Tutorial 3

- Solve all questions. Discuss solutions with TAs during TA meeting hours.

1. Partial order

Let (S, R) denote a partially ordered set S under the order R. An antichain is the subset $S^{\prime} \subseteq S$ of S such that $\forall x, y \in S^{\prime}, x \neq y, x \not R y$.
(a) Give an example of an antichain.
(b) What is the length of a maximal antichain in $(\mathbb{N}, \leq),\left(\mathcal{P}_{A}, \subseteq\right)$. Here $A=\{1,2, \ldots, 10\}$ and \mathcal{P}_{A} denotes the power set of A.
(c) Show that a chain and an antichain intersect in at most 1 point.

2. Relational data of BTech 2

Consider the database of BTech2 consisting of three parameters: roll numbers, JEE rank, and CPI. Let x and y be two students. We define two relation \succ, \gg as follows: $x \succ y$ iff $C P I(x)-C P I(y)>1.5$ and $x \gg y$ iff $J E E(x) \leq J E E(y)$ and $C P I(x) \geq C P I(y)$.
(a) Which among the following properties are satisfied by \succ and \gg : reflexive, transitive, symmetric, antisymmetric.
(b) A relation is called an equivalence relation if it is reflexive, transitive, and symmetric. Define a relation on this database which is an equivalence relation.
(c) Let \sim be an equivalence relation. Let $C_{x}=\{y \mid x \sim y\}$. The set C_{x} is called an equivalence class of x. How many equivalence classes are there in the relation that you defined in the previous subpart?
3. How many functions exist from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$? How many injective functions exist from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$?
4. Each bead on a necklace with three beads is colored either black or white. Necklaces N_{1}, N_{2} are said to be related if N_{2} is N_{1} or can be obtained from N_{1} by flipping around the center of N_{1}. Is it an equivalence relation? If not, then which property does it not satisfy? If it is, then what are the equivalence classes?

