# CS310 Automata Theory - 2017-2018 

Nutan Limaye<br>Indian Institute of Technology, Bombay<br>nutan@cse.iitb.ac.in<br>Module 1: Finite state automata

## Credit Structure

## Course credit structure

| quizzes | $30 \%$ |
| :--- | :--- |
| mid-sem | $30 \%$ |
| end-sem | $40 \%$ |

Office hours:
Problem solving session:

1 hour per week (Slot: TBA)
1 hour per week (Slot: TBA)

## Course Outline

- Regular languages, DFA/NFA, related topics.
- Pushdown automata, context-free languages, other models of computation.
- Turing machines and computability.
- Effective computation, NP vs. P, one-way functions.


## Finite state automata

## Example

Input: Text file over the alphabet $\{a, b\}$
Check: does the file end with the string 'aa'


## Finite state automata

## Example

Input: Text file over the alphabet $\{a, b\}$
Check: does the file contain the string 'aa'


## Finite state automata

## Example

Input: $w \in\{a, b\}^{*}$
Check: does $w$ have odd number of as? i.e. is $\#_{a}(w) \equiv 1(\bmod 2)$ ?


## Finite state automata

## Example

Input: $w \in\{0,1\}^{*}$
Check: is the number represented by $w$ in binary a multiple of 3 ?


## Definition of finite state automata

## Definition (DFA)

A deterministic finite state automaton (DFA) $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, where
$Q$ is a set of states,
$\Sigma$ is the input alphabet,
$q_{0}$ is the initial state,
$F \subseteq Q$ is the set of final states,
$\delta$ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$ such that
$\forall q \in Q, \forall a \in \Sigma,|\delta(q, a)| \leq 1$.

## Acceptance by DFA

## Definition (Acceptance by DFA)

A deterministic finite state automaton (DFA) $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, is said to accept a word $w \in \Sigma^{*}$, where $w=w_{1} w_{2} \ldots w_{n}$ if there exists a sequence of states $p_{0}, p_{1}, \ldots p_{n}$ s.t.

$$
\begin{aligned}
& p_{0}=q_{0}, \\
& p_{n} \in F \\
& \delta\left(p_{i}, w_{i+1}\right)=p_{i+1} \text { for all } 0 \leq i \leq n, \\
& \text { where } \delta \text { is a set of transitions. }
\end{aligned}
$$

## Regular languages

## Definition

A language $L \subseteq \Sigma^{*}$ is a said to be accepted by a DFA $A$ if $L=\{w \mid w$ is accepted by $A\}$.

## Definition (REG)

A language is said to be a regular language if it is accepted by some DFA.

## Examples

$L \quad=\left\{w \in\{a, b\}^{*} \mid w\right.$ ends with aa $\}$
$L^{\prime}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains $\left.a a\right\}$
$L_{\text {odd }}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains odd number of $\left.a\right\}$
$L_{3}=\left\{w \in\{0,1\}^{*} \mid w\right.$ encodes a number in binary divisible by 3$\}$

## Day-to-day examples of finite state automata

Finite state machines are everywhere!
A vending machine that sells objects at Rs. 10 each and can take either Rs. 5 or Rs. 10 coins as input.


## Other applications

Finite state machines in many electrinic devices
Automatic coffee dispenser

Public washing machines

Fan regulators
the list can go on!

## Closure properties of regular languages

## Example

Let $\Sigma=\{a\}$ for this example.
Let $L_{1}=\{w| | w \mid \equiv 0(\bmod 2)\}$


Let $L_{2}=\{w| | w \mid \equiv 0(\bmod 3)\}$


What is $L_{1} \cap L_{2}$ ?
$L_{1} \cap L_{2}=\{w| | w \mid \equiv 0(\bmod 6)\}$

## Closure properties of regular languages

Example continued

$$
L_{1} \cap L_{2}=\{w| | w \mid \equiv 0(\bmod 6)\}
$$



## Closure properties of regular languages

## Lemma

Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be two regular languages, then $L_{1} \cap L_{2}$ is also a regular language.

## Proof.

## Product construction

Let $A_{1}=\left(Q_{1}, \Sigma, q_{0}^{1}, F_{1}, \delta_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, q_{0}^{2}, F_{2}, \delta_{2}\right)$ be the automata accepting $L_{1}, L_{2}$, respectively.
Let $A$ be a finite state automaton $\left(Q, \Sigma, q_{0}, F, \delta\right)$ s.t.

$$
\begin{aligned}
Q & =\left\{\left(q, q^{\prime}\right) \mid q \in Q_{1}, q^{\prime} \in Q_{2}\right\} \\
q_{0} & =\left(q_{0}^{1}, q_{0}^{2}\right) \\
F & =\left\{\left(q, q^{\prime}\right) \mid q \in F_{1}, q^{\prime} \in F_{2}\right\} \\
\delta\left(\left(q, q^{\prime}\right), a\right) & =\left(\delta_{1}(q, a), \delta_{2}\left(q^{\prime}, a\right)\right)
\end{aligned}
$$

## Correctness

$\forall w \in \Sigma^{*}, w$ is accepted by $A$ iff $w$ is accepted by both $A_{1}$ and $A_{2}$.

## Closure properties of regular languages

## Lemma

Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be two regular languages, then $L_{1} \cup L_{2}$ is also a regular language.

## Proof.

## Product construction

Let $A_{1}=\left(Q_{1}, \Sigma, q_{0}^{1}, F_{1}, \delta_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, q_{0}^{2}, F_{2}, \delta_{2}\right)$ be the automata accepting $L_{1}, L_{2}$, respectively.
Let $A$ be a finite state automaton $\left(Q, \Sigma, q_{0}, F, \delta\right)$ s.t.

$$
\begin{aligned}
Q & =\left\{\left(q, q^{\prime}\right) \mid q \in Q_{1}, q^{\prime} \in Q_{2}\right\} \\
q_{0} & =\left(q_{0}^{1}, q_{0}^{2}\right) \\
F & =\left\{\left(q, q^{\prime}\right) \mid q \in F_{1} \text { or } q^{\prime} \in F_{2}\right\} \\
\delta\left(\left(q, q^{\prime}\right), a\right) & =\left(\delta_{1}(q, a), \delta_{2}\left(q^{\prime}, a\right)\right)
\end{aligned}
$$

## Correctness

$\forall w \in \Sigma^{*}, w$ is accepted by $A$ iff $w$ is accepted by either $A_{1}$ or $A_{2}$.

## Closure properties of regular languages

## Lemma

Let $L \subseteq \Sigma^{*}$ be a regular language, then $\bar{L}=\{w \mid w \notin L\}$ is also a regular language.

## Proof.

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be the automata accepting $L$.
Let $A^{\prime}$ be a finite state automaton ( $Q^{\prime}, \Sigma^{\prime}, q_{0}^{\prime}, F^{\prime}, \delta^{\prime}$ ) s.t.

$$
\begin{aligned}
Q^{\prime} & =Q \\
q_{0}^{\prime} & =q_{0} \\
F^{\prime} & =\{q \in Q \mid q \notin F\} \\
\delta^{\prime} & =\delta
\end{aligned}
$$

## Correctness

$\forall w \in \Sigma^{*}, w$ is accepted by $A^{\prime}$ iff $w$ is not accepted by $A$.

## Non-deterministic finite state automata

Informal description: A finite state automaton which can branch out to different states on the same letter.

## Definition (NFA)

A non-deterministic finite state automaton (NFA) $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, where
$Q$ is a set of states,
$\Sigma$ is the input alphabet, also contains empty string, i.e. $\epsilon$,
$q_{0}$ is the initial state,
$F \subseteq Q$ is the set of final states,
$\delta$ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$
$\forall q \in Q, \forall a \in \sum,|\delta(q, a)| \leq 1$.
$\forall q \in Q, \forall a \in \Sigma, \delta(q, a) \subseteq Q$.

## Non-deterministic finite state automata

## Example

Input: Text file over the alphabet $\{a, b\}$

Check: does the file end with the string 'aa'


## Non-deterministic finite state automata

Example
Input: $w \in\{a, b\}^{*}$
Check: Is a the second-last letter of $w$ ?


## Non-deterministic finite state automata

Informal description: A finite state automaton which can branch out to different states on the same letter.

## Definition (NFA)

A non-deterministic finite state automaton (NFA) $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, where
$Q$ is a set of states,
$\Sigma$ is the input alphabet, also contains empty string, i.e. $\epsilon$,
$q_{0}$ is the initial state,
$F \subseteq Q$ is the set of final states,
$\delta$ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$
$\forall q \in Q, \forall a \in \sum,|\delta(q, a)| \leq 1$.
$\forall q \in Q, \forall a \in \Sigma, \delta(q, a) \subseteq Q$.

## Acceptance by NFA

## Definition (Acceptance by NFA)

A non-deterministic finite state automaton (NFA) $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, is said to accept a word $w \in(\Sigma \backslash\{\epsilon\})^{*}$, where $w=w_{1} w_{2} \ldots w_{n}$ if $w$ can be written as $y_{1} y_{2} \ldots y_{m}$, where each $y_{i} \in \Sigma$ and $m \geq n$ there exists a sequence of states $p_{0}, p_{1}, \ldots p_{m}$ s.t.

$$
\begin{aligned}
& p_{0}=q_{0} \\
& p_{m} \in F \\
& p_{i+1} \in \delta\left(p_{i}, y_{i+1}\right) \text { for all } 0 \leq i \leq m-1 .
\end{aligned}
$$

An NFA $A$ is said to accept a language $L$ if $L=\{w \mid A$ accepts $w\}$.
Notation: Let $A$ be an NFA/DFA. We use $L(A)$ to denote the language recognized by $A$.

## Power of NFAs

## Lemma

Let $A$ be an NFA. Then $L(A)$ is a regular language. That is, NFA and DFA accept the same set of languages.

We will work it out for an example.


| $\varnothing$ | $\{0\}$ | $\{1\}$ | $\{2\}$ | $\{0,1\}$ | $\{0,2\}$ | $\{1,2\}$ | $\{0,1,2\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $\varnothing$ | $\{0,1\}$ | $\{2\}$ | $\varnothing$ | $\{0,1,2\}$ | $\{0,1\}$ | $\{2\}$ |
| $b$ | $\varnothing$ | $\{0\}$ | $\{2\}$ | $\varnothing$ | $\{0,2\}$ | $\{0\}$ | $\{2\}$ |
| $b$ | $\{0,2\}$ |  |  |  |  |  |  |

## Subset construction

## Lemma

Let $A$ be an NFA. Then $L(A)$ is a regular language. That is, NFA and DFA accept the same set of languages.

## Proof.

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$. We will construct a DFA $B=\left(Q^{\prime}, \Sigma, q_{0}^{\prime}, F^{\prime}, \Delta\right)$ such that $L(A)=L(B)$.
Subset construction

$$
\begin{aligned}
& Q^{\prime}=2^{Q}, \\
& q_{0}^{\prime}=\left\{q_{0}\right\}, \\
& F^{\prime}=\{S \subseteq Q \mid S \cap F \neq \varnothing\} . \\
& \Delta(S, a)=\bigcup_{p \in S} \delta(p, a) .
\end{aligned}
$$

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Proof Idea
Let $S \subseteq Q$.
Let

$$
E(S)=\left\{\begin{array}{l|l}
q & \begin{array}{l}
q \text { is reachable from some state in } S \\
\text { with zero or more } \epsilon \text { transitions }
\end{array}
\end{array}\right\}
$$

Example


$$
\begin{aligned}
& E(\{1\})=\{1\} \\
& E(\{2\})=\{1,2\} \\
& E(\{3\})=\{3\}
\end{aligned}
$$

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Proof Idea
Let $S \subseteq Q$.
Let

$$
E(S)=\left\{\begin{array}{l|l}
q & \begin{array}{l}
q \text { is reachable from some state in } S \\
\text { with zero or more } \epsilon \text { transitions }
\end{array}
\end{array}\right\}
$$

Example


$$
\begin{aligned}
\delta^{\prime}(1, a) & =E(\delta(1, a)) \\
& =E(\{2\}) \\
& =\{1,2\}
\end{aligned}
$$

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Proof Idea
Let $S \subseteq Q$.
Let

$$
E(S)=\left\{\begin{array}{l|l}
q & \begin{array}{l}
q \text { is reachable from some state in } S \\
\text { with zero or more } \epsilon \text { transitions }
\end{array}
\end{array}\right\}
$$

Example


$$
\begin{aligned}
\delta^{\prime}(1, a) & =E(\delta(1, a)) \\
& =E(\{2\}) \\
& =\{1,2\}
\end{aligned}
$$

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Proof Idea
Let $S \subseteq Q$.
Let

$$
E(S)=\left\{\begin{array}{l|l}
q & \begin{array}{l}
q \text { is reachable from some state in } S \\
\text { with zero or more } \epsilon \text { transitions }
\end{array}
\end{array}\right\}
$$

Example


$$
\begin{aligned}
\delta^{\prime}(3, b) & =E(\delta(3, b)) \\
& =E(\{2,3\}) \\
& =\{1,2,3\}
\end{aligned}
$$

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Proof Idea
Let $S \subseteq Q$.
Let

$$
E(S)=\left\{\begin{array}{l|l}
q & \begin{array}{l}
q \text { is reachable from some state in } S \\
\text { with zero or more } \epsilon \text { transitions }
\end{array}
\end{array}\right\}
$$

Example


## Hanlding the $\epsilon$ moves

## Lemma

For any NFA A with $\epsilon$ transitions, there is another NFA, say B, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

## Proof.

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be an NFA with $\epsilon$ transitions. We construct NFA, say $B$ as follows:
Construction

$$
\begin{aligned}
& Q^{\prime}=Q, \\
& \Sigma^{\prime} \text { same as } \Sigma, \text { but no } \epsilon \text { used anywhere, } \\
& \delta^{\prime}(q, a)=E(\delta(q, a)), \\
& q_{0}^{\prime}=q_{0}, \\
& F^{\prime}=F .
\end{aligned}
$$

There can be $\epsilon$ transitions from the start state or to the final state.

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Example


## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Example


Add a new start state $\tilde{q_{0}}$.
Consider $\delta(p, c)$ for every $p \in E\left(q_{0}\right)$ and $c \in \Sigma$.
Add an edge from $\tilde{q}_{0}$ to $q \in Q$ with label $c$ if
$q \in E\left(\cup_{p \in E\left(q_{0}\right)} \delta(p, c)\right)$.

## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Example


## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

Example


## Hanlding the $\epsilon$ moves

## Lemma

For any NFA $A$ with $\epsilon$ transitions, there is another NFA, say $B$, such that $B$ has no $\epsilon$ transitions and $L(A)=L(B)$.

## Proof.

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$ be given. We construct $B=\left(Q^{\prime}, \Sigma^{\prime}, q_{0}, F^{\prime}, \delta^{\prime}\right)$ as follows:
Construction

$$
\begin{aligned}
& Q^{\prime}=Q \cup\left\{\tilde{q}_{0}\right\}, q_{0}^{\prime}=\tilde{q}_{0}, \Sigma^{\prime} \text { same as } \Sigma \text { but no } \epsilon, \\
& F^{\prime}= \begin{cases}F \cup\left\{\tilde{q}_{0}\right\} & \text { if } E\left(\left\{q_{0}\right\}\right) \cap F \neq \varnothing \\
F & \text { otherwise }\end{cases} \\
& \delta^{\prime}(q, a)= \begin{cases}E\left(\delta\left(E\left(q_{0}\right), a\right)\right) & \text { if } q=\tilde{q}_{0} \\
E(\delta(q, a)) & \text { otherwise }\end{cases}
\end{aligned}
$$

## Regular expressions

Various expressions formed by,$+ \circ$, * operators on $\Sigma$.

## Definition (Regular expression)

The following are regular expressions:

1. $\epsilon$,
2. $a, \forall a \in \Sigma$,
3. $\varnothing$,
4. $R_{1}+R_{2}$, 5. $R_{1} \circ R_{2}$,
5. $R_{1}^{*}$,
where, $R_{1}, R_{2}$ are regular expressions.
Example

$$
\Sigma^{*} a \Sigma^{*}=\{w \mid w \text { contains at least one } a\}
$$

$$
(\Sigma \Sigma)^{*}=w| | w \mid \equiv 0(\bmod 2)
$$

## Language defined by a regular expression

## Definition (Language defined by regular expression)

The language defined by a regular expression is:

1. $L(\epsilon)=\epsilon$,
2. $L(a)=\{a\}, \forall a \in \Sigma$,
3. $L(\varnothing)=\varnothing$,
4. $L\left(R_{1}+R_{2}\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
5. $L\left(R_{1} \circ R_{2}\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$,
6. $L\left(R_{1}^{*}\right)=\left(L\left(R_{1}\right)\right)^{*}$,
where, $R_{1}, R_{2}$ are regular expressions.

## Lemma

The language defined by any regular expression is regular.

## Language defined by regular expression

## Lemma

The language defined by any regular expression is regular.
Example

$$
(a+b)^{*}
$$





## Language defined by regular expression

## Lemma

The language defined by any regular expression is regular.
Proof idea
It is easy to construct NFAs for 1.,2.,3.

If we inductively have NFAs for $L\left(R_{1}\right), L\left(R_{2}\right)$ then we can create an NFA for $L\left(R_{1}+R_{2}\right)$ and $L\left(R_{1} \circ R_{2}\right)$.

Similarly, if we inductively have NFAs for $L\left(R_{1}\right)$ then we can create an NFA for $\left(L\left(R_{1}\right)\right)^{*}$

## DFA to regular expression

Transitive closure method
Example


In general compute $R_{i, j}$, the regular expression arising while going from state $i$ to state $j$.

Construct $R_{i, j}$ for every pair of state $i, j$.

## DFA to regular expression

Transitive closure method
Example


## DFA to regular expression

Transitive closure method: an exercise in dynamic programming
Assume there is some ordering on the states of the automaton.

Let $R_{i, j}^{k}$ denote the set of all strings that take the automaton from $q_{i}$ to $q_{j}$ without passing through a state numbered larger than $q_{k}$.

We can build $R_{i, j}^{1}, R_{i, j}^{2}, \ldots, R_{i, j}^{|Q|}$ recursively as follows:

$$
R_{i, j}^{k}=R_{i, j}^{k-1}+R_{i, k}^{k-1} \cdot\left(R_{k, k}^{k-1}\right)^{*} \cdot R_{k, j}^{k-1} .
$$

We also need to initialize $R_{i, j}^{0}$ for all pairs $i, j$ as follows:

$$
R_{i, j}^{0}=\left\{\begin{array}{cc}
a & \text { if } i \neq j \text { and } \delta\left(q_{i}, a\right)=q_{j} \\
a+\epsilon & \text { if } i=j \text { and } \delta\left(q_{i}, a\right)=q_{j} \\
\epsilon & \text { if } i=j \text { and } \delta\left(q_{i}, a\right) \neq q_{j} \\
\varnothing & \text { otherwise. }
\end{array}\right.
$$

## DFA to regular expression

Transitive closure method:

## Example

$$
\begin{aligned}
& \text { start } \longrightarrow q_{1} \\
& R_{1,1}^{0}=b+\epsilon, R_{1,2}^{0}=a, R_{2,2}^{0}=\epsilon, R_{3,3}^{0}=\epsilon . \\
& R_{2,3}^{0}=a+b, R_{1,3}^{0}, R_{2,1}^{0}, R_{3,1}^{0}, R_{3,2}^{0}=\varnothing . \\
& R_{1,1}^{1}= \\
& R_{1,2}^{1}=a+\left(b+\epsilon+(b+\epsilon)(b+\epsilon)^{*}(b+\epsilon)=b^{*}\right. \\
& R_{2,2}^{1}=\epsilon, R_{3,3}^{1}=\epsilon \\
& R_{2,3}^{1}=a+b, R_{1,3}^{1}, R_{2,1}^{1}, R_{3,1}^{1}, R_{3,2}^{1}=\varnothing . \\
& R_{1,3}^{2}=\varnothing+b^{*} a(\epsilon)^{*}(a+b)=b^{*} a(a+b) .
\end{aligned}
$$

## Proving that PAL is not a regular language

## Lemma

$\forall n \in \mathbb{N}$ let $P A L_{n}=\left\{w \cdot w^{R}\left|w \in \Sigma^{*},|w|=n\right\}\right.$. Any automaton accepting $P A L_{n}$ must have $|\Sigma|^{n}$ states.

## Proof.

By Pigeon Hole Principle.
Suppose $\exists x, y \in \Sigma^{n}$ such that $x \neq y$,
automaton reaches the same state after reading both $x, y$. Then $x \cdot x^{R}$ and $y \cdot x^{R}$ are both accepted or both rejected, which is a contradiction.

## Corollary

Let $P A L=\cup_{n \geq 0} P A L_{n} . P A L$ is not regular.

## Proving that $L_{a, b}$ is not a regular language

## Lemma

There is no finite state automaton accepting $L_{a, b}$, where $L_{a, b}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

## Proof.

By Pigeon Hole Principle.
Suppose $\exists i, j \in \mathbb{N}$ such that $i \neq j$, automaton reaches the same state after reading both $a^{i}, a^{j}$.

Then $a^{i} \cdot b^{j}$ and $a^{j} \cdot b^{j}$ are both accepted or both rejected, which is a contradiction.

## Pumping lemma

A recipe for proving that a given language is non-regular.

## Lemma (Pumping Lemma)

If $L$ is a regular language, then $\exists p \in \mathbb{N}$ such that for any strings $x, y, z$ with $x \cdot y \cdot z \in L$ and $|y| \geq p$,
(1) there exist strings $u, v, w$, s.t. $y$ can be written as $y=u \cdot v \cdot w$,
(2) $\forall i \geq 0 x \cdot u \cdot v^{i} \cdot w \cdot z \in L$,
(3) $|v|>0$.

To prove that a given language $L$ is not regular, the contrapositive of the above statement is useful.

## Contrapositive of the pumping lemma

## Lemma

We say that a language $L$ satisfies Property-NR if the following conditions hold:
(:) $\forall p \geq 0$,
(). $\exists x, y, z$ such that $x \cdot y \cdot z \in L$ and $|y| \geq p$,
() $\forall u, v, y$ such that $|v|>0, y=u \cdot v \cdot w$,
© $\exists i x \cdot u \cdot v^{i} \cdot w \cdot z \notin L$.
If $L$ satisfies Property-NR then $L$ is not regular.

## Using the pumping lemma

| We say that a language $L$ satisfies Property-NR if the following conditions hold: |
| :---: |
| (2) $\forall p \geq 0$, |
| (3) $\exists x, y, z$ such that $x \cdot y \cdot z \in L$ and $\|y\| \geq p$, |
| (3) $\forall u, v, y$ such that $\|v\|>0, y=u \cdot v \cdot w$, |
| (-) $\exists i x \cdot u \cdot v^{i} \cdot w \cdot z \notin L$. |

If $L$ satisfies Property-NR then $L$ is not regular.
We will now use the lemma to prove that $L_{a, b}=\left\{a^{n} b^{n} \mid n \geq n\right\}$ is not regular.

For any chosen $p \geq 0$, let $x:=a^{p}$,
$y:=b^{p}, z=\epsilon$.
For any split of $y$ as $u \cdot v \cdot w$, if we take $x \cdot u \cdot v^{i} \cdot w=0^{p} 1^{q}$, where $q>p$ as long as $i>0$.
In particular, $x \cdot u \cdot v^{2} \cdot w \cdot z \notin L$.

## Applications of pumping lemma

Let $L=\left\{w w^{R} \mid w \in \Sigma^{*}\right\}$
() For any chosen $p$,
() let $x=\epsilon, y=0^{p}, z=110^{p}$.
(2) For any split of $y$ into $u, v, w$
(3) $x u v^{i} w z=0^{q} 110^{p}$, as long as $i>0$.
In particular, $x u v^{2} w z \notin L$.

$$
\begin{aligned}
& \text { We say that a language } L \text { satisfies } \\
& \text { Property-NR } \\
& \text { if the following conditions hold: } \\
& \text { (:) } \forall p \geq 0, \\
& \text { (;) } \begin{array}{l}
\exists x, y, z \text { such that } x \cdot y \cdot z \in L \\
\text { and }|y| \geq p, \\
\text { (;) } \forall u, v, y \text { such that }|v|>0, \\
y=u \cdot v \cdot w, \\
\text { (;) } \exists i x \cdot u \cdot v^{i} \cdot w \cdot z \notin L .
\end{array}
\end{aligned}
$$

If $L$ satisfies Property-NR then $L$ is not regular.

## Applications of pumping lemma

$L=\left\{a^{q} \mid q\right.$ is a prime number $\}$
(*) For any chosen $p$,
() let $x, z=\epsilon, y=a^{n}, n \geq p$ and $a$ prime.
(2) For any split of $y$ into $u, v, w$
© $x u v^{n+1} w z=a^{n(k+1)}$, where $k:=|v|$.
That is, $x u v^{n+1} w z=a^{n(k+1)} \notin L$.

## We say that a language $L$ satisfies Property-NR

if the following conditions hold:
(2) $\forall p \geq 0$,
(). $\exists x, y, z$ such that $x \cdot y \cdot z \in L$ and $|y| \geq p$,
(ㄷ) $\forall u, v, y$ such that $|v|>0$, $y=u \cdot v \cdot w$,
© $\exists i x \cdot u \cdot v^{i} \cdot w \cdot z \notin L$.
If $L$ satisfies Property-NR then $L$ is not regular.

## Building on pumping lemma

The following language is not regular:

$$
E Q=\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)=\#_{b}(w)\right\}
$$

Suppose $D$ is regular.
$D \cap L\left(a^{*} b^{*}\right)$ is also regular, as the intersection of two regular languages is regular and any regular expression defines a regular language.

But $D \cap L\left(a^{*} b^{*}\right)=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular, which we proved using the pumping lemma.

## Pumping down

Let $L=\left\{0^{i} 1^{j} \mid i, j \in \mathbb{N}\right.$ and $\left.i>j\right\}$.
For any choice of $p \geq 0$,

Let $x=\epsilon, y=0^{p+1}, z=1^{p}$.
Then $x \cdot y \cdot z \in L$.

Now for any choice of $u, v, w$, s.t $u \cdot v \cdot w=y$ and $|v|>0$ $x \cdot u \cdot v^{0} \cdot w \cdot z=0^{p^{\prime}} 1^{p}$, where $p^{\prime} \leq p$.
$\therefore x \cdot u \cdot v^{0} \cdot w \cdot z \notin L$.

## Relations on $\Sigma$

Let $R$ be an equivalence relation on the set $\Sigma^{*}$, i.e. $R \subseteq \Sigma^{*} \times \Sigma^{*}$ such that
Reflexive $\forall x \in \Sigma^{*} R(x, x)$ holds.
Symmetric $\forall x, y \in \Sigma^{*} R(x, y)=R(y, x)$ hold.
Transitive $\forall x, y, z \in \Sigma^{*}$ if $R(x, y), R(y, z)$ hold then $R(x, z)$ also holds.

## Transition function $\delta$ extended to $\delta^{*}$

Recall the definition from Tutorial 2

## Definition

Given a DFA $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$, let $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ be the function defined inductively as follows:
for any $q \in Q, \delta^{*}(q, \epsilon)=q$
for any $q \in Q, w \in \Sigma^{*}$ and $\left.a \in \Sigma, \delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)\right)$.

That is, given a state and a word $w \in \Sigma^{*}, \delta^{*}$ outputs the state in which $A$ ends up, after reading the string $w$.

## Relation of $\Sigma^{*}$

Let $L$ be a regular language recognized by a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

We say that $\forall x, y \in \Sigma^{*}$

$$
x \equiv A y \quad \text { iff } \quad \delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)
$$

| state | state |
| :---: | :---: |
| reached | reached |
| on $x$ | on $y$ |
| from $q_{0}$ | from $q_{0}$ |

## Assume that the auomaton is complete.

Observe that $\equiv_{A}$ is an equivalence relation.

## Example

## Example of an equivalence relation.

Consider the following automaton, say $A$.

$a a b \equiv{ }_{A} a b a b a b a$.
aabaaa $\equiv_{A} a$.

The words with even number of a's form one equivalence class.
The words with odd number of a's form the other equivalence class.
There are no other equivalence classes.

## Properties of equivalence relation on $\sum^{*}$

## Definition (right congruence)

An equivalence relation $\equiv$ defined on $\Sigma^{*}$ is said to be a right congruence if $\forall x, y \in \Sigma^{*}$ and $\forall a \in \Sigma, x \equiv y \Longrightarrow x \cdot a \equiv y \cdot a$.

## Definition (Refinement)

An equivalence relation $\equiv$ is said to refine a language $L$, if $x \equiv y$ then $(x \in L \Longleftrightarrow y \in L)$.

## Definition (Finite index)

An equivalence relation is said to have finite index if the number of equivalence classes defined by $\equiv$ is finite.

## Lemma

For a DFA A, the equivalence relation $\equiv_{A}$ defined as before is is a right congruence, refines $L(A)$, has finite index.

## Properties of $\equiv_{A}$

## Lemma

For a DFA $A$, the equivalence relation $\equiv_{A}$ defined as before is is a right congruence, refines $L(A)$, has finite index.

## Proof.

right congruence
$\delta^{*}\left(q_{0}, x \cdot a\right)=\delta\left(\delta^{*}\left(q_{0}, x\right), a\right)$

$$
=\delta\left(\delta^{*}\left(q_{0}, y\right), a\right) \because x \equiv_{A} y
$$

finite index
refinement

$$
\begin{aligned}
& \text { If } x \equiv \equiv_{A} y \\
& \text { then } \delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)
\end{aligned}
$$

$$
=\quad \delta^{*}\left(q_{0}, y \cdot a\right)
$$

$\therefore x, y$ both accepted or both rejected.

For $q \in Q$,
$[q]:=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right)=q\right\}$
$\#$ equivalence classes $=|Q|$.

## Myhill-Nerode relation

```
Definition
An equivalence relation \equivon \Sigma* is said to be a Myhill-Nerode relation
for a language L if
    it is a right congruence
    refining L
    and has a finite index.
```

    Lemma (Regular language \(\Longrightarrow\) Myhill-Nerode relation)
    For any regular language there is a Myhill-Nerode relation.

What about the converse?

## Generalised right contruence

## Definition (generalised right congruence)

An equivalence relation $\equiv$ defined on $\Sigma^{*}$ is said to be a generalised right congruence if $\forall x, y \in \Sigma^{*}$ and $\forall z \in \Sigma^{*}, x \equiv y \Longrightarrow x \cdot z \equiv y \cdot z$.

> Lemma (right congruence $\Rightarrow$ generalised right congruence)
> Let $\equiv$ be an equivalence relation defined on $\Sigma^{*}$. If $\equiv$ is a right congruence then it is also a generalised right congruence.

The proof is by induction. (Problem 3, Tutorial 4.)

From now on we will use generalised right congruence and right congruence interchangeably and call both right congruence.

## Non-regular languages

Let $L_{a, b}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
Consider any relation $\equiv$ on $\{a, b\}^{*}$.
Assume that it is a right congruence and refines $L$.
Now we will show that it does not have finite index.
For $n \neq m$, say $a^{n} \equiv a^{m}$.
By right congruence $a^{n} \cdot b^{n} \equiv a^{m} \cdot b^{n}$.
But $a^{n} b^{n} \in L$ and $a^{m} b^{n} \notin L$.
Let FACTORIAL $=\left\{a^{n!} \mid n \geq 0\right\}$.
Consider any relation $\equiv$ on $\{a\}^{*}$.
Assume that it is a right congruence and refines $L$.
Now we will show that it does not have finite index.
Say $a^{n!} \equiv a^{n+1!}$ ?
By right congruence $a^{n!} \cdot a^{n \cdot n!} \equiv a^{n+1!} \cdot a^{n \cdot n!}$.
But $a^{n!} \cdot a^{n \cdot n!} \in L$ and $a^{n+1!} \cdot a^{n \cdot n!} \notin L$.

## Converse also holds

## Lemma

Let $L \subseteq \Sigma^{*}$. If there is a Myhill-Nerode relation for $L$ then $L$ is regular.
Proof idea
Using the relation, construct a finite state automaton.

Let each equivalence class of the relation be a state of the automaton.

Define transitions naturally.

## Converse also holds

## Lemma

Let $L \subseteq \Sigma^{*}$. If there is a Myhill-Nerode relation for $L$ then $L$ is regular.

## Proof.

Construction
Let $\equiv$ be a Myhill-Nerode relation.
Let $[x]=\{y \mid y \equiv x\}$.
Let $A_{\equiv}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be defined as follows:
$Q=\left\{[x] \mid x \in \Sigma^{*}\right\}$,
$q_{0}=[\epsilon], F=\{[x] \mid x \in L\}, \delta([x], a)=[x a]$.
Correctness: Can be proved using induction.
Theorem (Myhill-Nerode theorem)
Let $L \subseteq \Sigma^{*}$. There is a Myhill-Nerode relation for $L$ if and only if $L$ is regular.

## Application of Myhill-Nerode theorem

Show that PAL $=\left\{w \cdot w^{R} \mid w \in \Sigma^{*}\right\}$ is not regular.
Consider any relation $\equiv$ on $\{a, b\}^{*}$.
Assume that it is a right congruence and refines PAL.
Now we will show that it does not have finite index.
For $x \neq y$, say $x \equiv y$.
By right congruence $x \cdot x^{R} \equiv y \cdot x^{R}$.
But $x \cdot x^{R} \in L$ and $y \cdot x^{R} \notin L$.
Therefore, no two $x \neq y$ are equivalent. Hence $\equiv$ not finite index.
Let PRIME $=\left\{a^{q} \mid q\right.$ is a prime number $\}$.
Consider any relation $\equiv$ on $\{a\}^{*}$.
Assume that it is a right congruence and refines $L$.
Now show that it does not have finite index.

## Decision problems on regular languages

Acceptance problem (for fixed $\Sigma$ )
Given: DFA $A$, input string $w \in \Sigma^{*}$
Output: "yes" iff $A$ accepts $w$.
Construct a graph from an automaton:
Let $Q=\left\{q_{0}, \ldots, q_{m-1}\right\}, q_{0}$ be the start state, $F \subseteq Q$ be the set of final states.

Create a layered graph $G_{A, n}$, where $|w|=n$, as follows:
Make $n+1$ copies of $Q: Q_{0}, Q_{1}, \ldots, Q_{n}$, where $Q_{i}=\left\{q_{i, 0}, \ldots, q_{i, m-1}\right\}$.
Add edge $\left(q_{i, u}, q_{i+1, v}\right)$ with label $a \in \Sigma$ if $\delta\left(q_{u}, a\right)=q_{v}$.

## Lemma

There is a path from $q_{0,0}$ to $q_{n, u}$ labelled by a string $w$ in $G_{A,|w|}$ if and only if $\delta^{*}\left(q_{0}, w\right)=q_{u}$ in $A$.

## Decision problems on regular languages

Nonemptiness problem (for fixed $\Sigma$ )
Given: DFA A
Output: "yes" iff $\exists w$ : $A$ accepts $w$.

```
Lemma
If a DFA A = (Q, \Sigma, \delta, q0, F) accepts some string then it accepts a string
of length \leq \Q|.
```


## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA $A$
Output: DFA $B$ s.t. $L(A)=L(B)$ and $B$ has the smallest number of states possible for recognizing $L(A)$

## Definition

Let $A=\left(Q, \Sigma, q_{0}, F, \delta\right)$. We call states $p, q$ indistinguishable if $\forall w \in \Sigma^{*}, \delta^{*}(p, w) \Leftrightarrow \delta^{*}(q, w)$.

## Definition <br> Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$. We call states $p, q$ equivalent if $\forall w \in \Sigma^{*}, \delta^{*}(p, w) \in F \Leftrightarrow \delta^{*}(q, w) \in F$.

Minimization algorithm.
Identify equivalent states.

Collapse them.

## Finding equivalent states

Finding equivalent states

## Given: DFA A

Output: sets of states of $A$ equivalent to each other

## Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$|$| 0 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 1 |  |  |  |  |
| - | - | 2 |  |  |  |
| - | - | - | 3 |  |  |
| - | - | - | - | 4 |  |
| - | - | - | - | - | 5 |

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA A
Output: sets of states of $A$ equivalent to each other

Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$$
\left\lvert\, \begin{array}{ccccccc}
0 & & & & & \\
- & 1 & & & & \\
- & - & 2 & & & \\
- & - & - & 3 & & \\
- & - & - & - & 4 & \\
- & - & - & - & - & 5 \\
\hline
\end{array}\right.
$$

$$
\left\lvert\, \begin{array}{lllllll}
0 & & & & & \\
\checkmark & 1 & & & & \\
- & \checkmark & 2 & & & \\
- & \checkmark & - & 3 & & \\
\checkmark & - & \checkmark & \checkmark & 4 & \\
- & \checkmark & - & - & \checkmark & 5 \\
\hline
\end{array}\right.
$$

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA A
Output: sets of states of $A$ equivalent to each other

Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$|$| 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1 |  |  |  |  |
| - | - | 2 |  |  |  |
| - | - | - | 3 |  |  |
| - | - | - | - | 4 |  |
| - | - | - | - | - | 5 |



## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA A
Output: sets of states of $A$ equivalent to each other

Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$|$| 0 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | 1 |  |  |  |  |
| - | - | 2 |  |  |  |
| - | - | - | 3 |  |  |
| - | - | - | - | 4 |  |
| - | - | - | - | - | 5 |


$|$| 0 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\checkmark$ | 1 |  |  |  |  |
| $\checkmark$ | $\checkmark$ | 2 |  |  |  |
| - | $\checkmark$ | - | 3 |  |  |
| $\checkmark$ | - | $\checkmark$ | $\checkmark$ | 4 |  |
| $\checkmark$ | $\checkmark$ | - | - | $\checkmark$ | 5 |

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA A
Output: sets of states of $A$ equivalent to each other

Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$|$| 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1 |  |  |  |  |
| - | - | 2 |  |  |  |
| - | - | - | 3 |  |  |
| - | - | - | - | 4 |  |
| - | - | - | - | - | 5 |


$|$| 0 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\checkmark$ | 1 |  |  |  |  |
| $\checkmark$ | $\checkmark$ | 2 |  |  |  |
| - | $\checkmark$ | $\checkmark$ | 3 |  |  |
| $\checkmark$ | - | $\checkmark$ | $\checkmark$ | 4 |  |
| $\checkmark$ | $\checkmark$ | - | - | $\checkmark$ | 5 |

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA A
Output: sets of states of $A$ equivalent to each other

Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | 1 | 2 | 3 | 4 | 5 | 0 |

(Red color indicates final states.)

$|$| 0 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1 |  |  |  |  |
| - | - | 2 |  |  |  |
| - | - | - | 3 |  |  |
| - | - | - | - | 4 |  |
| - | - | - | - | - | 5 |


$|$| 0 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\checkmark$ | 1 |  |  |  |  |
| $\checkmark$ | $\checkmark$ | 2 |  |  |  |
| - | $\checkmark$ | $\checkmark$ | 3 |  |  |
| $\checkmark$ | - | $\checkmark$ | $\checkmark$ | 4 |  |
| $\checkmark$ | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | 5 |

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA $A$
Output: sets of states of $A$ equivalent to each other

Algorithm

$$
\text { Let } Q=\left\{q_{1}, \ldots, q_{n}\right\} .
$$

1. For each $1 \leq i<j \leq n$, initialize $T(i, j)=--$
2. For each $1 \leq i<j \leq n$

$$
\begin{aligned}
& \text { If }\left(q_{i} \in F \text { AND } q_{j} \notin F\right) \text { OR }\left(q_{i} \in F \text { AND } q_{j} \notin F\right) \\
& T(i, j) \leftarrow \checkmark
\end{aligned}
$$

3. Repeat
$\{$ For each $1 \leq i<j \leq n$
If $\exists a \in \Sigma, T\left(\delta\left(q_{i}, a\right), \delta\left(q_{j}, a\right)\right)=$ then $T(i, j) \leftarrow \checkmark$ \}
Untill $T$ stays unchanged.

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA $A$
Output: DFA $B$ s.t. $L(A)=L(B)$ and $B$ has the smallest number of states possible for recognizing $L(A)$

## Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | 1 | 3 | 4 | 5 | 5 | 5 |
| b | 2 | 4 | 3 | 5 | 5 | 5 |

(Red color indicates final states.)

## Minimization problem

Minimization problem (for fixed $\Sigma$ )
Given: DFA $A$
Output: DFA $B$ s.t. $L(A)=L(B)$ and $B$ has the smallest number of states possible for recognizing $L(A)$
Example

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 1 | 3 | 4 | 5 | 5 | 5 |
| b | 2 | 4 | 3 | 5 | 5 | 5 |

(Red color indicates final states.)

$$
\left\lvert\, \begin{array}{llllllll}
0 & & & & & & \\
- & 1 & & & & & \\
- & - & 2 & & & & \text { DIY! } \\
- & - & - & 3 & & & \\
- & - & - & - & 4 & & \\
- & - & - & - & - & 5 &
\end{array}\right.
$$

## Recap of Module - I

DFA, NFA, Regular expressions and their equivalence.

Closure properties of regular languages.

Non-regular languages and Pigeon Hole Principle.

Pumping lemma and its applications.

Myhill Nerode relation and characterization of regular languages.

Polynomial time algorithms for membership problem, emptiness problem and minimization problem.

## Module - II: Different models of computation

What do we plan to do in this module?

2DFA, a variant of a DFA where the input head moves right/left.
Chapter 18, from the text of Dexter Kozen

Pushdown automata, context-free languages(CFLs), context-free grammar(CFG), closure properties of CFLs.

## Module - II: Different models of computation

2DFA: Two-way deterministic finite state automata.

| $\#$ | $w_{1}$ | $w_{2}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $w_{n} \$$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Input head moves left/right on this tape.

It does not go to the left of \#.

It does not go to the right of $\$$.

Can potentially get stuck in an infinite loop!

## Formal definition of 2DFA

## Definition

A 2DFA $A=\left(Q, \Sigma \cup\{\#, \$\}, \delta, q_{0}, q_{\text {acc }}, q_{\mathrm{rej}}\right)$, where
$Q$ : set of states, $\quad \Sigma$ : input alphabet \#: left endmarker $\$$ : right endmarker
$q_{0}$ : start state
$q_{\text {acc }}$ : accept state $q_{\text {rej }}$ : reject state
$\delta: Q \times(\Sigma \cup\{\#, \$\} \rightarrow Q \times\{L, R\}$

The following conditions are forced:
$\forall q \in Q, \exists q^{\prime}, q^{\prime \prime} \in Q$ s.t. $\delta(q, \#)=\left(q^{\prime}, R\right)$ and $\delta(q, \mathbb{S})=\left(q^{\prime \prime}, L\right)$.

