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Course Outline

Mathematical reasoning and mathematical objects
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Elements of graph theory
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Course Outline

Mathematical reasoning and mathematical objects

I What is a proof? Types of proof methods
I Induction
I Sets, relations, functions, partial orders, graphs

Text: Discrete Mathematics and its applictions, by Kenneth Rosen

Chapter 2 : 2.1, 2.2, 2.3, Chapter 8 : 8.1, 8.5, 8.6
Class notes: uploaded on Moodle
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Course Outline

Mathematical reasoning and mathematical objects

Combinatorics
I Double counting
I Approximating sums and products
I Pigeonhole principle
I Recurrence relations and generating functions
I Inclusion-exclusion principle
I Elements of discrete probability
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Text: Discrete Mathematics and its applictions, by Kenneth Rosen

Chapter 5, Chapter 6 : 6.1, 6.4, Chapter 7
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Let us count

Warm up exercises:

How many reflexive relations are there on a set, say A, of size n?

Prove that
nX

k=0

✓
n

k

◆
= 2n

I Of course, one could give an inductive proof. However, here is another
proof.
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nX
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✓
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k

◆
= 2n

I Of course, one could give an inductive proof. However, here is another
proof.

I On LHS, fix a k . Then
�
n

k

�
is basically the number of ways of choosing

k people from n people. By summing over k , we are essentially
counting the total number of ways of forming a committee from a set
of n people.
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proof.

I On LHS, fix a k . Then
�
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k

�
is basically the number of ways of choosing

k people from n people. By summing over k , we are essentially
counting the total number of ways of forming a committee from a set
of n people.

I However, that is the same as counting all possible subsets of a set of
size n, which we know is 2n.

I As LHS and RHS are counting the same quantity they must be equal.
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Let us count

Slightly hard exercises: (Gauss Pertubations)

Prove that
P

n

i=1

i = n(n+1)

2

I Of course, one could give an inductive proof. But here is a cool way to
prove the same:

Prove that 1 + x + . . .+ x

n = 1�x

n+1

1�x

I Of course, one could give an inductive proof. But here is a cool way to
prove the same:
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Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is

n!
I We will see that the fraction of n! which is addressed wrongly is almost

1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:

I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.

I Each round: player 1 draws a line using a red pen and then player 2
draws a line using a blue pen.

I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.

I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.

I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?

I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Let us count

Slightly harder exercises:

Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

I The total number of ways of putting n distinct letters into n distinct
envelopes is n!

I We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

A two-player game. I need any two of you to come to the board:
I I will draw 6 points on the board.
I Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
I Who loses?: The first person to draw a triangle of his/her colour.
I Can this game ever end in a draw?
I Ramsey proved that a draw is impossible!

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 5 / 11



Why and how to count?

On various occasions di↵erent quantities may become interesting. Some
may be easy to count directly. Some may require more thought.

[CW] Count the number of arrangements of wrongly addresses letters for
n = 4.

In this module, we will build some technqiues that will help in counting
some quantities which are hard to count.
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Today

We will spend this lecture to learn counting one object in two di↵erent
ways.

Often to count a certain object, we will count some totally di↵erent object!
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An example of double counting

Lemma

k

�
n

k

�
= n

�
n�1

k�1

�

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

Either you can choose k members of a team first and then pick one
among them as a leader to get k

�
n

k

�

Or you can first choose a leader and then choose the rest of the
k � 1 team members from the remaining n � 1 players to get n

�
n�1

k�1

�
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to get k
�
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Another example of double counting

Lemma

[CW]

�
n+1

k

�
=

�
n

k�1

�
+

�
n

k

�

Proof.

Quantity to double count: Given a collection of n apples and 1 mango,
the number of ways of choosing a basket
of k fruit.

Note that, LHS equals this quantity.
For the RHS, note that

Either choose the mango in the basket and select k � 1 apples from n

apples in
�

n

k�1

�
ways.

Or leave out the mango from the basket and select k apples from n

apples in
�
n

k

�
ways.
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd

number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v , u) if u and v shake hands.
Let m

i

be the number of times person i shakes hands. We will count the
number of directed edges in the graph.
) 2X =

P
n

i=1

m

i

.
This tells us that the sum of n numbers is even. Therefore, only even
many of them can have odd value!

Take back message: Counting the same quantity the number of directed
edges in two di↵erent ways can be helpful!
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Counting the same quantity in di↵erent ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back

to clean the classes. At the end of the course, they realise that each pair of

students stayed back exactly once. For how many days did the course run?

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are
there?
Let P be the total number of distinct pairs of students.
) P =

�
m

2

�
.

On the other hand, each day 3 pairs of students stay back together. As
there are n days, P = 3n.
) n = m(m�1)

6

.
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Lecture 11: Counting the same object in two ways
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Last time
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Recap

Counting the same object in two di↵erent ways
I Basic counting
I

k

�n
k

�
= n

�n�1

k�1

�

I
�n+1

k

�
=

�n
k

�
+
� n
k�1

�

I The number of people who shake hands odd number of times is even.

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 August 2013 3 / 11



Today

Counting the number of labelled trees – Cayley’s number.

How large/small is n!? – approximating n! [Stirling’s approximation]
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Counting labeled trees – Cayley’s number

Recall

What is a graph?

What are directed and undirected graphs?

What is a cycle in a graph?

What is a tree?

What is a labeled tree?
Example: Labeled trees on 3 vertices

1

2

3 2

1

3 1

3

2
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How many labeled trees on n vertices?

Theorem (Cayley)

There are n

n�2

labeled tree on n vertices.

Count one quantity in order to count the other
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Last time
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Recap

Cayley’s number: the number of labelled trees equals nn�2.
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Today

Recurrences and generating functions.
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Solving recurrences

Let F (n) denote the nth Fibonacci number. Compute F (n).

We know that
8n � 2 : F (n) = F (n � 1) + F (n � 2), and F (0) = 1,F (1) = 1.
�(t) =

P1
n=0

F (n)tn

t�(t) =
P1

n=0

F (n)tn+1 =
P1

n�1

F (n � 1)tn

t

2�(t) =
P1

n=0

F (n)tn+2 =
P1

n�2

F (n � 2)tn

(t + t

2)�(t) =
P1

n=0

F (n)tn � 1
(t + t

2)�(t) = �(t)� 1

�(t) = 1

1�t�t2 = 1

(1�↵t)(1��t) = a
(1�↵t) +

b
(1��t)

Solving we get ↵ = 1+

p
5

2

, � = 1�
p
5

2

, a =
p
5+1

2

p
5

, b =
p
5�1

2

p
5

�(t) = a(1 + ↵t + ↵2

t

2 + . . .) + b(1 + �t + �2

t

2 + . . .)

Equating coe�cients of tn we get F (n) = a↵n + b�n

F (n) =
⇣p

5+1

2

p
5

⌘⇣
1+

p
5

2

⌘n
+

⇣p
5�1

2

p
5

⌘⇣
1�

p
5

2

⌘n
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?

Example:
n = 3 : ((a+ b) + c), (a+ (b + c))
n = 4 : (((a+ b) + c) + d), ((a+ b) + (c + d)), ((a+ (b + c)) + d), . . .
In general, let C (n) be the number of ways of doing this.

Note that (l , r) is a bracketed expression where l is a bracketed
expression with i terms and r with n � i terms for some i such that
1  i  n � 1. Therefore, the recurrence for C (n):

C (n) =
n�1X

i=1

C (i)C (n � i) for n > 1

How to solve this recurrence? Using generating functions, of course!
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n = 4 : (((a+ b) + c) + d), ((a+ b) + (c + d)), ((a+ (b + c)) + d), . . .
In general, let C (n) be the number of ways of doing this.

Note that (l , r) is a bracketed expression where l is a bracketed
expression with i terms and r with n � i terms for some i such that
1  i  n � 1. Therefore, the recurrence for C (n):

C (n) =
n�1X

i=1

C (i)C (n � i) for n > 1

How to solve this recurrence? Using generating functions, of course!
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Catalan Number

Theorem (n-th Catalan Number)

If the recurrence for C(n) is given as follows:

C (n) =
n�1X

i=1

C (i)C (n � i) for n > 1

then

C (n) =
1

n

✓
2n � 2

n � 1

◆
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Recap

Introduction to recurrences and generating functions

Compute the n-th Catalan number using generating functions

Theorem (n-th Catalan Number)

If the recurrence for C(n) is given as follows:

C (n) =
n�1X

i=1

C (i)C (n � i) for n > 1

then

C (n) =
1

n
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Today

Coming up with recurrence relations.

Computing the number of derrangements

Exponential generating functions
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Find recurrence relations

[CW] What is the number of di↵erent ways a convex polygon with
n + 2 sides can be cut into triangles by connecting vertices with
straight lines?

[CW] What is the number of monotonic paths along the edges of a
grid with n ⇥ n square cells, which do not pass above the diagonal?
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Derrangements

What is the recurrence relation for the number of derrangements?

Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

Either letter 1 goes to ith envelope and ith letter comes to the first
envelope. And the other n � 2 envelopes form a derrangement among
themselves.

Or letter 1 goes ith envelope and other n � 1 envelopes form a
derrangement among themselves.

Note, there are n � 1 ways of choosing i

) D(n) = (n � 1)(D(n � 2) + D(n � 1))8n > 2
D(0) = 1,D(1) = 0 by convention.
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Today

Computing the number of derrangements

Exponential generating functions

Estimating n!
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n!

 
nX

i=0

(�1)i

i !

!

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n = 0, 1.

For n = 0, RHS = 1 and n = 1 RHS =0.
(n � 1)(f (n � 1) + f (n � 2))

= (n � 1)
h
(n � 1)!

⇣Pn�1

i=0

(�1)

i

i!

⌘
+ (n � 2)!

⇣Pn�2

i=0

(�1)

i

i!

⌘i

after come calculations
= f (n)
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Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n = 0, 1. For n = 0, RHS = 1 and n = 1 RHS =0.

(n � 1)(f (n � 1) + f (n � 2))

= (n � 1)
h
(n � 1)!

⇣Pn�1

i=0

(�1)

i

i!

⌘
+ (n � 2)!

⇣Pn�2

i=0

(�1)

i

i!

⌘i

after come calculations
= f (n)
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Computing D(n) using generating functions

Exponential generating functions(EGF) – For arrangements, need a n!
normaliser for the recurrence to work out.

Let D(n) be the n coe�cient of the exponential generating functions.

�(t) =
1X

n=0

D(n)
t

n

n!

Any permutation of [n] can be obtained by

first picking a subset S ✓ [n].

taking a derrangement of S

fixing all other elements

Every permutation is generated in this manner.
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Computing D(n) using generating functions

EGF for all permutations: P(t) =
P1

n=0

n! t
n

n!

= 1

1�t

EGF for all identity permutations: I (t) =
P1

n=0

tn

n! = e

t

P(t) = �(t) · I (t) ) �(t) = P(t)/I (t) = e�t

1�t

�(t) =

 1X

n=0

(�1)n
t

n

n!

! 1X

n=0

t

n

!

Now, D(n) = the coe�cient of (tn/n!) is:

=
⇥
(�1)n + (�1)n�1 · n + (�1)n�2 · n · n � 1 + . . .+

(�1) · n · n � 1 · . . . · 2 + n!]

=

 
n!

nX

i=1

(�1)i

i !

!
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How large is D(n) as compared to n!

Theorem

|D(n)� n!
e | 

1

2

8n � 1

Proof.

We consider the Taylor series expansion of 1/e =
P1

i=0

(�1)i/i !

����D(n)� n!

e

���� = n!

�����

 
nX

i=0

(�1)i

i !
�

1X

i=0

(�1)i

i !

!�����
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Recap

Coming up with recurrences

Computing the number of derrangements

Exponential generating functions
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Today

Estimating n!
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Estimating n!

How large/small is n!? – approximating n! [Stirling’s approximation]

Counting the number of labelled trees – Cayley’s number.
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Estimating n!

Easy to see that n!  n

n

However, is this tight? Of course not!
Can we quantify how much more is nn as compared to n!?
Can we bound n! by a quantity, say Q, so that for some small enough
↵, ↵Q  n!  Q?

Theorem (Stirling’s approximation)

e(n/e)n  n!  ne(n/e)n, i.e. Q = e(n/e)n, and ↵ = 1/n
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Estimating n!

Theorem (Stirling’s approximation)

e(n/e)n  n!  ne(n/e)n

Proof.

Let S = log(n!) =
Pn

i=1

log i . We will bound S using the natural log.
) S  n log n � n + 1 + log n
raising both sides to the power of e, we get

n!  e

(n+1) log n�(n�1)

= n

n+1/en�1

= ne(n/e)n
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n! � e

n log n�(n�1)

= e(n/e)n
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Last time
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Recap

Last few lectures (module 2):

Double counting

Coming up with recurrences and solving recurrences
(generating functions)

Exponential generating functions

Estimating n!
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Today

The principle of inclusion and exclusion (PIE).

Computing the number of surjections using PIE.

Proof of PIE.
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The principle of inclusion and exclusion (PIE)

Theorem (Principle of inclusion exclusion)

Let A1,A2, . . . ,An be the finite sets from a universe U.

| [n
i=1 Ai | =

X

;6=I✓[n]

(�1)|I |�1| \i2I Ai |

| [n
i=1 Ai | =

nX

k=1

(�1)k�1
X

I2([n]k )

| \i2I Ai |
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Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] ! [k] | Range(f ) ✓ [k] \ {i}}

#surjections = k

n � | [i2[k] Ai |

| [i2[k] Ai | =
X

;6=I✓[k]

(�1)|I |�1| \i2I Ai |

| [i2[k] Ai | =
X

;6=I✓[k]

(�1)|I |�1(k � |I |)n

#surjections = k

n �
P

;6=I✓[k](�1)|I |�1(k � |I |)n

=
P

I✓[k](�1)|I |(k � |I |)n

=
Pk

i=0(�1)i
�k
i

�
(k � i)n
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Proof of PIE

Theorem (Principle of inclusion exclusion)

Let A1,A2, . . . ,An be the finite sets from a universe U.

| [n
i=1 Ai | =

X

;6=I✓[n]

(�1)|I |�1| \i2I Ai |

| [n
i=1 Ai | =

nX

k=1

(�1)k�1
X

I2([n]k )

| \i2I Ai |

We give the proof by induction on n.
For n = 2, the theorem says |A [ B | = |A|+ |B |� |A \ B |.
Let us assume that the theorem holds for n � 1.
Let A = [n�1

i=1 Ai and let B = An.
cotn.
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Proof of PIE

| [n
i=1 Ai | = |A [ B|

| [n
i=1 Ai | = (

P
I2

⇣
[n�1]

1

⌘ | \i2I Ai |+ |An|)

+
Pn�1

k=2


(�1)k�1

P
I2

⇣
[n�1]

k

⌘ | \i2I Ai |� (�1)k�2
P

I2
⇣
[n�1]
k�1

⌘ | \i2I[{n} Ai |
�

| [n
i=1 Ai | = (

P
I2

⇣
[n]
1

⌘ | \i2I Ai |

+
Pn�1]

k=2


(�1)k�1

P
I2

⇣
[n�1
k

⌘ | \i2I Ai |+ (�1)k�1
P

I2
⇣
[n�1]
k�1

⌘ | \i2I[{n} Ai |
�

| [n
i=1 Ai | = (

P
I2

⇣
[n]
1

⌘ | \i2I Ai |

+
Pn

k=2


(�1)k�1

P
I2

⇣
[n]
k

⌘ | \i2I Ai |
�

| [n
i=1 Ai | =

Pn
k=1


(�1)k�1

P
I2

⇣
[n]
k

⌘ | \i2I Ai |
�
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Recap

The principle of inclusion and exclusion (PIE).

Computing the number of surjections using PIE.

Proof of PIE.
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Today

Derangements

Counting the number of partitions of a set

Stirling’s numbers.
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Number of derangements

Recall that the number of derangements of n letters, denoted as D(n) is
given by:

n!
nX

i=0

(�1)i

i !

Let Ai denote the set of permutations that map i to i .
Observe that 8I ✓ [n] | \i2I Ai | = (n � |I |))!
D(n) = n!� | [i2[n] Ai |

= n!�
P

;6=I✓[n](�1)|I |�1(n � |I |)!

=
P

I✓[n](�1)|I |(n � |I |)!

=
Pn

i=0

(�1)i
�n
i

�
(n � i)!

= n!
Pn

i=0

(�1)

i

i!
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

8n � 1 B(n) =
nX

k=1

✓
n � 1

k � 1

◆
B(n � k)

In any partition, a unique part contains the element n.
Let X = X

0 [ {n}. Now |X 0| = k � 1 if |X | = k .
Also X

0 ✓ {1, 2, . . . , n � 1}.
The rest of the n � k elements can be partitioned into B(n � k) ways.
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) =
P

k S(n, k)

Lemma

#surjections from [n] to [k] is equal to k!S(n, k)

Let f : [n] ! [k] be a surjection.

It defines a partition of n elements into k parts:
{f �1(1), f �1(2), . . . , f �1(k)}

For each partition, any possible ordering of parts gives rise to a surjection.
And the number of ways of ordering the parts is k!.
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Last time
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Recap

Last few classes (Module 2)

Counting in two ways

Recurrences and generating functions

The principle of inclusion and exclusion (PIE).

Nutan (IITB) CS 207 Discrete Mathematics – 2013-2014 September 2013 3 / 9



Today

Pigeon hole principle (PHP)

Applications of PHP
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Pigeon hole principle

Theorem (PHP)

Let n, k 2 mathbbN and let there be n objects and k bags then there
exists a bag with at least b nk c objects.

Suppose not. Then each bag has strictly less than b nk c objects. Therefore,
totally there can be strictly less than n objects, which is a contradiction.
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Application 1

Game: Give me 10 numbers such that no subsequence of length 4 which is
increasing or decreasing.

Lemma

Suppose there are n2 + 1 numbers (all distinct) then there exists either an
increasing or decreasing subsequence of length n + 1.

Let a
1

, a
2

, . . . , an2+1

be any sequence with distinct numbers.
Let for each j 2 [n2 + 1],
Ij := length of the longest increasing subsequence starting at aj
Dj := length of the longest decreasing subsequence starting at aj

Note that for each j 2 [n2 + 1], Ij  n and Dj  n.
Therefore, by PHP, there exists k 6= l such that (Ik ,Dk) = (Il ,Dl)).
Suppose k < l .
Case 1 (ak > al): then Dk = Dl + 1, i.e. contradiction
Case 1 (ak < al): then Ik = Il + 1, i.e. contradiction
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A version of PHP

Theorem

Suppose there are n � 1 + r(l � 1) ojects which are colored with r
di↵erent colors. Then there exist l objects all with the same color.

Proof [HW ]
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Recall the coloring game

Lemma

Any 2-coloring of edges of a graph on 6 vertices has a monochromatic
traingle.

Proof [HW ]
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Another version of PHP

Theorem

Suppose n � k
1

+ k
2

+ . . .+ kr � r + 1, and let n objects be put into r
bags then for some i 2 [r ] such that the ith bag has ki objects in it.

Proof [HW ]
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Coloring the edges of a graph on 10 points

Lemma

Any 2-coloring of a graph on 10 vertices has either a monochromatic
triangle or a monochromatic complete graph on 4 vertices.

Proof [HW ]
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