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Course Outline

@ Combinatorics

@ Mathematical reasoning and mathematical objects
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Course Outline

» What is a proof? Types of proof methods
» Induction

@ Mathematical reasoning and mathematical objects
» Sets, relations, functions, partial orders, graphs
@ Combinatorics

e Elements of graph theory

@ Elements of abstract algebra
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Course Outline

» Induction

@ Mathematical reasoning and mathematical objects
» What is a proof? Types of proof methods

» Sets, relations, functions, partial orders, graphs
Text:

Discrete Mathematics and its applictions, by Kenneth Rosen
Chapter 2:2.1,2.2,2.3, Chapter 8:8.1,8.5,8.6
Class notes:  uploaded on Moodle

o Combinatorics

@ Elements of graph theory

e Elements of abstract algebra
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Course Outline

@ Mathematical reasoning and mathematical objects
e Combinatorics

Double counting

Approximating sums and products
Pigeonhole principle

Recurrence relations and generating functions
Inclusion-exclusion principle

Elements of discrete probability

vV VY VY VY VY

e Elements of graph theory

@ Elements of abstract algebra
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Course Outline

@ Mathematical reasoning and mathematical objects
e Combinatorics

Double counting

Approximating sums and products
Pigeonhole principle

Recurrence relations and generating functions
Inclusion-exclusion principle

Elements of discrete probability

vV VY VY VY VY

Text: Discrete Mathematics and its applictions, by Kenneth Rosen
Chapter 5, Chapter 6 : 6.1, 6.4, Chapter 7
Class notes:  uploaded on Moodle

@ Elements of graph theory

@ Elements of abstract algebra
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Let us count

Warm up exercises:
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

> There are n® ordered pairs of elements if the set is of size n.
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?
for each x € A.

> There are n® ordered pairs of elements if the set is of size n.

» We are required to put a pair of the form (x, x) in a reflexive relation
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Let us count
Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

> There are n® ordered pairs of elements if the set is of size n.

» We are required to put a pair of the form (x, x) in a reflexive relation
for each x € A.

» The rest of pairs, n> — n of them, may or may not be put.
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Let us count
Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

> There are n® ordered pairs of elements if the set is of size n.

» We are required to put a pair of the form (x, x) in a reflexive relation
for each x € A.

» The rest of pairs, n? = of them, may or may not be put.
» Therefore, there are 2™ " different reflexive relations.
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Let us count

Warm up exercises:

@ Prove that

n

n __nh
> (3) -2
k=0
proof.

@ How many reflexive relations are there on a set, say A, of size n?
» Of course, one could give an inductive proof. However, here is another
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

@ Prove that .,
n
—on
> (%)

k=0

» Of course, one could give an inductive proof. However, here is another
proof.

» On LHS, fix a k. Then (}) is basically the number of ways of choosing
k people from n people. By summing over k, we are essentially
counting the total number of ways of forming a committee from a set
of n people.
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

5(0)-»

k=0

@ Prove that

» Of course, one could give an inductive proof. However, here is another
proof.

» On LHS, fix a k. Then (}) is basically the number of ways of choosing
k people from n people. By summing over k, we are essentially
counting the total number of ways of forming a committee from a set
of n people.

» However, that is the same as counting all possible subsets of a set of

size n, which we know is 2".
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Let us count

Warm up exercises:

@ How many reflexive relations are there on a set, say A, of size n?

5(0)-»

k=0

@ Prove that

» Of course, one could give an inductive proof. However, here is another
proof.

» On LHS, fix a k. Then (}) is basically the number of ways of choosing
k people from n people. By summing over k, we are essentially
counting the total number of ways of forming a committee from a set
of n people.

» However, that is the same as counting all possible subsets of a set of
size n, which we know is 2".

» As LHS and RHS are counting the same quantity they must be equal.
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Let us count

n(n+1)

Slightly hard exercises: (Gauss Pertubations)
@ Prove that > 7 ;i = 15

prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
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Let us count

n(n+1)

Slightly hard exercises: (Gauss Pertubations)
@ Prove that > 7 ;i = 15

prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
»Let S=37 10
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Let us count

Slightly hard exercises: (Gauss Pertubations)

e Prove that Y7 ;i =

n(n+1)
2

prove the same:

>

Nutan (1ITB)

» Of course, one could give an inductive proof. But here is a cool way to
»Let S=37 10

S =1+ 24 ...+ n
n+ (n=1)+...+ 1
25 =(n+1)+ (n+1)+...+ (n+1)
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Let us count

Slightly hard exercises: (Gauss Pertubations)

e Prove that Y7 ;i =

n(n+1)
2

prove the same:

>

Nutan (1ITB)

» Of course, one could give an inductive proof. But here is a cool way to
»Let S=37 10

S =1+ 24 ...+ n
n+ (n=1)+...+ 1
25 =(n+1)+ (n+1)+...+ (n+1)
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Let us count

Slightly hard exercises: (Gauss Pertubations)
e Prove that Y7 ;i = w

prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
» Therefore, S = ﬂ%lz
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Let us count

Slightly hard exercises: (Gauss Pertubations)
n _ n(n+1)
@ Prove that ) 7, i = =5~
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
@ Prove that 1 + x4+ ...+ x”

o 1_Xn+1
- 1-x
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
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Let us count

Slightly hard exercises: (Gauss Pertubations)
n _ n(n+1)
@ Prove that ) 7, i = =5~
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
@ Prove that 1 + x4+ ...+ x”

o 1_Xn+1
- 1-x
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
» Let S=37 X
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Let us count

Slightly hard exercises: (Gauss Pertubations)
n _ n(n+1)
@ Prove that ) 7, i = =5~
» Of course, one could give an inductive proof. But here is a cool way to
prove the same:
@ Provethat 1+ x4+ ...+ x" = 1If';:1
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
» Let S=37 X
>

S=1+ x+...+ (1)
xS =x+ X+ X"t 2)
Nutan (1ITB)
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Let us count

Slightly hard exercises: (Gauss Pertubations)
e Prove that Y7 ;i = w

» Of course, one could give an inductive proof. But here is a cool way to
prove the same:
@ Provethat 1+ x+ ...+ x" = 1_1+':r1

» Of course, one could give an inductive proof. But here is a cool way to
prove the same:
» Let S=37 X

>

S=1+ x+...+ x" (1)
xS =x+ X+ X"t 2)
(1)-(2) gives us: (1 —x)S=1—x"*1
» Therefore, S = 1If";.
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Let us count

Slightly hard exercises: (Gauss Pertubations)
n _ n(n+1)
@ Prove that ) 7, i = =5~
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
@ Prove that 1 + x4+ ...+ x”

o 1_Xn+1
- 1-x
prove the same:

» Of course, one could give an inductive proof. But here is a cool way to
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Let us count

Slightly harder exercises:

@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?
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Let us count

Slightly harder exercises:

@ Given n envelopes with addresses and n letters, how many are there
envelopes is

to arrange them so that no letter goes to its correct address?

» The total number of ways of putting n distinct letters into n distinct
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Let us count

Slightly harder exercises:

envelopes is n!

@ Given n envelopes with addresses and n letters, how many are there
» The total number of ways of putting n distinct letters into n distinct

to arrange them so that no letter goes to its correct address?
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Let us count

Slightly harder exercises:

@ Given n envelopes with addresses and n letters, how many are there
envelopes is n!

to arrange them so that no letter goes to its correct address?

» The total number of ways of putting n distinct letters into n distinct

» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.
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Let us count

Slightly harder exercises:

@ Given n envelopes with addresses and n letters, how many are there
envelopes is n!

to arrange them so that no letter goes to its correct address?

» The total number of ways of putting n distinct letters into n distinct
» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

@ A two-player game. | need any two of you to come to the board:
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Let us count

Slightly harder exercises:
@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

» The total number of ways of putting n distinct letters into n distinct
envelopes is n!

» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

o A two-player game. | need any two of you to come to the board:
> | will draw 6 points on the board.
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Let us count

Slightly harder exercises:
@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?
» The total number of ways of putting n distinct letters into n distinct
envelopes is n!
» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.
o A two-player game. | need any two of you to come to the board:
> | will draw 6 points on the board.
» Each round: player 1 draws a line using a red pen and then player 2
draws a line using a blue pen.
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Let us count

Slightly harder exercises:
@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?
» The total number of ways of putting n distinct letters into n distinct

envelopes is n!
» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

o A two-player game. | need any two of you to come to the board:

> | will draw 6 points on the board.

» Each round: player 1 draws a line using a red pen and then player 2
draws a line using a blue pen.

» Who loses?: The first person to draw a triangle of his/her colour.
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Let us count

Slightly harder exercises:
@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?
» The total number of ways of putting n distinct letters into n distinct

envelopes is n!
» We will see that the fraction of n! which is addressed wrongly is almost

1/e, where e is the base of the natural logarithm.
o A two-player game. | need any two of you to come to the board:
> | will draw 6 points on the board.
» Each round: player 1 draws a line using a red pen and then player 2

draws a line using a blue pen.
» Who loses?: The first person to draw a triangle of his/her colour.
» Can this game ever end in a draw?
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Let us count

Slightly harder exercises:

@ Given n envelopes with addresses and n letters, how many are there
to arrange them so that no letter goes to its correct address?

» The total number of ways of putting n distinct letters into n distinct
envelopes is n!

» We will see that the fraction of n! which is addressed wrongly is almost
1/e, where e is the base of the natural logarithm.

o A two-player game. | need any two of you to come to the board:

> | will draw 6 points on the board.

» Each round: player 1 draws a line using a red pen and then player 2
draws a line using a blue pen.

» Who loses?: The first person to draw a triangle of his/her colour.

» Can this game ever end in a draw?

» Ramsey proved that a draw is impossible!
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Why and how to count?

On various occasions different quantities may become interesting. Some
may be easy to count directly. Some may require more thought.

[CW] Count the number of arrangements of wrongly addresses letters for
n=4.
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Why and how to count?

On various occasions different quantities may become interesting. Some
may be easy to count directly. Some may require more thought.

[CW] Count the number of arrangements of wrongly addresses letters for
n=4.

In this module, we will build some techngiues that will help in counting
some quantities which are hard to count.
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Today
ways.

We will spend this lecture to learn counting one object in two different
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Today

We will spend this lecture to learn counting one object in two different
ways.

Often to count a certain object, we will count some totally different object!
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Lemma

k(R) = (i)

An example of double counting
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Lemma

k(k) = n(

1)
Proof.
Recall (Z) = Wlk)'

An example of double counting
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Lemma

k(R) = (i)

An example of double counting

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?
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Lemma

k(R) = (i)

An example of double counting

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first and then pick one
among them as a leader
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Lemma

k(R) = (i)

An example of double counting

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (k) ways and
then pick one among them as a leader
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Lemma

k(R) = (i)

An example of double counting

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (k) ways and
then pick one among them as a leader in k ways

y,
o ) = = DA
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An example of double counting

Lemma
k(p) =n(37)

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (}) ways and
then pick one among them as a leader in k ways to get k(Z)

@ Or you can first choose a leader and then choose the rest of the
k — 1 team members from the remaining n — 1 players
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An example of double counting

Lemma
k(p) =n(37)

Proof.

Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (}) ways and
then pick one among them as a leader in k ways to get k(Z)

@ Or you can first choose a leader in n ways and then choose the rest of
the k — 1 team members from the remaining n — 1 players
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An example of double counting

Lemma
k(p) =n(37)

Proof.
Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (}) ways and
then pick one among them as a leader in k ways to get k(Z)

@ Or you can first choose a leader in n ways and then choose the rest of
the k — 1 team members from the remaining n — 1 players in (Zj)

ways

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014 August 2013 8 /11



An example of double counting

Lemma
k(p) =n(37)

Proof.
Given n players, how many ways are there to pick a team of size k and one
leader among them?

e Either you can choose k members of a team first in (}) ways and
then pick one among them as a leader in k ways to get k(Z)

@ Or you can first choose a leader in n ways and then choose the rest of
the k — 1 team members from the remaining n — 1 players in (Zj)

ways to get n(}_])

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014 August 2013 8 /11



Another example of double counting
Lemma

[cw] (" = (7)) + ()

k
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Another example of double counting

Lemma
[EW] ("E1) = (") + ()

Proof.

Quantity to double count: Given a collection of n apples and 1 mango,
the number of ways of choosing a basket
of k fruit.

Note that, LHS equals this quantity.

v
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Another example of double counting

Lemma
(W] ("E) = (2 + ()

Proof.

Quantity to double count: Given a collection of n apples and 1 mango,
the number of ways of choosing a basket
of k fruit.
Note that, LHS equals this quantity.
For the RHS, note that
e Either choose the mango in the basket and select kK — 1 apples from n
apples in (,";) ways.
@ Or leave out the mango from the basket and select k apples from n
apples in (})ways.

O]

v
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The number of handshakes
Lemma (The handshake lemma)

number of times is even.

At a party with n people, the number of people who shake hands an odd
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even. )

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even. )

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

[CW] Check that what we want to prove is the same as:
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even. )

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

[CW] Check that what we want to prove is the same as:

the number of vertices with odd degree is even.
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even. )

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

[CW] Check that what we want to prove is the same as:

the number of vertices with odd degree is even.

Degree(v) := |[{u | (u,v) € E}|
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

@ On the one hand this number is Y7 | m;.
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

@ On the one hand this number is Y7 | m;.

@ On the other hand each handshake gives rise to two edges. So if X is
the number of handshakes, then the number of edges is 2X.
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

S2X =30 mi
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

S 2X =30 mi

This tells us that the sum of n numbers is even. Therefore, only even
many of them can have odd value!
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

S 2X =30 mi

This tells us that the sum of n numbers is even. Therefore, only even
many of them can have odd value!
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The number of handshakes

Lemma (The handshake lemma)

At a party with n people, the number of people who shake hands an odd
number of times is even.

Proof.

Let us construct a graph with n people as vertices. We draw directed
edges (u, v) and (v, u) if u and v shake hands.

Let m; be the number of times person i shakes hands. We will count the
number of directed edges in the graph.

2X = 27:1 m;.

This tells us that the sum of n numbers is even. Therefore, only even
many of them can have odd value!

Take back message: Counting the same quantity
in two different ways can be helpful!
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

[m] = =
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.
[CW] In a class of m students, how many distinct pairs of students are

there?
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.

[CW] In a class of m students, how many distinct pairs of students are
there?

Let P be the total number of distinct pairs of students.
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.

[CW] In a class of m students, how many distinct pairs of students are
there?

Let P be the total number of distinct pairs of students.

.= ().
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.

[CW] In a class of m students, how many distinct pairs of students are
there?

Let P be the total number of distinct pairs of students.

L P=(3).
On the other hand, each day 3 pairs of students stay back together. As
there are n days, P = 3n.
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Counting the same quantity in different ways

Lemma

Cosnider a class of m students. Every day after class 3 students stay back
to clean the classes. At the end of the course, they realise that each pair of
students stayed back exactly once. For how many days did the course run?

v,

Proof.

Say the course ran for n days.

[CW] In a class of m students, how many distinct pairs of students are
there?

Let P be the total number of distinct pairs of students.

L P=(3).
On the other hand, each day 3 pairs of students stay back together. As

there are n days, P = 3n.
_ m(m—1) ]
= "

V.
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Last time

Nutan (1ITB)

[m]

CS 207 Discrete Mathematics — 2013-2014

=

DA



Recap

i)
> () =)+ (")

e Counting the same object in two different ways
» Basic counting
> k(3) = n(
» The number of people who shake hands odd number of times is even.

Nutan (1ITB)

[m]

&
CS 207 Discrete Mathematics — 2013-2014



Today

@ Counting the number of labelled trees — Cayley's number.
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Today

@ Counting the number of labelled trees — Cayley's number.

e How large/small is n!? — approximating n! [Stirling's approximation]

Nutan (1ITB)
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Counting labeled trees — Cayley's number
Recall

o What is a graph?

@ What are directed and undirected graphs?

@ What is a cycle in a graph?

@ What is a tree?

[m]
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Counting labeled trees — Cayley's number
Recall

o What is a graph?

@ What are directed and undirected graphs?

@ What is a cycle in a graph?

@ What is a tree?
What is a labeled tree?

[m]
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Counting labeled trees — Cayley's number
Recall

o What is a graph?

@ What are directed and undirected graphs?
@ What is a cycle in a graph?
o What is a tree?

What is a labeled tree?

Example: Labeled trees on 3 vertices

2 1 3
AN 7N AN
1 32 3.1 2

Nutan (1ITB)
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How many labeled trees on n vertices?
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How many labeled trees on n vertices?

Theorem (Cayley)

There are "2 labeled tree on n vertices.
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How many labeled trees on n vertices?
Theorem (Cayley)

There are "2 labeled tree on n vertices.

Count one quantity in order to count the other
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Last time
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Recap

o Cayley's number: the number of labelled trees equals n

n—2
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Today

@ Recurrences and generating functions.
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Today

@ Recurrences and generating functions

[m]
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

(1) =

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.
2 neo F(n)t"

Nutan (1ITB)
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

¢(t)

to(t)

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

= Do F(nt"
= Yo F(mtmt!

22021 F(n—1)t"

Nutan (1ITB)
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.
(1) = o F(n)t”

to(t) Do F(mt™h =

t2¢(t) = Yo F(ment?

> F(n—1)t"
> s F(n—2)t"

Nutan (1ITB)
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
@ We know that

VYn>2:F(n)=

o(t)

to(t)
t26(t)
(t+ t2)o(
(t + t2)p(t
(t + t2)o(t

Nutan (1ITB)

t
)
)

)

F(n—1)4 F(n—2),and F(0) =1,F(1) =1.

> om0 F(n)t"

Sonto F(n)tmt!

St F(n)tn+2
>ono(F(n—1) + F(n—2))t"
>l F(m)t”

#(t)
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Do F(nt"

to(t) = Yoo F(mtt! = >3 F(n—1)t"
t2(t) = 2o F(”)t"+2 = anz F(n—2)t"
(t+t2)p(t) = XoloF(nt" —

(t+t2)o(t) = o(t) -1

[m] = = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Do F(nt"

to(t) = Yoo F(mtt! = >3 F(n—1)t"
t2(t) = 2o F(”)t"+2 = anz F(n—2)t"
(t+t2)p(t) = XoloF(nt" —

(t+t2)o(t) = o(t) -1
° o(t) =

[m] = = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Do F(nt"

to(t) = Yoo F(mtt! = >3 F(n—1)t"
t2(t) 2o F(”)t"+2 = anz F(n—2)t"
(t+t2)p(t) = XoloF(nt" —

(t+2)p(t) = o(t)—1

° ¢(t) = 1_151_1:2 - (l—at)l(l—,Bt)

[m] = = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Do F(nt"

0 = SRRt = YR (-1
t26(t) = Yoo F(")’-‘"Jr2 = Yo F(n=2)t"
(t+t2)p(t) = XoloF(nt" —

(t+2)p(t) = o(t)—1

° ¥(t) = 17 = TanaF = an T (15

[m] = = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Do F(nt"
to(t) = YoloF(memtt = 3 F(n—1)t"
t2(t) = 2o F(”)t"+2 = s F(n—2)t"
(t+12)o(t) = YoloF(n)t" -
(t+2)p(t) = o(t)—1

° ¢(t) =14 = (l—at)l(l—ﬂt) = {an T @ bﬁt)

i _ 146 1f _ VBl oy VBl
@ Solving we get a = =572, 3 = N b= NG

[m] = = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Yoo F(n)t"
t6(t) _ SR Fmett = Y F(a e
t26(t) = Yoo F(")’-‘"Jr2 = Yo F(n=2)t"
(t+t2)p(t) = XoloF(nt" —
(t+2)p(t) = o(t)—1

° ¢(t) =14 = (l—at)l(l—ﬂt) = {an T @ bﬁt)

i _ 146 1f _ VBl oy VBl
@ Solving we get a = =572, 3 = N b= NG

° ¢>(t):a(1+at+a2t2+...)+b(1+ﬁt+52t2 )

[m] = =
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Solving recurrences

@ Let F(n) denote the nth Fibonacci number. Compute F(n).
e We know that

VYn>2:F(n)=F(n—-1)+F(n—2),and F(0)=1,F(1) =1.

o(t) = Yoo F(n)t"
t6(t) _ SR Fmett = Y F(a e
t26(t) = Yoo F(")’-‘"Jr2 = Yo F(n=2)t"
(t+t2)p(t) = XoloF(nt" —
(t+2)p(t) = o(t)—1

° ¢(t) =14 = (l—at)l(l—ﬂt) = {an T @ bﬁt)

oSoIvingwegeta:#,ﬁ 1= f,a—\zf}l b:‘f/_g1
o ¢(t)=a(l+at+a?t?+...)+ b1+ Bt+ 22 +...)

e Equating coefficients of t” we get F(n) = aa” + bp3"

[m] = =
Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014



Solving recurrences

e Let F(n) denote the nth Fibonacci number. Compute F(n).

@ We know that

Yn>2:F(n)=F(n—1)+ F(n—2), and F(0) = 1, F(1) = 1.
o(t) = Yo F(n)t"
to(t) = Yo F(memtt = 3R F(n—1)t"
t2¢(t) = Ynco F(m)t™? Yoo F(n—2)t”
(t+12)o(t) = Y2 F(nt"—1
(t+t2)e(t) = o(t)-1
° ¥(t) = 17 = TanaF = an T (15
@ Solving we get a = 1+72\/§ B =1z f, a= ‘{fl b= \23\/%1
o ¢(t)=a(l+at+a?t?>+...)+ b1+ Bt+ F%t2+...)
e Equating coefficients of t" we get F(n) = aa” + bj"
_ (B (165" | (V=1 (1=v5 )"
- (5) (4 (59) ()
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be

computed by adding two numbers at a time?
Example:

n=3:((a+b)+c) (a+(b+c))

o =
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?

Example:

n=3:((a+b)+c) (a+(b+c))

n=4:(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+4d),...

o =
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be

computed by adding two numbers at a time?

Example:

n=3:((a+b)+c) (a+(b+c))

n=4:(((a+b)+c)+d), ((a+b)+(c+d)), (a+(b+c))+d),...

In general, let C(n) be the number of ways of doing this.

e Note that (/,r) is a bracketed expression where / is a bracketed

expression with i terms and r with n — j terms for some J such that
1 <i < n—1. Therefore, the recurrence for C(n):
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?
Example:

n=3:((a+b)+c) (a+(b+0))
n=4:(((a+b)+c)+d) ((a+b)+(c+d)) (a+(b+c))+d),...
In general, let C(n) be the number of ways of doing this.

e Note that (/,r) is a bracketed expression where / is a bracketed
expression with i terms and r with n — j terms for some J such that
1 <i < n—1. Therefore, the recurrence for C(n):

n—1

C(n) =) _C(i)C(n—1) for n > 1

i=1
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?
Example:

n=3:((a+b)+c) (a+(b+0))

n=4:(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d),...
In general, let C(n) be the number of ways of doing this.

e Note that (/,r) is a bracketed expression where / is a bracketed
expression with i terms and r with n — j terms for some J such that
1 <i < n—1. Therefore, the recurrence for C(n):

n—1

C(n) =) _C(i)C(n—1) for n > 1

i=1

How to solve this recurrence?
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Counting number of bracketing

How many ways are there to bracket a sum of n terms so that it can be
computed by adding two numbers at a time?
Example:

n=3:((a+b)+c) (a+(b+0))

n=4:(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d),...
In general, let C(n) be the number of ways of doing this.

e Note that (/,r) is a bracketed expression where / is a bracketed
expression with i terms and r with n — j terms for some J such that
1 <i < n—1. Therefore, the recurrence for C(n):

n—1

C(n) =) _C(i)C(n—1) for n > 1

i=1

How to solve this recurrence? Using generating functions, of course!
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
#(t)? =

(2nz1 C(meM) (2252 C(n)t")
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
#(t)? =

(2_nz1 C(mt") (302, C(n)t")
Ynte 5 C()C(n = it”
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.

o Now consider ¢(t)?

o(t)? (> ner C(mMtM)(3202, C(n)t")
Sona >iy C(C(n— i)t
= 2o C(n)t"
Nutan (IITB)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
#(t)? =

(O mzy CMtM) (D021 C(m)t")
S0, S C()C(n — )"
> s C(n)t"
= o(t)—t
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
(t)?

(O mzy CMtM) (D021 C(m)t")
S0, S C()C(n — )"

> s C(n)t"
= o(t)—t

e Solving for ¢(t), we get ¢(t) = 1 (1 £ (1 — 4t)1/2).

Nutan (1ITB)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
(t)? (>onz C(m)t") (252, C(n)t")

> neo iy C()C(n—i)t”
2 C(n)t"

o(t)—t
e Solving for gb( ), we get o(t) =3 (1£(1—4t)1/?).

As §(0) = 0, ¢(t) = 5 (1 - (1 —41)'/?)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
(t)? (>onz C(m)t") (252, C(n)t")

Yone2 it C(1)C(n—i)t"
2 C(n)t"

o(t) —t
e Solving for gb( ), we get o(t) =3 (1£(1—4t)1/?).

As $(0) =0, ¢(t) = 3 (1 — (1 —4t)*/2) = 3+ (—3(1 - 41)'/2)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
#(t)?

(> ner C(mMtM)(3252, C(n)t")
Yona >iy C(C(n— i)t
= 2o C(n)t"

¢(t) —t

e Solving for ¢(t), we get ¢(t) = 1 (1 £ (1 — 4t)1/2).

Let a e RT. (14 x)* =32

n=0 (?,‘)X", where (f") — CV(a—l)(a—:

I)..,(Oc—n—I—l) J

As $(0) =0, ¢(t) = 5 (1 — (1 — 4t)"/?) = 3 + (—5(1 - 41)'/?)
Theorem (Extended Binomial Theorem)
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Catalan number

o Let ¢(t) = 02, C(n)t". C(0) =0,C(1) =1 by convention
o Now consider ¢(t)?
BEP = (0, CmE (T, C(m)e)
>y () Cn— e
= Yo C(nt"
= o(t)—t
e Solving for ¢(t), we get ¢(t) = 1 (1 £ (1 — 4t)1/2).
As ¢(0) =0, ¢(t) =3 (1 — (1 -

40'%) =} + (301 -
Theorem (Extended Binomial Theorem)
Let € RT. (14 x)

41)1/2)
= 3220 (9)x", where (%) = D@2 (a=nt1)
@ The coefficient of t" is

C(n) = —1(M2)(—4)" =

|

3GG-DG -2 G-t EF
Nutan (1ITB)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
o) = (32, C(Mt") (3252, C(n)t")
= Yo Xi C(NC(n—it”
= X2 C(nt”
= o(t)—t
@ Solving for gb(t) we get o(t) = % (1+(1- 4t)1/2)
As ¢(0) =0, 6(t) = 3 (1 (1 40)12) = 5+ (-3(1 - 40)'?)
e The coefF|C|ent ft” is
Cn) = =374 ==3GG-1DG-2)...G -+ 1) EF
° C(n >=—%-%-—%-—%-—%-.--—2;3<,,‘P"

o = E S z 9aq
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
o) = (32, C(Mt") (3252, C(n)t")
= Yo Xi C(NC(n—it”
= 2 C(mt”
= o(t)—t
Solving for gb(t) we get o(t) = % (1+(1- 4t)1/2)
As 9(0) =0, 6(t) = ( (1 4)'2) = 3 + (—3(1 - 41)'7?)

@ The coefF|C|ent of t

Cln) = -3(P) (-4 =-3(3G -G -2 .G - n+1) S
oC(n):_% L. _%._%._g Y CL
o C(n) =G EN 1.3.5.....(2n-3)
[m] [l = = = <
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
o Now consider ¢(t)?
o) = (32, C(Mt") (3252, C(n)t")
= Yo Xi C(NC(n—it”
= 2 C(mt”
= o(t)—t
Solving for gb(t) we get o(t) = % (1+(1- 4t)1/2)
As 9(0) =0, 6(t) = ( (1 4)'2) = 3 + (—3(1 - 41)'7?)

@ The coefF|C|ent of t

Cr) = ~5(2) (4" = 33~ DG ~2)... (s 1) 2
o C(n)=-3%-3.-1 _%._g___._22 (n‘})
o C(n)=GHCY 1.3.5.....(2n—3)
_ 2" ..... (2n—=3)-(2n—
° ( ) 2nl+)1 ) 12345;1:1((2:_13))! (2n—2)
[m] = = = = <
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
@ Now consider ¢(t)?
#(t)? = (o1 C(Mt") (32, C(m)t")
= T C()C(n—it"
= 22 C(m)t"
= ot)—t

®
wn
o
<.
>
0Q
3
=
°
—~
~
~
£
D
09
[0}
—+
SR
—~
~
~
I

@ The coefficient of t" is

C(m =34 = 333 - DG -2)...(G —n+ 1)
e C(n) f%.%.f%.f%,ig 2,,2,3(_,3)"
o C(n) =G EN 1.3.5.....(2n-3)
e C(n)= (;n1+)12" (z':)'n ‘ 1~2.3~4.52.r;:.1((2:__13))!.(2,,_2)
e C(n) :zﬂ%"fl%# 1.2‘3.4.2.1;;%2:__13))!.(2,,_2)
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Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
@ Now consider ¢(t)?
#(t)? = (o1 C(Mt") (32, C(m)t")
= T C()C(n—it"
= 22 C(m)t"
= ot)—t

®
wn
o
<.
>
o
3
=
<
—~
~
_\/
=
(0]
o
0]
—+
<
—~
~
N—r
Il
N[
=
H_
—~
—
\
~
N—r
—
~
N

@ The coefficient of t" is

C(m=—3(1)4"=-3GG-DG~2)...G —n+ 1) 5"
e C(n)=-1.1.-1..3.3 2n2*3(—n‘:)"
o C(n) =G EN 1.3.5.....(2n-3)
o Clry = PP 12505 g
o )= Rl Mg Gy

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014 August 2013 8/9



Catalan number

o Let ¢(t) = 72, C(n)t". C(0) =0, C(1) =1 by convention.
@ Now consider ¢(t)?
#(t)? = (o1 C(Mt") (32, C(m)t")
= T C()C(n—it"
= 22 C(m)t"
= ot)—t

®
wn
o
<.
>
o
3
=
<
—~
~
_\/
=
(0]
o
0]
—+
<
—~
~
N—r
Il
N[
=
H_
—~
—
\
~
N—r
—
~
N

@ The coefficient of t" is

C(m = =3(7)(-4 =-3GG - DG -2 (G - n+ 1) 5
o Cm=—3-3 -3 —3 —F.. 2Pk
o C(n) =G EN 1.3.5.....(2n-3)
o C(n) = G U 1234503 Co2)
o C(m) = = - 2B 2 = Ty = (D)
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Catalan Number

Theorem (n-th Catalan Number)

If the recurrence for C(n) is given as follows

n—1
C(n) =Y _C(i)C(n—1i)
i=1

then

C(n) =% (an_—12>

forn>1
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Combinatorics
Lecture 13: Catalan numbers, derrangements
August 26, 2013
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Recap

@ Introduction to recurrences and generating functions

o Compute the n-th Catalan number using generating functions
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Recap

@ Introduction to recurrences and generating functions

o Compute the n-th Catalan number using generating functions
Theorem (n-th Catalan Number)

If the recurrence for C(n) is given as follows:

n—1
C(n) = Z C(\C(n—1i)

forn>1
then

() = % <2nn_—12)

Nutan (1ITB)
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Today

@ Coming up with recurrence relations.

o Computing the number of derrangements
@ Exponential generating functions

[m]
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Find recurrence relations

e [CW] What is the number of different ways a convex polygon with
straight lines?

n + 2 sides can be cut into triangles by connecting vertices with

Nutan (1ITB)
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Find recurrence relations

e [CW] What is the number of different ways a convex polygon with
n + 2 sides can be cut into triangles by connecting vertices with
straight lines?

e [CW] What is the number of monotonic paths along the edges of a

grid with n x n square cells, which do not pass above the diagonal?

Nutan (1ITB)

o F
CS 207 Discrete Mathematics — 2013-2014



Derrangements

What is the recurrence relation for the number of derrangements?

Nutan (1ITB)
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Derrangements

What is the recurrence relation for the number of derrangements?

Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

a F
Nutan (1ITB)
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Derrangements

What is the recurrence relation for the number of derrangements?
Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

o Either letter 1 goes to ith envelope and ith letter comes to the first

envelope. And the other n — 2 envelopes form a derrangement among
themselves.

[m] = =
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Derrangements

What is the recurrence relation for the number of derrangements?
Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

o Either letter 1 goes to ith envelope and ith letter comes to the first

envelope. And the other n — 2 envelopes form a derrangement among
themselves.

@ Or letter 1 goes ith envelope and other n — 1 envelopes form a
derrangement among themselves.
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Derrangements

What is the recurrence relation for the number of derrangements?
Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

o Either letter 1 goes to ith envelope and ith letter comes to the first

envelope. And the other n — 2 envelopes form a derrangement among
themselves.

@ Or letter 1 goes ith envelope and other n — 1 envelopes form a
derrangement among themselves.

Note, there are n — 1 ways of choosing i
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Derrangements

What is the recurrence relation for the number of derrangements?
Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.
o Either letter 1 goes to ith envelope and ith letter comes to the first
envelope. And the other n — 2 envelopes form a derrangement among
themselves.

@ Or letter 1 goes ith envelope and other n — 1 envelopes form a
derrangement among themselves.

Note, there are n — 1 ways of choosing i
. D(n)=(n—1)(D(n—2)+ D(n—1))Vn>2
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Derrangements

What is the recurrence relation for the number of derrangements?
Let D(n) denote the number of ways to arrange n letters into n envelopes
such that no letter goes to the same envelope.

o Either letter 1 goes to ith envelope and ith letter comes to the first
envelope. And the other n — 2 envelopes form a derrangement among
themselves.

@ Or letter 1 goes ith envelope and other n — 1 envelopes form a
derrangement among themselves.

Note, there are n — 1 ways of choosing i
. D(n)=(n—1)(D(n—2)+ D(n—1))Vn>2
D(0) = 1,D(1) = 0 by convention.
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Recap

e Coming up with recurrences

CS 207 Discrete Mathematics — 2013-2014

[m]

=



Nutan (1ITB)

Today

e Computing the number of derrangements
e Exponential generating functions
e Estimating n!
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n! <Z %)

i=0

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n =0, 1.
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n! <Z %)

i=0

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n=0,1. For n=0, RHS = 1 and n =1 RHS =0.
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n! <Z %)

i=0

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n=0,1. For n=0, RHS = 1 and n =1 RHS =0.
(n=1)(f(n=1)+f(n—-2)) '
= (n- 1) [(n— 1 (52 ) + (-2 (Ti2 S

i=0 !
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n! <Z %)

i=0

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n=0,1. For n=0, RHS = 1 and n =1 RHS =0.
(n=1)(f(n=1)+f(n—-2)) '
= (n- 1) [(n— 1 (52 ) + (-2 (Ti2 S

=0 il
after come calculations
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Closed form for D(n)

Theorem

Let D(n) denote the number of derrangements for n elements then

D(n) = n! <Z %)

i=0

Proof.

We will prove that RHS has the same recurrence as LHS and RHS
matches with LHS for n=0,1. For n=0, RHS = 1 and n =1 RHS =0.
(n=1)(f(n=1)+f(n—-2)) '
—(n—1) [(n— 1)! ( -l @) + (n—2)! ( i3 @ﬂ
after come calculations

= f(n)

O]

<
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Computing D(n) using generating functions

Exponential generating functions(EGF) — For arrangements, need a n!
normaliser for the recurrence to work out.

Nutan (1ITB)
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Computing D(n) using generating functions

Exponential generating functions(EGF) — For arrangements, need a n!
normaliser for the recurrence to work out.

Let D(n) be the n coefficient of the exponential generating functions.

o0 =3 D)
n=0 ’

Any permutation of [n] can be obtained by
e first picking a subset S C [n].
e taking a derrangement of S

e fixing all other elements

o =
Nutan (1ITB)
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Computing D(n) using generating functions

Exponential generating functions(EGF) — For arrangements, need a n!
normaliser for the recurrence to work out.

Let D(n) be the n coefficient of the exponential generating functions.

o0 =3 D)
n=0 ’

Any permutation of [n] can be obtained by
e first picking a subset S C [n].
e taking a derrangement of S

e fixing all other elements

Every permutation is generated in this manner.

o F
Nutan (1ITB)
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Computing D(n) using generating functions

e EGF for all permutations: P(t) = 35, nl%;

Nutan (1ITB)
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Computing D(n) using generating functions

e EGF for all permutations: P(t) =3 >, n!

o1
nl T 1-—t

Nutan (1ITB)
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Computing D(n) using generating functions

o EGF for all permutations: P(t) = Y% nlL L

ml — 1I-t
@ EGF for all identity permutations: /(t) = > &

n=0 n!

o =
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Computing D(n) using generating functions

o EGF for all permutations: P(t) = Y% nlL L

al T It
o EGF for all identity permutations: /(t) =320 & = e

o =
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Computing D(n) using generating functions
e EGF for all permutations: P(t) = °°

nltt — 1
n=0""n! T 1—t
o EGF for all identity permutations: /(t) =320 & = e
o P(t) = ¢(t) - I(z)

o =
Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014
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Computing D(n) using generating functions
e EGF for all permutations: P(t) =)

oo

oM = 15
@ EGF for all identity permutations: /(t) = > &
o P(t) =o(t) - I(t) . o(t) = P(t)/I(t)

__ At
n=0n1 — €

Nutan (1ITB)
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Computing D(n) using generating functions

e EGF for all permutations: P(t) =37 nlL =

-

t

oo

e EGF for all identity permutations: /(t) = >_

o P(t)=o(t) - (1) . 6(t) = P(£)/I(t) = £

3

n=0 n!

1
t
nl

Nutan (1ITB)
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Computing D(n) using generating functions
e EGF for all permutations: P(t) =3 >, n!

"
e EGF for all identity permutations: /(t) = >_

nl = ﬁ
0 anv =€
o P(t) = o(t)- I(t) . 6(t) = P(t)/I(t) = &
o(t) = (Z(—l)"f,—r,') ( t")
n=0 ’ n=0
e Now, D(n) = the coefficient of (t"/n!) is:

il
i=1

(-<1)-n-n—1-...-2+nl]
:(n!zn:(_.l)i>

Nutan (1ITB)
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How large is D(n) as compared to n!
Theorem

D)~ 2 <} Vn>1

Nutan (1ITB)
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How large is D(n) as compared to n!

Theorem

D)~ 2 <} Vn>1

Proof.

We consider the Taylor series expansion of 1/e

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014
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How large is D(n) as compared to n!

Theorem

D)~ 2 <} Vn>1

Proof.

We consider the Taylor series expansion of 1/e = > 2 (—1)'/i!

[m] = =
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How large is D(n) as compared to n!

Theorem

D)~ 2 <} Vn>1

Proof.

We consider the Taylor series expansion of 1/e = > 2 (—1)'/i!

n! n -1 i oo 1 A
o) - 2| = (X;Q_E;QN
(-1
<@+
Nutan (IITB) - = E = =
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How large is D(n) as compared to n!

Theorem

D)~ 2 <} Vn>1

Proof.

We consider the Taylor series expansion of 1/e = > 2 (—1)'/i!

n! n -1 i 00 1 A
o) - 2| = (E;Q_E;QN
_1\n+1
= ((ni_);;! [CW]why?
Nutan (IITB) - = E = =
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How large is D(n) as compared to n!

Theorem
ID(n) —Z| <3 Vn>1

Proof.

We consider the Taylor series expansion of 1/e = 32 (—1)'/i!

n! S (D (Y
— — | = nl —
=255

_1\n+1

|1

~ | (n+1)!

1

Con+1
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How large is D(n) as compared to n!

Theorem
ID(n) —Z| <3 Vn>1

Proof.

We consider the Taylor series expansion of 1/e = 32 (—1)'/i!

n! Loy Sy
o~ (S-S5
(_1)n+1
= |t 1)
1
 n+1
§% n>1
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How large is D(n) as compared to n!

Theorem
ID(n) —Z| <3 Vn>1

Proof.

We consider the Taylor series expansion of 1/e = 32 (—1)'/i!

n! Loy Sy
o~ (S-S5
(_1)n+1
= |t 1)
1
 n+1
§% n>1
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Recap

@ Coming up with recurrences

o Computing the number of derrangements
@ Exponential generating functions
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Today

e Estimating n!
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Estimating n!

e How large/small is n!? — approximating n! [Stirling’s approximation]
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Estimating n!

e How large/small is n!? — approximating n! [Stirling’s approximation]
@ Counting the number of labelled trees — Cayley's number.

Nutan (1ITB)
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Estimating n!

@ Easy to see that n! < n"
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Estimating n!

@ Easy to see that n! < n"

@ However, is this tight? Of course not!
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Estimating n!

@ Easy to see that n! < n"

@ However, is this tight? Of course not!

Can we quantify how much more is n" as compared to n!?
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Estimating n!

o Easy to see that n! < n”

@ However, is this tight? Of course not!
Can we quantify how much more is n" as compared to n!?

Can we bound n! by a quantity, say Q, so that for some small enough
a, a@Q < nl < Q7

[m] = =
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Estimating n!

o Easy to see that n! < n”

@ However, is this tight? Of course not!
Can we quantify how much more is n" as compared to n!?

Can we bound n! by a quantity, say Q, so that for some small enough
a, a@Q < nl < Q7

Theorem (Stirling’s approximation)
e(n/e)” < n! < ne(n/e)", i.e. Q=e(n/e)", and a=1/n J

[m] = =
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Estimating n!

Theorem (Stirling's approximation)

e(n/e)” < n! < ne(n/e)"
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.
Let S = log(n!)
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.
Let S =log(n!) =>_7 4 logi.
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Estimating n!

Theorem (Stirling’s approximation)
e(n/e)"” < n! < ne(n/e)"

Proof.

Let S = log(n!) =", logi. We will bound S using the natural log.

From the figure on the board:

n—1 n
Zlogig/ log x dx
i=1 !

n
SS/ log x dx + log n
1

= (xlogx — x)|{ + logn
=nlogn—n+1+logn
Nutan (1ITB)
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.

Let S =log(n!) = >"7 ; logi. We will bound S using the natural log.
.S <nlogn—n+1+logn

=] (=)
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.

Let S = log(n!) = "7, logi. We will bound S using the natural log.
S.S<nlogn—n+1+logn
raising both sides to the power of e, we get

nl < e(n+1)|ogn—(n—1)
_ nn+1/en71

= ne(n/e)"

=] (=)
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Estimating n!

Theorem (Stirling's approximation)

e(n/e)” < n! < ne(n/e)"
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.
Let S = log(n!)

N\
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.
Let S =log(n!) =>_7 4 logi.

N\
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Estimating n!

Theorem (Stirling’s approximation)
e(n/e)"” < n! < ne(n/e)"

Proof.

Let S = log(n!) =", logi. We will bound S using the natural log.

From the figure on the board:

w n
ZlogiZ/ log x dx
i=1 !

52/ log x dx
1

= (xlogx — x)|7
=nlogn—n+1
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.

Let S =log(n!) = >"7 ; logi. We will bound S using the natural log.
. S>nlogn—n+1

=] (=)
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Estimating n!

Theorem (Stirling's approximation)
e(n/e)” < n! < ne(n/e)"

Proof.

Let S =log(n!) = >"7 ; logi. We will bound S using the natural log.
.S >nlogn—n+1

raising both sides to the power of e, we get

nl > enlog n—(n—1)

=e(n/e)"

[m] = = =
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Combinatorics
Lecture 16: Inclusion and exclusion
September 02, 2013
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Last time
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Recap

Last few lectures (module 2):

e Double counting

@ Coming up with recurrences and solving recurrences
(generating functions)

e Exponential generating functions
e Estimating n!

o =
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Today

@ Proof of PIE.

@ The principle of inclusion and exclusion (PIE).
e Computing the number of surjections using PIE.

[m]
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The principle of inclusion and exclusion (PIE)

Theorem (Principle of inclusion exclusion)
Let A1, Ap, ..., A, be the finite sets from a universe U.

(Ui Al = > (D) nigs Al

0£1Cn]

Nutan (1ITB)
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The principle of inclusion and exclusion (PIE)

Theorem (Principle of inclusion exclusion)
Let A1, Ay,

., A, be the finite sets from a universe U.

(Ui Al = > (D) nigs Al

0£1Cn]

n
U Al =D (DR D [ nier Al

k=1 re(t

Nutan (1ITB)

o F
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Number of surjections

How many surjections from [n] to [k]?

Nutan (1ITB)
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Number of surjections

How many surjections from [n] to [k]?
How many functions from [n] to [k]?
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Number of surjections

How many surjections from [n] to [k]?
How many functions from [n] to [k]? k"

Nutan (1ITB)
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Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}

o =
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Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}

#surjections = k" — | Uje Ail

o =
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Number of surjections

How many surjections from [n] to [k]?
How many functions from [n] to [k]?
Let

Aj = {f : [n] = [K] | Range(f) C [K]\ {i}}
#surjections = k" — | Ujeq Ail

Theorem (Principle of inclusion exclusion)

Let A1, Ay, ..., A be the finite sets from a universe U.
Ui Al = Y (<17 ey A
ie[k] Al — iel Ai
P#IC[K]
(=] = = = a
Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014



Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}

#surjections = k" — | Uje Ail

| Uiclx) Ail = Z (D)7 nies Al
0AICIK]

o =
Nutan (1ITB)
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Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}

#surjections = k" — | Ujcq Ail

| Uicph) Ail = Z (=)= ies Al
0£1C[K]
Observe that VI C [k], | Nies Ail = (k —|1])"

[m] = = =
Nutan (1ITB)

CS 207 Discrete Mathematics — 2013-2014



Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}

#surjections = k" — | Uje Ail
| Uiclx) Ail = Z (D)7 nies Al

DAIC[K]

[Uiewg Ail = Y ()2 (k= 11p)"

DAICIK]

o =
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Number of surjections

How many surjections from [n] to [k]?

How many functions from [n] to [k]?
Let

Ai =A{f : [n] — [K] | Range(f) € [k] \ {i}}
#surjections = k" — | Ui Ail

| Uiclx) Ail = Z (D)7 nies Al
0AICIK]

[Uiewg Ail = Y ()2 (k= 11p)"

01 C[K]
#surjections = k" — gy cp (=D (k= [1])"

o =
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Number of surjections

How many surjections from [n] to [k]?
How many functions from [n] to [k]?

Let
Aj = {f : [n] = [K] | Range(f) C [K]\ {i}}
#surjections = k" — | Uje Ail

| Uiclx) Ail = Z (D)7 nies Al
0AICIK]

|Uierg Al = D (=1 (k= 11))"
0#1C[K]

#surjections = k" — Zw?ﬁ,g;k](—l)l’l—l(k — "
= Z/g[k](_l)‘ ‘(k = [1])"

o =
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Number of surjections

How many surjections from [n] to [k]?
How many functions from [n] to [k]?
Let
Ai = {f : [n] = [K] | Range(f) € [K]\ {i}}
#surjections = k" — | Uje Ail

| Uiclx) Ail = Z (D)7 nies Al
0AICIK]

| Uierg Al = > (=) k= 11))"
0#£I1C[K]
#surjections = k" — gy cp (=D (k= [1])"
= Z/g[k](_l)m(k = [1])"
= o1 () (k= i)

o =
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Proof of PIE

Theorem (Principle of inclusion exclusion)

Let A1, Ao, ..., A, be the finite sets from a universe U.
| U1 Ail = Z (1)1 nies Ajl
0#1C[n]
n
|UPy Al =D (D T D [Ny Al
k=1 1e(h)

We give the proof by induction on n.

For n = 2, the theorem says |[AU B| = |A| + |B| — |AN B|.
Let us assume that the theorem holds for n — 1.

Let A=U"_'A; and let B = A,

cotn.

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014 September 2013 7/8




Proof of PIE

| U,",=1 Ail

|AU B|

Nutan (1ITB)
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Proof of PIE

| U7:1 Ai| =
| U7:1 Ai|

CS 207 Discrete Mathematics — 2013-2014

[m]

AU B|

|Al +|B| - [AN B

=
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Proof of PIE

| U,"1:1 Ai| =
| U,n:1 Ai|

|Al +|B| — |[AN B

[UTTE Ail 4 |An] — | UTE A0 Al

[m]
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Proof of PIE

[ur, Al =
[un, Al =

|UIE Al + |An] — | UL A A

U Al + |An] — [ U (A0 A))

[m]
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Proof of PIE

| U,"1:1 Ai| =
By IH

[UTE Al + [ An] — U7 (AN A

[m]
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Proof of PIE

| U?:1 Ai|
By IH

| U?:l Ail

| U AL+ [An] — | UTTE (AN AR))|
SIS DR oy | e A

+|An| — Zl;i(—l)k” E,E(lnzll) | Nieiu{n} Ail

Nutan (1ITB)
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Proof of PIE

| U,"1:1 Ai|

Si(—1)kt 2 (-1 [ Nier Ail
A — P (1)Kt Z,E([n;u) | Nicrugny Ail
[V Al = (Ele([”;”) | Nier Ail + [ Anl)

+305 (_1),(_12@([";11) [ Nies Ajl — (—1)k—2 Z'G([Ziil) [ Nierugny Ail

Nutan (1ITB)
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Proof of PIE

| LJ,"1=1 Ail

(E,G([n;u) | Nier Ail +1Anl)
+305 {(—1)"_12,6([,,;11) | Nies Ail = (-1)K2 2je (g | Nierogny Ai|i|
[V Al = (Z,e(@) | Nier Ail
+34)! {(—1)“12,&([:’;1) | Nier Al + (—1)"_1216([2311) | Nieruny Ai|]

Nutan (1ITB)
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Proof of PIE

| LJ,"1=1 Ail

-1
+2k5
| U?=1 Ai|

e Nicr A; A
(E,e([ 111)\ er Ail +|Anl)

(D oy v A = (D2 | P A

(Z,Q@) | Nier Ail
+34)! [(—1)k—1 Zie(pry | Mier Al + G (-t | Mierogn) Afl]
[V Al = (Z,e(@) | Nier Ail

+ 30 [(F1)FT Z,e([zl) [ Nier Ail

Nutan (1ITB)
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Proof of PIE

| Uy Ail

(E,e([n;l]) | Nier Ail +1Anl)
+305 {(—1)"_12,6([::;11) | Nier Ail = (=1)k2 2je (g | Nierogny Ai|i|
| Ui, Al =
| Uy Al

(Z,Q@) | Nier Ail
n—1 — —
+30 [(—1)k 12,6([::;1) | Nier Ail + (=1)% 12,6([231) | Nieruny Ai|]
| U7:1 Ai|

(Z,e([;1) | Nier Ail

+Thea [ (D Sy 1 v A

e [COFT Sy e 4]

Nutan (1ITB)
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Combinatorics
Lecture 17: Bell numbers and Stirling's number
September 03, 2013
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Last time
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Recap

@ Proof of PIE.

@ The principle of inclusion and exclusion (PIE).
e Computing the number of surjections using PIE.
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Today
@ Derangements

o Counting the number of partitions of a set
@ Stirling's numbers.
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

n _1l
m;( )

il

Nutan (1ITB)
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

n _11
n!Z;( )

— |l
Let A; denote the set of permutations that map 7 to i.

Nutan (1ITB)
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

i
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail =

n _11
m;( )

Nutan (1ITB)

[m]

&
CS 207 Discrete Mathematics — 2013-2014



Number of derangements

Recall that the number of derangements of n letters, denoted as D(n) is
given by:

~ (-1)
n! Z i
i=0
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!

Nutan (1ITB)
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Number of derangements

Recall that the number of derangements of n letters, denoted as D(n) is
given by:

i
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!
D(n) = n!—|Ujcn Ail

n _11
m;( )

Nutan (1ITB)
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Number of derangements

Recall that the number of derangements of n letters, denoted as D(n) is
given by:

no(_1yi
"!Z( i!l)
i=0
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!
D(n) = n!—|Ujcn Ail

=l =Ygy (=D (n = |1])!

Nutan (1ITB)
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

~ (-1)
DN
i=0
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!
D(n)

= n! — | Uje[q) Ail

=l =Ygy (=D (n = |1])!
=3 (=DM [(n = [1])!

Nutan (1ITB)
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

~ (-1)
DN
i=0
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!
D(n)

= n! — [ Uje[n Al
= nl =g 1c (=D n = (1))
=i (=DM (n = 1)

= Xio(=1) () (n—i)!

Nutan (1ITB)
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Number of derangements

given by:

Recall that the number of derangements of n letters, denoted as D(n) is

~ (-1)
DN
i=0
Let A; denote the set of permutations that map 7 to i.
Observe that VI C [n] | Njes Ail = (n —|1]))!
D(n)

= n! — [ Uje[n Al
= nl =g 1c (=D n = (1))
=i (=DM (n = 1)

= Xio(=1) () (n—i)!

Nutan (1ITB)
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.
Example: n=3
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.
Example: n=3

{1}, {2}, {3}}

a F
Nutan (1ITB)
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.
Example: n=3

{15 423435 ({1,235, {3}), {13}, {23}, {{2,3},{1}}

o =
Nutan (1ITB)
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Bell numbers
Let B(n) be #partitions of a set of size n such that each part is non-empty.
Example: n=3

{15, {2}, (33} {{1.2}, {31}, {{1.3},{2}}, {{2,3}, {1}} {{1.2,3}}
That is, B(3) = 5.

o =
Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.
What is the recurrence for B(n)?

Nutan (1ITB)
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

Vn>1 B(n):zn:(z::;)B(n—k)

k=1

o =
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

Vn>1 B(n):zn:(Z::;)B(n—k)

k=1

In any partition, a unique part contains the element n.

=] (=)
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

Vn>1 B(n):zn:(Z::;)B(n—k)

k=1

In any partition, a unique part contains the element n.
Let X = X' U{n}. Now |X'| = k — 1 if | X]| = k.

=] (=)
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

Vn>1 B(n):zn:(Z::;)B(n—k)

k=1

In any partition, a unique part contains the element n.
Let X = X' U{n}. Now |X'| = k — 1 if | X]| = k.
Also X' € {1,2,...,n—1}.

o F = = £ DA
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Bell numbers

Let B(n) be #partitions of a set of size n such that each part is non-empty.

What is the recurrence for B(n)?

Theorem (Recurrence for Bell numbers)

Vn>1 B(n):zn:(Z::;)B(n—k)

k=1

In any partition, a unique part contains the element n.

Let X = X' U{n}. Now |X'| = k —1if |[X| = k.

Also X' € {1,2,...,n—1}.

The rest of the n — k elements can be partitioned into B(n — k) ways.

it
<

[m] = =
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Stirling’s number

part is non-empty.

Let S(n, k) be #partitions of a set of size n into k parts such that each

Nutan (1ITB)
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Stirling’s number
part is non-empty.

Let S(n, k) be #partitions of a set of size n into k parts such that each
Observe that B(n) = >, S(n, k)

Nutan (1ITB)
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) = >, S(n, k)

Lemma
#surjections from [n] to [k] is equal to k!S(n, k)
a (=) = = £ DA
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) = >, S(n, k)

Lemma
#tsurjections from [n] to [k] is equal to k!S(n, k) J

Let £ : [n] — [k] be a surjection.

[m] = = =
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) = >, S(n, k)

Lemma
#surjections from [n] to [k] is equal to k!S(n, k) J

Let £ : [n] — [k] be a surjection.

It defines a partition of n elements into k parts:
{FH1), FH2), . FH(K)}

o F = = £ DA
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) = >, S(n, k)

Lemma
#surjections from [n] to [k] is equal to k!S(n, k) J

Let £ : [n] — [k] be a surjection.

It defines a partition of n elements into k parts:
{FH1), FH2), .. FH(K)} where, F1(i) = {j | f(j) = i}

o F = = £ DA
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Stirling’s number

Let S(n, k) be #partitions of a set of size n into k parts such that each
part is non-empty.

Observe that B(n) = >, S(n, k)

Lemma
#surjections from [n] to [k] is equal to k!S(n, k) J

Let f : [n] — [k] be a surjection.

It defines a partition of n elements into k parts:
{FH1), FH2), . FH(K)}

For each partition, any possible ordering of parts gives rise to a surjection.
And the number of ways of ordering the parts is k!.
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Lecture 18: Pigeon Hole Principle (PHP)
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Last time
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Recap
Last few classes (Module 2)
e Counting in two ways

@ Recurrences and generating functions

@ The principle of inclusion and exclusion (PIE).
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Today

e Pigeon hole principle (PHP)
e Applications of PHP

Nutan (1ITB)
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Pigeon hole principle

Theorem (PHP)

Let n, k € mathbbN and let there be n objects and k bags then there
exists a bag with at least | 7| objects.

o =
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Pigeon hole principle

Theorem (PHP)

Let n, k € mathbbN and let there be n objects and k bags then there
exists a bag with at least | 7| objects.

Suppose not. Then each bag has strictly less than [ 7] objects. Therefore,

totally there can be strictly less than n objects, which is a contradiction.

[m] = =
CS 207 Discrete Mathematics — 2013-2014
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Application 1

increasing or decreasing.

Game: Give me 10 numbers such that no subsequence of length 4 which is
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Application 1

Lemma

Suppose there are n?> + 1 numbers (all distinct) then there exists either an
increasing or decreasing subsequence of length n+ 1.

Nutan (1ITB)
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Application 1
Lemma

Suppose there are n?> + 1 numbers (all distinct) then there exists either an
increasing or decreasing subsequence of length n+ 1.

Let a1, a2,...,a,241 be any sequence with distinct numbers.

[m] = =
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Application 1

Lemma

Suppose there are n?> + 1 numbers (all distinct) then there exists either an
increasing or decreasing subsequence of length n+ 1.

Let a1, a2,...,a,241 be any sequence with distinct numbers.

Let for each j € [n® +1],
li = length of the longest increasing subsequence starting at a;
D; := length of the longest decreasing subsequence starting at a;

[m] = =
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Application 1

Lemma

Suppose there are n?> + 1 numbers (all distinct) then there exists either an

increasing or decreasing subsequence of length n + 1.

Let a1, a2,...,a,241 be any sequence with distinct numbers.
Let for each j € [n® +1],
li = length of the longest increasing subsequence starting at a;
D; := length of the longest decreasing subsequence starting at a;
Note that for each j € [n* 4+ 1], /; < nand D; < n.

Nutan (1ITB) CS 207 Discrete Mathematics — 2013-2014 September 2013
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Application 1

Lemma

Suppose there are n?> + 1 numbers (all distinct) then there exists either an

increasing or decreasing subsequence of length n + 1.

Let a1, a2,...,a,241 be any sequence with distinct numbers.
Let for each j € [n® +1],

li = length of the longest increasing subsequence starting at a;
D; := length of the longest decreasing subsequence starting at a;
Note that for each j € [n* 4+ 1], /; < nand D; < n.

Therefore, by PHP, there exists k # | such that (Ix, D) = (I, Dy)).

Suppose k < I.
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A version of PHP

Theorem

Suppose there are n > 1+ r(l — 1) ojects which are colored with r
different colors. Then there exist | objects all with the same color.
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A version of PHP
Theorem

Suppose there are n > 1+ r(l — 1) ojects which are colored with r
different colors. Then there exist | objects all with the same color.

Proof [HW]

[m] = =
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Recall the coloring game
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Recall the coloring game

Lemma

Any 2-coloring of edges of a graph on 6 vertices has a monochromatic

traingle.
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Recall the coloring game
Lemma

Any 2-coloring of edges of a graph on 6 vertices has a monochromatic
traingle.

Proof [HW/]

o =
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Another version of PHP

Theorem

Suppose n > ki + ko + ...+ k. — r + 1, and let n objects be put into r
bags then for some i € [r] such that the ith bag has k; objects in it.
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Another version of PHP
Theorem

Suppose n > ki + ko + ...+ k. — r + 1, and let n objects be put into r
bags then for some i € [r] such that the ith bag has k; objects in it.

Proof [HW]
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Lemma

Coloring the edges of a graph on 10 points

Any 2-coloring of a graph on 10 vertices has either a monochromatic
triangle or a monochromatic complete graph on 4 vertices.
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Coloring the edges of a graph on 10 points
Lemma

Any 2-coloring of a graph on 10 vertices has either a monochromatic
triangle or a monochromatic complete graph on 4 vertices.

Proof [HW/]

o =
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