAC

� cC2)(aB2 � bBD� cD2) � (b2 � 4ac)(ADÿ BC)2 � b2 ÿ 4ac.

8. If b is even, d � 0 (mod 4). If b is odd, d � 1 (mod 4).

9. f (x, y) � x2 � 4xy� y2.

10. Only f 4.

11. No; the discriminant of f is ÿ15 and that of g is ÿ4.
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12. Yes, 31 � 52 � 6 . 12; yes, 415 � 112 � 6 . 72.

13. If b2 ÿ 4ac , 0, the only critical point, where @ f =@x � @ f =@ y � 0, is

at (0, 0) which is, from the second derivative test, a relative minimum.

If b2 ÿ 4ac � 0 then the critical points lie on the lines 2ax� by � 0

and bx� 2cy � 0; however, the second derivative test fails. Plugging

the critical points into f (x, y) we obtain cy2 and (4acÿ b2)y2,

respectively. In either case, f (x, y) > 0.

14. 1 � x2 � 3y2 � (2u� v)2 � 3(u� v)2 � 7u2 � 10uv� 4y2.

Exercises 8.4

1.
33

23

2.
1393

972

3. If x � [a1, a2, . . . , an],

1

x
� 0� 1

[a1, . . . , an]
� [0, a1, a2, . . . , an]:

4. 0,
1

1
,

3

4
,

19

25
,

79

104
,

177

233
.

5. The equation ax� by � c has solution x � (ÿ1)ncynÿ1, y �
(ÿ1)n�1cxnÿ1.

6. If ci � xi=yi, then xi=xiÿ1 � [ai, aiÿ1, . . . , a2, a1] � yi=yiÿ1. Hence,

xn=xnÿ1 � [an, anÿ1, . . . , a2, a1] � xn=yn and the condition is

xnÿ1 � yn.

7. The formulas for obtaining convergents in Theorem 8.14 are the rules

for multiplication of matrices given in the exercise.

Exercises 8.5

1. (a)
���
3
p � [1, 1, 2], (b)

���
5
p � [2, 4], (c)

���
7
p � [2, 1, 1, 1, 4],

(d)
�����
10
p � [3, 6].

2. [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8].

3. [2, 6, 10, 14, 18, 22, 30, 1, 1, 5, 1, 1]

4. See Table A.8

Hence, (x, y) � (2, 1) � (7, 4) � (26, 15) � (87, 56) � (362, 209).

5. If x � [n], then x � n� 1=[n] � n� 1=x. Hence,
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x � n� �������������
n2 � 4
p

2
:

6.
�����
13
p � �������������

32 � 4
p � 3� 4

6� 4

6� 4

6� . . .�����
18
p � �������������

42 � 2
p � 4� 2

8� 2

8� 2

8� . . .

.

7. Since, ã is irrational neither jãÿ a=bj � 1=2b2 nor jãÿ c=dj �
1=2d2. If jãÿ a=bj. 1=2b2 and jãÿ c=dj. 1=2d2 then

1

bd
� bcÿ ad

bd
� c

d
ÿ a

b
�
����ãÿ a

b

����� ����ãÿ c

d

����. 1

2b2
� 1

2d2
:

Hence, 2bd . b2 � d2, implying that (bÿ d)2 , 0, a contradiction.

Therefore, either jãÿ a=bj, 1=2b2 or jãÿ c=dj, 1=2d2. Hence, by

Theorem 8.21 a=b or c=d is a convergent of ã.

Exercises 8.6

1. The absolute value function is not non-Archimedean since

j1� 2j � 3 . 2 � maxfj1j, j2jg. Therefore, it is Archimedean.

2. (a) If v(e) 6� 0, then v(e) � v(e . e) � v(e)v(e) implies that v(e) � 1.

(b) 1 � v(e) � v((ÿe)(ÿe)) � v(ÿe)v(ÿe).

(c) v(a) � 1 . v(a) � v(ÿe)v(a) � v(ÿe . a) � v(ÿa).

3. If x � 0, jxj0 � 0. If x 6� 0, jxj0 � 1. In either case, jxj0 > 0. A case

Table A.8.

1 1 2 1 2 1 2 1 2 1
0 1 1 2 5 7 19 26 71 97 265 362
1 0 1 1 3 4 11 15 41 56 153 209

Table A.9.

x y v(xy) v(x) . v(y) v(x� y) v(x)� v(y)
jxyj0 jxj0 . jyj0 jx� yj0 jxj0 � jyj0

6�0 6�0 1 1 0 or 1 2
6�0 �0 0 0 1 1
�0 �0 0 0 0 0
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by case approach (see Table A.9) shows that jxyj0 � jxj0 . jyj0, as well

as jx� yj0 < jxj0 � jyj0.

4. The maximum of v(x) and v(y) is less than or equal to v(x)� v(y).

5. j600j2 � 1=23, j600j3 � 1=3, j600j5 � 1=52, j600j p � 1 for any other

prime p.

6. If p � q, jqk j p � 1=qk . If p 6� q, jqk j p � 1.

7. Let pá ix and pâ i y so x � (a=b) pá and y � (c=d) pâ, where

gcd(a, b) � gcd(c, d) � 1. Suppose further that á > â; hence,

jxj p � 1= pá < 1=pâ � jyj p, thus maxfjxj p, jyj pg � jyj p � 1= pâ.

jx� yj p �
���� a

b

� �
pá � c

d

� �
pâ

����
p

�
���� pâ

bd

� �
(adpáÿâ � bc)

����
p

�
���� pâ

bd

����
p

. jadpáÿâ � bcj p < pÿâ;

the latter inequality follows since adpâÿá � bc is an integer. Hence,

jabpâÿá � bcj p < 1.

8. (1) If q 6� 0, then 0 , jqj p < 1 and j0j p � 0.

(2) Let pá ix and pâ i y so x � (a=b) pá and y � (c=d) pâ, where

gcd(a, b) � gcd(c, d) � 1.

jxj p . jyj p � 1

pá
.

1

pâ
� 1

pá�â

and

jxyj p �
���� ac

bd

� �
pá pâ

���� � 1

pá�â

since pá�â ixy.

(3) Follows from the previous exercise.

9. Suppose r �Qk
i�1 pái

i and s � Qk
i�1 p

âi

i , where ái and âi nonnegative

for 1 < i < k. If p � pi, for 1 < i < k, then r divides s if and only if

ái < â j if and only if 1=pâ < 1=pá if and only if jsj p < jrj p. If

p 6� pi, for 1 < i < k, then jsj p � jrj p � 0.

10. If x � 1� 2� 22 � 23 � � � � , then x� 1 � 0. Hence, x � ÿ1.

11. If x � 5� 2 . 3� 2 . 32 � 2 . 33 � � � � , then 3x � 6. Hence, x � 2.

12.
5

6
� 9� 7� 72 � 73 � � � � .

13. Suppose x � 6� 6 . 7� 6 . 72 � 6 . 73 � 6 . 74 � � � � . Adding 1 to

both sides of the equation, we obtain 7� 6 . 7� 6 . 72 � 6 . 73 �
6 . 74 � � � � � 7 . 7 � 6 . 72 � 6 . 73 � 6 . 74 � � � � � 7 . 72 �
6 . 73 � 6 . 74 � � � � � 0. Hence, x � ÿ1.
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14. j48ÿ 36j p � j12j p �

1

4
if p � 2

1

3
if p � 3, and

1 if p 6� 2, 3:

8>>>><>>>>:
15. 3� 4 . 7� 4 . 72 � 4 . 73 � � � � .
16. 98, 784, 5586, 39 200, . . . :

17. (a) the Cartesian plane,

(b) the closed circular disk of radius 1 centered at the origin,

(c) a square centered at the origin with vertices at (�1, 0) and (0, �1),

(d) a rhombus centered at the origin with vertices at (�1, 0) and

(0, �1),

(e) Q 3 Q.

18. Let x be a point in the interior of D(a; r) and z be a point such that

d(a, z) � r. Since d(x, a) , r and the two longest sides of every

triangle in a non-Archimedean geometry are equal in length,

d(x, z) � r. Hence, x can be considered as being at the center.

Exercises 9.1

1. 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, . . . , the tetrahedral

numbers.

2. 1, 5, 15, 35, 70, 126, 210, 330, 495, . . . , the fourth order ®gurate

numbers.

3. The nth order ®gurate numbers.

4. 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, . . . :

5. 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, . . . :

6. 0 followed by the nth order ®gurate numbers.

7. 0, 0, 1, 2, 3, 4, . . . :

8. 1, 3, 5, 7, 9, . . . , the odd positive integers.

9. 0, 1, 4, 9, 16, 25, 36, . . . , squares of the nonnegative integers.

10. 0, 1, 8, 27, 64, 125, 216, 343, . . . , cubes of the nonnegative integers.

11. G(x) � x(x3 � 11x2 � 11x� 1)

(1ÿ x)5
.

12. G(x) �
X1
n�1

nkxn

1ÿ xn
is the generating function for ó k.

13. G(x) � 1� 2x

1ÿ xÿ x2
.
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14. G(x) � x

1ÿ 3x� 7x2
.

Exercises 9.2

1. 4, 3� 1, 1� 3, 2� 2 2� 1� 1, 1� 2� 1, 1� 1� 2, and

1� 1� 1� 1. 5, 4� 1, 1� 4, 3� 2, 2� 3, 3� 1� 1, 1� 3� 1,

1� 1� 3, 2� 2� 1, 2� 1� 2, 1� 2� 2, 2� 1� 1� 1,

1� 2� 1� 1, 1� 1� 2� 1, 1� 1� 1� 2, 1� 1� 1� 1� 1.

2. p(8) � 22 p(9) � 30

8

7� 1

6� 2

6� 1� 1

5� 3

5� 2� 1

5� 1� 1� 1

4� 4

4� 3� 1

4� 2� 2

4� 2� 1� 1

4� 1� 1� 1� 1

3� 3� 2

3� 3� 1� 1

3� 2� 2� 1

3� 2� 1� 1� 1

3� 1� 1� 1� 1� 1

2� 2� 2� 2

2� 2� 2� 1� 1

2� 2� 1� 1� 1� 1

2� 1� 1� 1� 1� 1� 1

1� 1� 1� 1� 1� 1� 1� 1

9

8� 1

7� 2

7� 1� 1

6� 3

6� 2� 1

6� 1� 1� 1

5� 4

5� 3� 1

5� 2� 2

5� 2� 1� 1

5� 1� 1� 1� 1

4� 4� 1

4� 3� 2

4� 3� 1� 1

4� 2� 2� 1

4� 2� 1� 1� 1

4� 1� 1� 1� 1� 1

3� 3� 3

3� 3� 2� 1

3� 3� 1� 1� 1

3� 2� 2� 2

3� 2� 2� 1� 1

3� 2� 1� 1� 1� 1

3� 1� 1� 1� 1� 1� 1

2� 2� 2� 2� 1

2� 2� 2� 1� 1� 1

2� 2� 1� 1� 1� 1� 1

2� 1� 1� 1� 1� 1� 1� 1

1� 1� 1� 1� 1� 1� 1� 1� 1
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3. The coef®cient of xnzm represents the number of different ways n can be

written as a sum of m distinct terms of the sequence, a, b, c, d, e . . . :

4. Expanding we obtain (1� xaz� x2az2 � x3az3 � � � �)(1� xbz �
x2bz2 � x3bz3 � � � �) � � � . Hence, the coef®cient of xnzm represents the

number of ways that n can be written as a sum of m, not necessarily

distinct, terms from the sequence a, b, c, d, e, . . . :

5.
X1
n�1

(1� x n3

).

6.
X1
n�1

(1� x n(n�1)=2).

7.
X

p

(1� xp), where p runs through all primes.

8.
X1
n�1

1

1ÿ x n3 .

9.
X1
n�1

1

(1ÿ x n(n�1)=2)
.

10.
X

p

1

1ÿ x p
, where p runs through all primes.

11.
X

p

1

1ÿ x p
, where p runs through all primes greater than 7.

12.
X1
n�6

1

1ÿ x2n�1
.

13.
X10

n�3

1

1ÿ x2n
.

14. (1 � x)(1 � x2)(1 � x4)(1 � x8)(1 � x16) � � � � 1 � x � x2 � x3 � x4

� x5 � x6 � x7 � x8 � x9� � � � :
15. 9, 7� 1� 1, 5� 3� 1, 5� 1� 1� 1� 1, 3� 3� 3, 3� 3� 1�

1� 1, 3� 1� 1� 1� 1� 1� 1, and 1� 1� 1� 1� 1� 1� 1� 1

� 1. 9, 8� 1, 7� 2, 6� 3, 6� 2� 1, 5� 4, 5� 3� 1, 4� 3� 2.

16. 10, 8� 2, 6� 4, 6� 2� 2, 4� 4� 2, 4� 2� 2� 2, 2� 2� 2 �
2� 2.

17. 6� 4, 7� 3, 5� 5, 4� 3� 3.

18. The partitions of n into at most two parts are n and (nÿ k)� k, for

k � 1, . . . , ��n=2�� ÿ 1.

19. See Table A.10.
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Exercises 9.3

1. 1, 8, 24, 39, 47, 44, 38, 29, 22, 15, 11, 7, 5, 3, 2, 1, 1.

2. See Table A.11.

The only selfconjugate partition of 7 is 4� 1� 1� 1.

4. 1 � 1

2 � 2

3 � 2� 1

4 � 2� 2

5 � 2� 2� 1

6 � 2� 2� 2

5:
Y1
n�1

(1ÿ x2n)(1� x2nÿ1z)(1� x2nÿ1zÿ1)

�
Y1
n�1

(1ÿ un 3

)(1ÿ u3nÿ3=2�1=2)(1ÿ u3nÿ3=2ÿ1=2)

�
Y1
n�1

(1ÿ u3nÿ2)(1ÿ u3nÿ1)(1ÿ u3n) �
Y1
k�1

(1ÿ uk),

and X1
n�ÿ1

x n2

zn �
X1

n�ÿ1
u3n2=2(ÿu1=2)n �

X1
ÿ1

(ÿ1)nu n(3n�1)=2:

6. The largest part of the conjugate is the number of parts of the partition

and vice versa.

7. The sum is 0. See Table A.12.

8. The sum is 0. See Table A.13.

9. If n � 4 (mod 5) arrange the partitions of n into ®ve classes such that

the ranks of the partitions in each class have the same residue modulo

Table A.10.

n p(n) pe(n) p0(n) pd(n) ped(n) pod(n) p1(n)

1 1 0 1 1 0 1 1
2 2 1 1 1 0 1 2
3 3 0 2 2 1 1 1
4 5 2 2 2 1 1 7
5 7 0 3 3 2 1 12
6 11 3 4 4 3 3 45
7 15 0 5 5 4 4 87
8 22 5 6 6 3 3 45
9 30 0 8 8 4 4 87
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5. There will be the same number of partitions in each class. The result

follows since 0� 1 � � � � � (nÿ 1) � 0 (mod 5).

10. 1 2 4 6 9 1 3 5 9 11

3 5 7 10 2 4 6 10

8 11 7 12

12 8

11. 1 2 3 1 2 3 1 2 4 1 2 4 1 2 5 1 2 5 1 2 6

4 5 4 6 3 5 3 6 3 4 3 6 3 4

6 5 6 5 6 4 5

1 2 6 1 3 4 1 3 4 1 3 5 1 3 5 1 3 6 1 3 6

3 5 2 5 2 6 2 4 2 6 2 4 2 5

4 6 5 6 4 5 4

1 4 6 1 4 5

2 5 2 6

3 3

Table A.11.

Partitions Number of distinct
parts in each partition

7 1
6� 1 2
5� 2 2
5� 1� 1 2
4� 3 2
4� 2� 1 3
4� 1� 1� 1 2
3� 3� 1 2
3� 2� 2 2
3� 2� 1� 1 3
3� 1� 1� 1� 1 2
2� 2� 2� 1 2
2� 2� 1� 1� 1 2
2� 1� 1� 1� 1� 1 2
1� 1� 1� 1� 1� 1� 1 1

Total 30 � p1 (7)
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Table A.12.

Partition Rank Modulo 5

4 3 3
3� 1 1 1
2� 2 0 0
2� 1� 1 ÿ1 4
1� 1� 1� 1 ÿ3 2

Table A.13.

Partition Rank Modulo 5

9 8 3
8� 1 6 1
7� 2 5 0
7� 1� 1 4 4
6� 3 4 4
6� 2� 1 3 3
6� 1� 1� 1 2 2
5� 4 3 3
5� 3� 1 2 2
5� 2� 2 2 2
5� 2� 1� 1 1 1
5� 1� 1� 1� 1 0 0
4� 4� 1 1 1
4� 3� 2 1 1
4� 3� 1� 1 0 0
4� 2� 2� 1 0 0
4� 2� 1� 1� 1 ÿ1 4
4� 1� 1� 1� 1� 1 ÿ2 3
3� 3� 3 0 0
3� 3� 2� 1 ÿ1 4
3� 3� 1� 1� 1 ÿ2 3
3� 2� 2� 2 ÿ1 4
3� 2� 2� 1� 1 ÿ2 3
3� 2� 1� 1� 1� 1 ÿ3 0
3� 1� 1� 1� 1� 1� 1 ÿ4 1
2� 2� 2� 2� 1 ÿ3 2
2� 2� 2� 1� 1� 1 ÿ4 1
2� 2� 1� 1� 1� 1� 1 ÿ5 0
2� 1� 1� 1� 1� 1� 1� 1 ÿ6 4
1� 1� 1� 1� 1� 1� 1� 1� 1 ÿ8 2
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