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Credit Structure

Course credit structure

quizzes 25%
mid-sem 35%
end-sem 40%

O�ce hours: 11:00am to 1:00pm (Wednesday)
Problem solving session: 1 hour per week (To be announced)
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Important Announcements
Quiz 1: August 28, 2013 , Wednesday, 8:30am to 9:30am
Quiz 2: September 4, 2013 , Wednesday, 8:30am to 9:30am

No classes on: July 22, 2013, July 23, 2013 and July 25, 2013
Next class: July 29, 2013
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Course Outline

Mathematical reasoning and mathematical objects

Combinatorics

Elements of graph theory

Elements of abstract algebra
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Course Outline

Mathematical reasoning and mathematical objects

I What is a proof? Types of proof methods
I Induction
I Sets, relations, functions, partial orders, graphs

Text: Discrete Mathematics and its applictions, by Kenneth Rosen
Chapter 2 : 2.1, 2.2, 2.3, Chapter 8 : 8.1, 8.5, 8.6

Class notes: will be uploaded on Moodle

Combinatorics

Elements of graph theory

Elements of abstract algebra
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What is a proposition?

A statement that is either true or false.

2 + 2 = 4, every odd number is a prime, there are no even primes
other than 2;

8a, b 2 N, 9c 2 N : a2 + b2 = c ;

8a, b 2 N, 9c 2 N : a2 � b2 = c ;

8a, b 2 N, 9c 2 Z : a2 � b2 = c ;

It is not always easy to tell whether a proposition is true or false.
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Theorems and proofs

Theorem

If 0  x  2, then �x3 + 4x + 1 > 0

*(scratchpad)*

Proof.

As �x3 + 4x = x(4� x2), which is in fact x(2� x)(2 + x), the quantity is
positive non-negative for 0  x  2. Adding 1 to a non-negative quantity
makes it positive. Therefore, the above theorem.
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Theorems and Proofs
Given: a number n 2 N
Check: Is n prime?

for i = 2 to
p
n do

if i |n then
output “no”

end if
end for

Why is this algorithm correct?

Theorem

If n is a composite integer, then n has a prime divisor less than or equal top
n

Proof.

As n is a composite, 9x , y 2 N, x , y < n : n = xy . If x >
p
n and y >

p
n

then xy > n. Therefore, one of x or y is less than or equal to
p
n. Say x is

smaller than
p
n. It is either a composite or a prime. If it is a prime, then

we are done. Else, it has prime factorization (axiom: unique factorization
in N) and again, we are done.
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Axioms

Euclid in 300BC invented the method of axioms-and-proofs.

Using only a handful of axioms called Zermelo-Fraenkel and Choice (ZFC)
and a few rules of deductions the entire mathematics can be deduced!

Proving theorems starting from ZFC alone is tedious. 20,000+ lines proof
for 2 + 2 = 4

We will assume a whole lot of axioms to prove theorems: all familiar facts
from high school math.
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Class problems

(CW1.1) Prove that for any n 2 N, n(n2 � 1)(n + 2) is divisible by 4.
(what about divisible by 8?)

(CW1.2) Prove that for any n 2 N, 2n < (n + 2)!
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Bogus proofs

Theorem (Bogus)

1/8 > 1/4

Proof.

3 > 2

3 log
10

(1/2) > 2 log
10

(1/2)

log
10

(1/2)3 > log
10

(1/2)2

(1/2)3 > (1/2)2
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Another bogus proof

Theorem

For all non-negative numbers a, b a+b
2

�
p
ab

Proof.

a+ b

2
�?

p
ab

a+ b �? 2
p
ab

a2 + 2ab + b2 �? 4ab

a2 � 2ab + b2 �? 0

(a� b)2 � 0
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Proof Methods
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Proof by contrapositive

Theorem

If r is irrational then
p
r is also irrational.

Proof.

Suppose
p
r is rational. Then

p
r = p/q for p, q 2 Z. Therefore,

r = p2/q2.
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Proof by contrapositive

Theorem
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p
r is also irrational.

Definition (Contrapozitive)

The contrapositive of “if P then Q” is “if ¬Q then ¬P”

Proof.

Suppose
p
r is rational. Then

p
r = p/q for p, q 2 Z. Therefore,

r = p2/q2.

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 May 2011 13 / 18



Proof by contrapositive

Theorem

If r is irrational then
p
r is also irrational.

If
p
r is rational then r is rational.

Proof.

Suppose
p
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p
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Proof by contradiction

Theorem
p
2 is irrational.

Proof.

Suppose not. Then there exists p, q 2 Z such that
p
2 = p/q, where p, q

do not have any common divisors. Therefore, 2q2 = p2, i.e. p2 is even.
If p2 is even, then p is even. Therefore, p = 2k for some k 2 Z )
2q2 = 4k2 ) q2 = 2k2 ) q2 is even. Therefore, q is even. That is, p, q
have a common factor. This leads to a contradiction.

(CW2.2) Prove that there are infinitely many primes.
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Well-ordering principle and Induction

Axiom (WOP)

Every nonempty set of non-negative integers has a smallest element.

Axiom (Induction)

Let P(n) be a property of non-negative integers. If

1 P(0) is true (Base case)

2 for all n � 0, P(n) ) P(n + 1) (Induction step)

then P(n) is true for for all n 2 N.

Axiom (Strong Induction)

Let P(n) be a property of non-negative integers. If

1 P(0) is true (Base case)

2 [8k 2 {0, 1, . . . , n} : P(k)] ) P(n + 1) (Induction step)

then P(n) is true for for all n 2 N.
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WOP ) Induction

Theorem

Well-ordering principle implies Induction

Proof.

Let P(0) be true and for each n � 0, let P(n) ) P(n + 1).
Let us assume for the sake of contradiction that P(n) is not true for all
positive integers.
Let C = {i | P(i) is false}. As C is non-empty and non-negative integers
C has a smallest element (due to WOP), say i

0

.
Now, i

0

6= 0. Also P(i
0

� 1) is true, as i
0

� 1 is not in C . But
P(i

0

� 1) ) P(i
0

), which is a contradiction.

Theorem

WOP , Induction , Strong Induction [HW]
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Using Induction to prove theorems

Theorem

2n  (n + 1)!

Proof.

Base case (n = 0): 20 = 1 = 1!

Induction hypothesis: 2n  (n + 1)!.

2n+1 = 2 · 2n

 2 · (n + 1)! (by indiction hypothesis)

 (n + 2) · (n + 1)!

 (n + 2)!
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Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over N :
4a3 + 2b3 = c3

It is not always as easy to prove such theorems.

Conjecture (Euler, 1769)

There are no positive integer solutions over Z to the equation:

a4 + b4 + c4 = d4

Integer values for a, b, c , d that do satisfy this equation were first
discovered in 1986.
It took more two hundred years to prove it.
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Recap

What are axioms, propositions, theorems, claims and proofs?

Various theorems we proved in class:

The well ordering principle, induction, and strong induction.

You were asked to think about the following problem:

Is 2n < n
2

!?

Try to also think about the following: (CW2.1)
For every positive integer n there exists another positive integer k
such that n is of the form 9k , 9k + 1, or 9k � 1.
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Using Well-ordering principle to prove theorems

Here is a slightly non-trivial example:

Theorem

The following equation does not have any solutions over N :
4a3 + 2b3 = c

3

It is not always as easy to prove such theorems.

Conjecture (Euler, 1769)

There are no positive integer solutions over Z to the equation:

a

4 + b

4 + c

4 = d

4

Integer values for a, b, c , d that do satisfy this equation were first
discovered in 1986.
It took more two hundred years to prove it.
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A proof by induction

Theorem

For any n 2 N, n � 2 prove thats

2

r
3
q

4 . . .
p

n � 1
p
n < 3

Proof.

For all 2  i  j , i , j 2 N let f (i , j) =
q
i

p
i + 1 . . .

p
j .

We prove (⇤) by induction on j � i .

Base case: j � i = 1. f (i , i + 1) =
p
i

p
i + 1 < i + 1.

Induction:

f (i , j + 1) =
p
i · f (i + 1, j + 1)

<
p
i · (i + 2) (by Induction Hypothesis)

 i + 1 (by AM-GM inequality)
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For all 2  i  j , i , j 2 N let f (i , j) =
q
i

p
i + 1 . . .

p
j .

We prove (⇤) by induction on j � i .

Base case: j � i = 1. f (i , i + 1) =
p
i

p
i + 1 < i + 1.

Induction:

f (i , j + 1) =
p

i · f (i + 1, j + 1)

<
p

i · (i + 2) (by Induction Hypothesis)

 i + 1 (by AM-GM inequality)
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A Bogus Inductive proof

Theorem (Bogus, CW2.2)

a 2 R, a > 0. Then, 8n 2 N, an = 1.

By Strong Induction.

Base case: n = 0. So a

n = 1.
Induction: n ! n + 1.

a

n+1 =
a

n · an

a

n�1

=
1 · 1
1

= 1

???
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Recap

The well-ordering principle.

The principle of induction: we proved that 8i , j 2 N, f (i , j) < i + 1,

where f (i , j) =

r
i

q
i + 1 . . .

p
j � 1

p
j .
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Mathematical Structures
sets, functions, relations, graphs ...
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What are sets?

A set can be vaguely defined as a collection of objects.

But vague definitions can lead to problems.
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What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

The barber’s dilema

Once upon a time there was a kingdom in which the king ordered the
barber to shave only those who do not shave themselves!
Of course, barber could neither shave himself and nor could he not shave
himself!
This is called a paradox.
Why did the paradox arise? – the king should have excluded the barber
from the set of all people.
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What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

Cantor was the first person to define sets formally – finite sets as well as
infinite sets, and prove important properties related to sets.
Let P be a property then he said any collection of objects which satisfy
property P is a set, i.e.
S = {x | P(x)}.

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 5 / 10



What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

Cantor was the first person to define sets formally – finite sets as well as
infinite sets, and prove important properties related to sets.
Let P be a property then he said any collection of objects which satisfy
property P is a set, i.e.
S = {x | P(x)}.

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 5 / 10



What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

Russell’s paradox:
A = {X | X /2 X}
Now if A 2 A then A /2 A and if A /2 A then A 2 A!
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What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

(CW) Can you come up with a set that contains itself?
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What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

How to get around this paradox?

Definition

Start with a few objects defined as sets. Now if A is a set and P is a
property, then S = {x 2 A | P(x)} is also a set.
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How to get around this paradox?

Definition

Start with a few objects defined as sets. Now if A is a set and P is a
property, then S = {x 2 A | P(x)} is also a set.

Why does this definition get rid of Russell’s paradox?

Let P(x) = x /2 x . Suppose A is a set and let S = {x 2 A | x /2 x}.
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property, then S = {x 2 A | P(x)} is also a set.

Why does this definition get rid of Russell’s paradox?

Let P(x) = x /2 x . Suppose A is a set and let S = {x 2 A | x /2 x}.
I (S 2 S :) from the definition of S , S 2 A and S /2 S , which is a

contradiction.
I (S /2 S :) from the definition, either S /2 A or S 2 S . But we have

assumed that S /2 S , therefore it must mean S /2 A. There is no
contradiction!

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 5 / 10



What are sets?

A set can be vaguely defined as a collection of objects.
But vague definitions can lead to problems.

How to get around this paradox?

Definition

Start with a few objects defined as sets. Now if A is a set and P is a
property, then S = {x 2 A | P(x)} is also a set.

Why does this definition get rid of Russell’s paradox?

Let P(x) = x /2 x . Suppose A is a set and let S = {x 2 A | x /2 x}.
I (S 2 S :) from the definition of S , S 2 A and S /2 S , which is a

contradiction.
I (S /2 S :) from the definition, either S /2 A or S 2 S . But we have

assumed that S /2 S , therefore it must mean S /2 A. There is no
contradiction!

How to get around Barber’s paradox? (CW)
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Examples and properties

We have already seen sets such as N,Z,R etc.

Let A,B be two sets. Their cartesian product, A⇥ B , is defined as
A⇥ B = {(a, b) | a 2 A, b 2 B}
Similarly, union, intersection, symmetric di↵erence are defined as:
A [ B = {x | a 2 A or x 2 B}
A \ B = {x | a 2 A and x 2 B}
A� B = {x | (x 2 A ^ x /2 B) _ (x 2 B ^ x /2 A)}
Let U be the universe. The complement of a set A with respect to
the universe U, denoted as Ā or Ac = {x 2 U | x /2 A}.
The powerset, P(A), of a set A is defined to be a collection of all
subsets of A.
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Examples and properties

We have already seen sets such as N,Z,R etc.

Let A,B be two sets. Their cartesian product, A⇥ B , is defined as
A⇥ B = {(a, b) | a 2 A, b 2 B}
Similarly, union, intersection, symmetric di↵erence are defined as:
A [ B = {x | a 2 A or x 2 B}
A \ B = {x | a 2 A and x 2 B}
A� B = {x | (x 2 A ^ x /2 B) _ (x 2 B ^ x /2 A)}
Let U be the universe. The complement of a set A with respect to
the universe U, denoted as Ā or Ac = {x 2 U | x /2 A}.
The powerset, P(A), of a set A is defined to be a collection of all
subsets of A.
Example: Let A = {a, b} then P(A) = {;, {a}, {b}, {a, b}}
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Infinite sets

We have already seen infinite sets:
Examples: N,Z,R,Q.

How do we measure the size of any set? For a set S , finite or infinite,
|S | denotes the size of that set. It is also called the cardinality of the
set.

For a finite set, |S | equals the number of elements in S .

What about infinite sets?

Given two infinite sets, can we talk about one being bigger than the
other? If so, how?
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Functions

Definition

Let A,B be two sets. A function from A to B , f : A ! B , is a set defined
as follows:
f = {(a, b) | a 2 A, b 2 B} with an additional properties that if (a, b) 2 f

and (a, c) 2 f then b = c and for every a 2 A there a b 2 B such that
(a, b) 2 f .

Here, b is called an image of a, denoted as f (a) = b.

Range(f ) = {b 2 B | 9a 2 A s.t. f (a) = b} ✓ B

Domain(f ) = A
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Types of functions

Injective function, one-to-one: A function f : A ! B is said to be
injective if 8x , y 2 A if f (x) = f (y) then x = y .

Surjective function, onto: A function f : A ! B is said to be
surjective if 8x 2 B 9a 2 A such that f (a) = x .

Bijective function: A function is said to be bijective if it is surjective
and injective.

Nutan (IITB) CS 207 Discrete Mathematics – 2012-2013 May 2011 9 / 10



Types of functions

Injective function, one-to-one: A function f : A ! B is said to be
injective if 8x , y 2 A if f (x) = f (y) then x = y .

I Is f : Z ! Z, defined as f (n) = n + 1 injective?

I Is f : Z ! Z, defined as f (n) = n

2 injective?
I What about f : Z ! Z, defined as f (n) =

p
n?
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Back to infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A,B have the same size if and only if there is a
bijection between A and B

Examples

Let E be a set of even numbers. There is a bijection between E and N
There is a bijection f : Z ! N
There is a bijection f : N⇥ N ! N
There is a bijection f : N⇥ N⇥ N ! N
Is there a bijection between N and set of all subsets of N?
Is there a bijection between R and N?
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Recap

How to define sets?

What are finite and infinite sets?

What are functions? What are injective, surjective, and bijective
functions?

Comparing sizes of infinite sets.
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Size of infinite sets

We will understand the notion of size of an infinite set in a relative sense.

Definition

We say that two sets A,B have the same size if and only if there is a
bijection between A and B

Examples

Let E be a set of even numbers. There is a bijection between E and N
There is a bijection f : Z ! N
There is a bijection f : N⇥ N ! N
There is a bijection f : N⇥ N⇥ N ! N
Is there a bijection between N and set of all subsets of N?
Is there a bijection between R and N?
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Finite sets vs infinite sets

On the one hand

If A is finite then there is no bijection from A⇥ A to A. Whereas if A
is countably infinite

then there is a bijection from A⇥ A to A

On the other hand

Today we will see two theorems which prove two properties of infinite
sets that they share with finite sets.

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Theorem

Let A,B be two sets. If there is a injective map g from A to B and another

injective map h from B to A then there is a bijection between A,B.
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f ,
between set of all subsets of N.

0 1 2 3 ...
;
{1}
{2}
{1, 2}
:
:
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and set of all subsets of N.

Proof.

Suppose for the sake of contradiction that there is a bijection, say f ,
between set of all subsets of N.

0 1 2 3 ...
; X 7 7 7 . . .
{1} 7 7 7 7 . . .
{2} 7 7 7 7 . . .
{1, 2} 7 X X X . . .
: . . . . . . . . . . . . . . .
: . . . . . . . . . . . . . . .

The inverted diagonal set does not belong to any of the existing sets!
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Schröder-Bernstein

Theorem

Let A,B be two sets. If there is a injective map g from A to B and another

injective map h from B to A then there is a bijection between A,B.

A toy example:
Say g : N ! N, g(x) = x+1 and h : N ! N, h(x) = x + 1.
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Recap

There is no bijection between N and set of all subsets of N.

Proof by Cantor’s diagonalization. [Cantor, 1891]
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Today

Another property of sets which holds for both finite and infinite sets.
[Schröder-Bernstein Theorem]

An interesting game and an open problem (If time permits).
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Schröder-Bernstein

Theorem

Let A,B be two sets. If there is a injective map g from A to B and another

injective map h from B to A then there is a bijection between A,B.

There are two types of elements in B .

B

0

= {b 2 B | 9a 2 A s.t. g(a) = b}
B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}
An element b 2 B be called h-good if 9� 2 B

1

, 9n 2 N s.t. b = (g � h)n�
We now define another map from A to B as follows:

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

To finish the proof, we will prove the following lemma about f .

Lemma

The map f defined above is a bijection.
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Schröder-Bernstein

Theorem

Let A,B be two sets. If there is a injective map g from A to B and another

injective map h from B to A then there is a bijection between A,B.

There are two types of elements in B .

B

0

= {b 2 B | 9a 2 A s.t. g(a) = b}
B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}
An element b 2 B be called h-good if 9� 2 B

1

, 9n 2 N s.t. b = (g � h)n�

We now define another map from A to B as follows:

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

To finish the proof, we will prove the following lemma about f .

Lemma

The map f defined above is a bijection.

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 May 2011 5 / 8
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We now define

another map from A to B as follows: f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

To finish the proof, we will prove the following lemma about f .

Lemma

The map f defined above is a bijection.

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 May 2011 5 / 8
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
Case 1 [g(a), g(a0) are h-good:] then f (a) = h

�1(a) = f (a0) = h

�1(a0).
Say h

�1(a) = b

0

. Then we have, h(b
0

) = a and h(b
0

) = a

0, i.e. h is not a
well-defined functions. This is a contradiction.
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
Case 2 [g(a), g(a0) are not h-good:] then f (a) = g(a) = f (a0) = g(a0).
Then we have, g(a) = g(a0), i.e. g is not injective. This is a
contradiction.
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
Case 3[only g(a) is h-good:] We have that f (a) = f (a0).
As g(a) is h-good, f (a) = h

�1(a). As g(a0) is not h-good, f (a0) = g(a0).
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Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
Case 3[only g(a) is h-good:] We have that f (a) = f (a0).
As g(a) is h-good, f (a) = h

�1(a). As g(a0) is not h-good, f (a0) = g(a0).
Therefore, h�1(a) = g(a0). Call this element b⇤.
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�1(a). As g(a0) is not h-good, f (a0) = g(a0).
Therefore, h�1(a) = g(a0). Call this element b⇤.
As g(a0) = b

⇤, b⇤ /2 B

1

. But as g(a) is h-good. Therefore,
(h � g)�i (b⇤) 2 B

1

for some i 2 N.
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⇤, b⇤ /2 B

1

. But as g(a) is h-good. Therefore,
(h � g)�i (b⇤) 2 B

1

for some i 2 N.
Assuming g(a0) is not h-good, paths walked backwards from b

⇤ lead to B

0

.
But Assuming g(a) is h-good, paths walked backwards from b

⇤ lead to B

1

.
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Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is injective from A to B

Proof.

Suppose (for the sake of contradiction) a 6= a

0 and f (a) = f (a0).
Case 3[only g(a) is h-good:] We have that f (a) = f (a0).
As g(a) is h-good, f (a) = h

�1(a). As g(a0) is not h-good, f (a0) = g(a0).
Therefore, h�1(a) = g(a0). Call this element b⇤.
As g(a0) = b

⇤, b⇤ /2 B

1

. But as g(a) is h-good. Therefore,
(h � g)�i (b⇤) 2 B

1

for some i 2 N.
Assuming g(a0) is not h-good, paths walked backwards from b

⇤ lead to B

0

.
But Assuming g(a) is h-good, paths walked backwards from b

⇤ lead to B

1

.
Contradiction!
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is surjective from A to B
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Schröder-Bernstein

Lemma

Let B

1

= {b 2 B | 8a 2 A s.t. g(a) 6= b}, and

f (a) =

⇢
h

�1(a) if g(a) is h-good
g(a) otherwise

Then f is surjective from A to B

Proof.

HW
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Subset Take-away Game – David Gale

I am player 1 and you are player 2. We both have been given a set A. In
each round, first I choose one subset of A and then you choose another
subset of A. We stick to the following rules:

1 We do not choose the empty set

2 We do not choose the entire set A

3 We do not choose any superset of a set chosen in any earlier round.

First player unable to pick loses the game.

If |A| = 1 then I lose. If |A| = 2 then you will always win. If |A| = 3 then
again you can win. What happens when |A| = 4?

(Source – Mathematics for Computer Science, 2012, by Eric Lehman and F Thomson Leighton)
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Recap

Proofs, proof methods.

Sets and properties of sets

Functions, properties of functions

Infinite sets and properties of infinite sets.
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Today

Relations: generalisations of functions

Types and properties of relations

Representation of functions - directed graphs
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What are relations?

Relation are used to talk about elements of a set.
A relation R from set A to set B , R(A,B) is a subset of A⇥ B .

If A = B for some relation, we denote the relation as R(A).

Examples:

A function is a special case of a relation.

R(Z) = {(a, b) | a, b 2 Z and a  b}. R is a relation on the set of
integers under which aRb holds for two numbers a, b 2 Z if and only
if a  b.

Let S be a set R(P(S)) = {(A,B) | A,B 2 P(S) and A ✓ B}.
Relational databases: practical examples of relations.
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Relation are used to talk about elements of a set.
A relation R from set A to set B , R(A,B) is a subset of A⇥ B .
If A = B for some relation, we denote the relation as R(A).

Examples:

A function is a special case of a relation.

R(Z) = {(a, b) | a, b 2 Z and a  b}. R is a relation on the set of
integers under which aRb holds for two numbers a, b 2 Z if and only
if a  b.
We use aRb to denote a is related to b.

Let S be a set R(P(S)) = {(A,B) | A,B 2 P(S) and A ✓ B}.
Relational databases: practical examples of relations.
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Properties of relations

Here we list a few definitions which define di↵erent types of relations.
Let A be a set and let R(A) be a relation on A.

Reflexive:

R(A) is called reflexive if aRa 8a 2 A.

Symmetric: R(A) is called symmetric if 8a, b 2 A aRb implies bRa.

Transitive: R(A) is called transitive if 8a, b, c 2 A aRb and bRc

implies aRc .

Anti-symmetric: R(A) is called anti-symmetric if 8a, b 2 A aRb and
bRa implies a = b.
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Properties of relations

Here we list a few definitions which define di↵erent types of relations.
Let A be a set and let R(A) be a relation on A.

Reflexive: R(A) is called reflexive if aRa 8a 2 A.
I Is R(Z) = {(a, b) | a, b 2 Z and a  b} reflexive?
I Is R(Z) = {(a, b) | a, b 2 Z and a < b} reflexive?
I Is R(P(S)) = {(A,B) | A,B 2 P(S),A ✓ B} ?

Symmetric: R(A) is called symmetric if 8a, b 2 A aRb implies bRa.
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Types of relations

We will study the following two types of relations:

Equivalence relations

Partial orders

reflexive transitive symmetric anti-symmetric

Classify the following:

R(Z) = {(a, b) | a, b 2 Z and a  b}
R(Z) = {(a, b) | a, b 2 Z and a ⌘ b (mod n)}
R(⌃⇤) = {(x , y) | x , y 2 ⌃⇤ and x = su↵(y)}
R(N) = {(a, b) | a (mod b) 6= 0}
R(R) = {(a, b) | a, b 2 Z and a

2  b

2}
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Recap

What are relaions?

What are di↵erent types of relations?

reflexive, transitive, symmetric, anti-symmetric

Equivalence relations and partial orders.

reflexive transitive symmetric anti-symmetric

Representation of partial orders by graphs
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Today

Chains, anti-chains, properties of partial orders.

What are equivalence classes and properties of equivalence classes.
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Posets, Chains and Anti-chians

Definition

A set S along with a relation �, (S ,�), is called a poset if � defines a

partial order on S .

Definition

If (S ,�) is a poset and every pair of elements in S is comparable, then

(S ,�) is called a totally ordered set. A totally ordered set is called a chain.

Definition

Let (S ,�) be a poset. A subset A ✓ S is called an anti-chain if no two

elements of A are related to each other under �.
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Representing partial orders as directed graphs

What is a graph?

Definition

A graph can be described by two sets: set V is called a set of vertices and

set E is a subset of V ⇥ V and is called a set of edges, G = (V ,E ).
Vertices u, v 2 V are said to be neighbours if (u, v) 2 E .

The graph is called directed if E is a set of ordered pairs.

What are the examples of graphs you may have seen:

Social network graphs

Tum-tum route graphs

...
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Representing partial orders as directed graphs

Let S = {1, 2, 3}. Recall the poset (P(S),✓).

[CW] Describe (P(S),✓).

A graph representing the poset:

;

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

[CW] What are the chains in this poset?

[CW] What are the anti-chains in this poset?
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Chains and anti-chains

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m

anti-chains.

Proof.

Let the chain be denoted as a

1

� a

2

� . . . � am. Now observe that every

element of this chain, must go to di↵erent anti-chains. Therefore, there

are at least m anti-chains in (S ,�).
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Chains and anti-chains

Theorem (Mirsky’s theorem, 1971)

If the largest chain in a poset (S ,�) is of size m then S can be partitioned

into m anti-chains.
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Recap

Definition

A set S along with a relation �, (S ,�), is called a poset if � defines a
partial order on S .

Definition

If (S ,�) is a poset and every pair of elements in S is comparable, then
(S ,�) is called a totally ordered set. A totally ordered set is called a chain.

Definition

Let (S ,�) be a poset. A subset A ✓ S is called an anti-chain if no two
(distinct) elements of A are related to each other under �.

Theorem

If the largest chain in a poset (S ,�) is of size m then S has at least m

anti-chains.

Theorem (Mirsky’s theorem, 1971)

If the largest chain in a poset (S ,�) is of size m then S can be partitioned

into m anti-chains.
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Proof of Mirsky’s theorem

What are equivalence classes and properties of equivalence classes.
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Chains and anti-chains

Theorem (Mirsky’s theorem, 1971)

If the largest chain in a poset (S ,�) is of size m then S can be partitioned

into m anti-chains.

Proof.

For each element s 2 S , let Cs be the set of all chains that have s as the
maximum element. And define label(s) := maxc2Cs {size(c)}.
Let us now define sets A

1

,A
2

, . . . ,Am such that Ai = {x | label(x) = i}.
It is easy to see that if i 6= j then Ai \ Aj = ;. Also, it is easy to observe
that [m

i=1

Ai = S .
Now we prove that each Ai is an anti-chain. For x , y 2 Ai for some
i 2 [m]. ) label(x) = label(y) = i . Suppose x � y then
label(x) < label(y). Contradiction! Similarly, if x ⌫ y then we get a
contradiction. Hence, every Ai is an anti-chain.
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Equivalence relations and equivalence classes

Definition

A relation R defined over a set A, denoted as R(A) or (A,R), is called an
equivalence relation if it is reflexive, transitive and symmetric.

Definition

Let [x ] := {y | x , y 2 A, and (x , y) 2 R}.
[x ] is called the equivalence class of x .

Example: Consider (N,⌘ (mod4)).

[0] = {0, 4, 8, 12, 16, . . .}
[1] = {1, 5, 9, 13, 17, . . .}
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Properties of equivalence relations

Let R be an equivalence relation of A. Let elements of A be x , y , z etc.

Lemma

The following three are equivalent: (a) xRy, (b) [x ] = [y ], (c) [x ] \ [y ] 6= ;.
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The following three are equivalent: (a) xRy, (b) [x ] = [y ], (c) [x ] \ [y ] 6= ;.

Proof.

(a) ) (b): Say z 2 [x ]. But xRy . As xRy and R is symmetric, yRx .
Therefore, yRx , xRz . R is transitive. Therefore, yRz , i.e. z 2 [y ]. This
proves that [x ] ✓ [y ]. The proof of [y ] ✓ [x ] is similar.

(b) ) (c): Say [x ] = [y ]. The only way [x ] \ [y ] = ; is if [x ] = ;.
However, as R is reflexive, x 2 [x ] 6= ;.
(c) ) (a): Let z 2 [x ] \ [y ]. Therefore, xRz and yRz . But as R is
symmetric, zRy . But R is also transitive. Therefore xRz and zRy imply
xRy .
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Sets X
1

,X
2

, . . . ,Xm are said to partition a set X if

8i , j 2 {1, 2, . . . ,m}, i 6= j : Xi \ Xj = ;
8x 2 X , 9i 2 {1, 2, . . . ,m} : x 2 Xi

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Conversely, given a partition {Ai | i 2 {1, 2, . . . , n}} of A, there is an

equivalence relation RA with equivalence classes A

1

,A
2

, . . . ,An.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].
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Conversely, given a partition {Ai | i 2 {1, 2, . . . , n}} of A, there is an
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Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].

Let RA = {(x , y) | 9i : x , y 2 Ai}.
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Conversely, given a partition {Ai | i 2 {1, 2, . . . , n}} of A, there is an

equivalence relation RA with equivalence classes A

1

,A
2

, . . . ,An.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].

Let RA = {(x , y) | 9i : x , y 2 Ai}.
RA relates (x , y) if they belong to the same part in the partition of A.
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Equivalence classes and partitions

Theorem

Let R be an equivalence relation defined on a set A.

The equivalence classes of R, partition the set A.

Conversely, given a partition {Ai | i 2 {1, 2, . . . , n}} of A, there is an

equivalence relation RA with equivalence classes A

1

,A
2

, . . . ,An.

Proof.

Let [x ] 6= [y ] be two distinct equivalence classes of R . From the previous
lemma [x ] \ [y ] = ;. Also, for each x 2 A, x 2 [x ].

Let RA = {(x , y) | 9i : x , y 2 Ai}.
RA is reflexive. If (x , y) 2 RA then even (y , x) 2 RA. Finally, if (x , y) 2 RA

then 9i : x , y 2 Ai . Let that index be called i

0

. Now if (y , z) 2 RA then
both y , z must be in the same part of the partition. But we know that
y 2 Ai

0

. Therefore, z 2 Ai
0

. Hence, x , z 2 Ai
0

and hence (x , z) 2 RA. This
proves that RA is also transitive.
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