Tutorial 1

- Solve all questions. Discuss solutions with TAs during TA meeting hours.

1. Prove the following properties of Fibonacci numbers using induction, where Fibonacci numbers are defined as follows:
$F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$.
(a) Prove that $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$
(b) Prove that $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{n}=\left(\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right)$
(c) Prove that $F_{1}+F_{3}+F_{5}+\ldots+F_{2 n+1}=F_{2 n+2}$, and 1 $+F_{2}+F_{4}+F_{6}+\ldots+F_{2 n}=$ $F_{2 n+1}$
2. Using the well-ordering principle prove the following statement: Any $n \in \mathbb{Z}^{+}$, if $n>1$ then it can be factored as a product of primes.
3. Find bugs in the following proof:

Claim 0.1 (bogus). Every Fibonacci number is even.
Faulty proof. The proof is by using the well-ordering principle (WOP). Suppose there are odd Fibonacci numbers. Let C be the set of all such numbers. By the WOP, we know that there is a minimum number m such that F_{m} is odd. As F_{0} is even, $m>0$. Since m is the minimum in C, we know that F_{m-1}, F_{m-2} are both even. But by the definition of $F_{m}=F_{m-1}+F_{m-2}, F_{m}$ is a sum of two even numbers. Therefore, it must be even. Therefore, our assumption that there are odd Fibonacci numbers must be wrong, thereby proving the claim!
4. There are n identical cars on a circular track. Among all of them, they have just enough gas for one car to complete a lap. Show (using induction) that there is a car which can complete a lap by collecting gas from the other cars on its way around.
5. There is a building with n floors. You are given two identical eggs. There is some floor $h \leq n$ such that if the eggs are thrown from h then they break and if the eggs are thrown from another floor $k<h$ then they do not break. Give an optimal strategy to compute h.

