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Credit Structure

Course credit structure

quizzes 30%
mid-sem 30%
end-sem 40%

Office hours: 1 hour per week (Slot: TBA)
Problem solving session: 1 hour per week (Slot: TBA)
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Course Outline

Regular languages, DFA/NFA, related topics.

Pushdown automata, context-free languages, other models of
computation.

Turing machines and computability.

Effective computation, NP vs. P, one-way functions.
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Finite state automata

Example

Input: Text file over the alphabet {a,b}

Check: does the file end with the string ‘aa’

q0start q1 q2
a

b

a

b

b
a
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Finite state automata

Example

Input: Text file over the alphabet {a,b}

Check: does the file contain the string ‘aa’

q0start q1 q2
a

b

a

b

a,b
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Finite state automata

Example

Input: w ∈ {a,b}∗

Check: does w have odd number of as? i.e. is #a(w) ≡ 1 (mod2)?

q0start q1

a

b

a

b

Nutan (IITB) CS310 Automata Theory – 2017-2018 January 2018 6 / 91



Finite state automata

Example

Input: w ∈ {0,1}∗

Check: is the number represented by w in binary a multiple of 3?

q0start q1 q2
1

0

0

1 0

1
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Definition of finite state automata

Definition (DFA)

A deterministic finite state automaton (DFA) A = (Q,Σ,q0,F , δ), where

Q is a set of states,

Σ is the input alphabet,

q0 is the initial state,

F ⊆ Q is the set of final states,

δ is a set of transitions, i.e. δ ⊆ Q ×Σ ×Q such that
∀q ∈ Q,∀a ∈ Σ, ∣δ(q, a)∣ ≤ 1.
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Acceptance by DFA

Definition (Acceptance by DFA)

A deterministic finite state automaton (DFA) A = (Q,Σ,q0,F , δ), is said
to accept a word w ∈ Σ∗, where w = w1w2 . . .wn if

there exists a sequence of states p0,p1, . . .pn s.t.

p0 = q0,

pn ∈ F ,

δ(pi ,wi+1) = pi+1 for all 0 ≤ i ≤ n,

where δ is a set of transitions.
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Regular languages

Definition

A language L ⊆ Σ∗ is a said to be accepted by a DFA A if
L = {w ∣ w is accepted by A}.

Definition (REG)

A language is said to be a regular language if it is accepted by some DFA.

Examples
L = {w ∈ {a,b}∗ ∣ w ends with aa}
L′ = {w ∈ {a,b}∗ ∣ w contains aa}
Lodd = {w ∈ {a,b}∗ ∣ w contains odd number of a}
L3 = {w ∈ {0,1}∗ ∣ w encodes a number in binary divisible by 3}
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Day-to-day examples of finite state automata

Finite state machines are everywhere!

A vending machine that sells objects at Rs. 10 each and can take
either Rs. 5 or Rs. 10 coins as input.

q0start

q1

q2

5

5

10

10

5
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Other applications

Finite state machines in many electrinic devices

Automatic coffee dispenser

Public washing machines

Fan regulators

the list can go on!
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Closure properties of regular languages

Example

Let Σ = {a} for this example.

Let L1 = {w ∣ ∣w ∣ ≡ 0 (mod 2)}

q0start q1

a

a

Let L2 = {w ∣ ∣w ∣ ≡ 0 (mod 3)}

p0start p1 p2
a a

a

What is L1 ∩ L2?

L1 ∩ L2 = {w ∣ ∣w ∣ ≡ 0 (mod 6)}
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Closure properties of regular languages

Example continued

L1 ∩ L2 = {w ∣ ∣w ∣ ≡ 0 (mod 6)}

00start

01

02

10

11

12

a

a

a

a

a

a
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Closure properties of regular languages

Lemma

Let L1,L2 ⊆ Σ∗ be two regular languages, then L1 ∩ L2 is also a regular
language.

Proof.

Product construction

Let A1 = (Q1,Σ,q
1
0 ,F1, δ1) and A2 = (Q2,Σ,q

2
0 ,F2, δ2) be the

automata accepting L1,L2, respectively.

Let A be a finite state automaton (Q,Σ,q0,F , δ) s.t.
Q = {(q,q′) ∣ q ∈ Q1,q

′ ∈ Q2}

q0 = (q1
0 ,q

2
0)

F = {(q,q′) ∣ q ∈ F1,q
′ ∈ F2}

δ((q,q′), a) = (δ1(q, a), δ2(q
′, a))

Correctness

∀w ∈ Σ∗, w is accepted by A iff w is accepted by both A1 and A2.
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Closure properties of regular languages

Lemma

Let L1,L2 ⊆ Σ∗ be two regular languages, then L1 ∪ L2 is also a regular
language.

Proof.

Product construction

Let A1 = (Q1,Σ,q
1
0 ,F1, δ1) and A2 = (Q2,Σ,q

2
0 ,F2, δ2) be the

automata accepting L1,L2, respectively.

Let A be a finite state automaton (Q,Σ,q0,F , δ) s.t.
Q = {(q,q′) ∣ q ∈ Q1,q

′ ∈ Q2}

q0 = (q1
0 ,q

2
0)

F = {(q,q′) ∣ q ∈ F1 or q′ ∈ F2}

δ((q,q′), a) = (δ1(q, a), δ2(q
′, a))

Correctness

∀w ∈ Σ∗, w is accepted by A iff w is accepted by either A1 or A2.
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Closure properties of regular languages

Lemma

Let L ⊆ Σ∗ be a regular language, then L = {w ∣ w ∉ L} is also a regular
language.

Proof.

Let A = (Q,Σ,q0,F , δ) be the automata accepting L.

Let A′ be a finite state automaton (Q ′,Σ′,q′0,F
′, δ′) s.t.

Q ′ = Q
q′0 = q0

F ′ = {q ∈ Q ∣ q ∉ F}

δ′ = δ

Correctness

∀w ∈ Σ∗, w is accepted by A′ iff w is not accepted by A.
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Non-deterministic finite state automata

Informal description: A finite state automaton which can branch out to
different states on the same letter.

Definition (NFA)

A non-deterministic finite state automaton (NFA) A = (Q,Σ,q0,F , δ),
where

Q is a set of states,

Σ is the input alphabet, also contains empty string, i.e. ε ,

q0 is the initial state,

F ⊆ Q is the set of final states,

δ is a set of transitions, i.e. δ ⊆ Q ×Σ ×Q
∀q ∈ Q,∀a ∈ Σ, ∣δ(q, a)∣ ≤ 1.

∀q ∈ Q,∀a ∈ Σ, δ(q, a) ⊆ Q.
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Non-deterministic finite state automata

Example

Input: Text file over the alphabet {a,b}

Check: does the file end with the string ‘aa’

q0start q1 q2
a

b

a

b

b
a

q0start q1 q2
a

a,b

a

Note that: δ(q0, a) = {q0,q1}

q0start q1

rej

q2

a,b

a

a,b

a

b b

a
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Non-deterministic finite state automata

Example

Input: w ∈ {a,b}∗

Check: Is a the second-last letter of w?

q0start q1 q2
a

a,b

a,b
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Non-deterministic finite state automata

Informal description: A finite state automaton which can branch out to
different states on the same letter.

Definition (NFA)

A non-deterministic finite state automaton (NFA) A = (Q,Σ,q0,F , δ),
where

Q is a set of states,

Σ is the input alphabet, also contains empty string, i.e. ε ,

q0 is the initial state,

F ⊆ Q is the set of final states,

δ is a set of transitions, i.e. δ ⊆ Q ×Σ ×Q
∀q ∈ Q,∀a ∈ Σ, ∣δ(q, a)∣ ≤ 1.

∀q ∈ Q,∀a ∈ Σ, δ(q, a) ⊆ Q.
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Acceptance by NFA

Definition (Acceptance by NFA)

A non-deterministic finite state automaton (NFA) A = (Q,Σ,q0,F , δ), is
said to accept a word w ∈ (Σ ∖ {ε})∗, where w = w1w2 . . .wn if

w can be written as y1y2 . . . ym, where each yi ∈ Σ and m ≥ n

there exists a sequence of states p0,p1, . . .pm s.t.

p0 = q0,

pm ∈ F ,

pi+1 ∈ δ(pi , yi+1) for all 0 ≤ i ≤ m − 1.

An NFA A is said to accept a language L if L = {w ∣ A accepts w}.

Notation: Let A be an NFA/DFA. We use L(A) to denote the language
recognized by A.
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Power of NFAs

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and
DFA accept the same set of languages.

We will work it out for an example.

q0start q1 q2
a

a,b

a,b

∅ {0} {1} {2} {0,1} {0,2} {1,2} {0,1,2}

a ∅ {0,1} {2} ∅ {0,1,2} {0,1} {2} {0,1,2}

b ∅ {0} {2} ∅ {0,2} {0} {2} {0,2}
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Subset construction

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and
DFA accept the same set of languages.

Proof.

Let A = (Q,Σ,q0,F , δ). We will construct a DFA B = (Q ′,Σ,q′0,F
′,∆)

such that L(A) = L(B).
Subset construction

Q ′ = 2Q ,

q′0 = {q0},

F ′ = {S ⊆ Q ∣ S ∩ F ≠ ∅}.

∆(S , a) = ⋃p∈S δ(p, a).
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof Idea

Let S ⊆ Q.

Let

E(S) = {q ∣
q is reachable from some state in S
with zero or more ε transitions

}

Example

1start 2

3

a

b
ε

b

a,b

E({1}) = {1}
E({2}) = {1,2}
E({3}) = {3}
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof Idea

Let S ⊆ Q.

Let

E(S) = {q ∣
q is reachable from some state in S
with zero or more ε transitions

}

Example

1start 2

3

a

b
ε

b

a,b

δ′(1, a) = E(δ(1, a))
= E({2})
= {1,2}
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof Idea

Let S ⊆ Q.

Let

E(S) = {q ∣
q is reachable from some state in S
with zero or more ε transitions

}

Example

1start 2

3

a

b
ε

b

a,b

δ′(1, a) = E(δ(1, a))
= E({2})
= {1,2}
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof Idea

Let S ⊆ Q.

Let

E(S) = {q ∣
q is reachable from some state in S
with zero or more ε transitions

}

Example

1start 2

3

a

b
ε

b

a,b

δ′(3,b) = E(δ(3,b))
= E({2,3})
= {1,2,3}
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof Idea

Let S ⊆ Q.

Let

E(S) = {q ∣
q is reachable from some state in S
with zero or more ε transitions

}

Example

1start 2

3

a

b
ε

b

a,b

1start 2

3

a

a

bb
b

a,b
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof.

Let A = (Q,Σ,q0,F , δ) be an NFA with ε transitions. We construct NFA,
say B as follows:
Construction

Q ′ = Q,

Σ′ same as Σ, but no ε used anywhere,

δ′(q, a) = E(δ(q, a)),

q′0 = q0,

F ′ = F .

There can be ε transitions from the start state or to the final state.
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Example

1start 2

3

ε

a

a

a,b

b
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Example

1start 2

3

ε

a

a

a,b

b

Add a new start state q̃0.

Consider δ(p, c) for every p ∈ E(q0)

and c ∈ Σ.
Add an edge from q̃0 to q ∈ Q with
label c if

q ∈ E (⋃p∈E(q0) δ(p, c)).
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Example

1start 2

3

ε

a

a

a,b

b

As E({1}) = {1,2}
E(∪p∈{1,2}δ(p, a))

= E(δ(1, a) ∪ δ(2, a))
= E({3,1})
= {1,2,3}
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Example

1start 2

3

ε

a

a

a,b

b

1′start 1 2

3

a

a

a
a

a

a

a,b

b
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Hanlding the ε moves

Lemma

For any NFA A with ε transitions, there is another NFA, say B, such that
B has no ε transitions and L(A) = L(B).

Proof.

Let A = (Q,Σ,q0,F , δ) be given. We construct B = (Q ′,Σ′,q0,F
′, δ′) as

follows:
Construction

Q ′ = Q ∪ {q̃0}, q′0 = q̃0, Σ′ same as Σ but no ε,

F ′ = {
F ∪ {q̃0} if E({q0}) ∩ F ≠ ∅

F otherwise

δ′(q, a) = {
E(δ(E(q0), a)) if q = q̃0

E(δ(q, a)) otherwise
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Regular expressions

Various expressions formed by +, ○,∗ operators on Σ.

Definition (Regular expression)

The following are regular expressions:
1. ε, 2. a,∀a ∈ Σ, 3. ∅,

4. R1 + R2, 5. R1 ○ R2, 6. R∗
1 ,

where, R1,R2 are regular expressions.

Example

Σ∗aΣ∗ = {w ∣ w contains at least one a}

(ΣΣ)∗ = w ∣ ∣w ∣ ≡ 0(mod2)
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Language defined by a regular expression

Definition (Language defined by regular expression)

The language defined by a regular expression is:
1. L(ε) = ε, 2. L(a) = {a},∀a ∈ Σ,

3. L(∅) = ∅, 4. L(R1 + R2) = L(R1) ∪ L(R2)

5. L(R1 ○ R2) = L(R1) ○ L(R2), 6. L(R∗
1 ) = (L(R1))

∗,

where, R1,R2 are regular expressions.

Lemma

The language defined by any regular expression is regular.
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Language defined by regular expression

Lemma

The language defined by any regular expression is regular.

Example

(a + b)∗

start
a

start
b

start

ε

ε

a

b

start
ε

ε

ε

a

ε

ε

b
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Language defined by regular expression

Lemma

The language defined by any regular expression is regular.

Proof idea

It is easy to construct NFAs for 1.,2.,3.

If we inductively have NFAs for L(R1),L(R2) then we can create an
NFA for L(R1 + R2) and L(R1 ○ R2).

Similarly, if we inductively have NFAs for L(R1) then we can create
an NFA for (L(R1))

∗
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DFA to regular expression

Transitive closure method

Example

q0start q1 q2
a

ab

b

In general compute Ri ,j , the regular expression arising while going
from state i to state j .

Construct Ri ,j for every pair of state i , j .
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DFA to regular expression

Transitive closure method

Example

q0start q1 q2
a

ab

b

Nutan (IITB) CS310 Automata Theory – 2017-2018 January 2018 41 / 91



DFA to regular expression

Transitive closure method: an exercise in dynamic programming

Assume there is some ordering on the states of the automaton.

Let Rk
i ,j denote the set of all strings that take the automaton from qi

to qj without passing through a state numbered larger than qk .

We can build R1
i ,j ,R

2
i ,j , . . . ,R

∣Q ∣
i ,j recursively as follows:

Rk
i,j = Rk−1

i,j + Rk−1
i,k ⋅ (Rk−1

k,k )∗ ⋅ Rk−1
k,j .

We also need to initialize R0
i ,j for all pairs i , j as follows:

R0
i,j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

a if i ≠ j and δ(qi , a) = qj
a + ε if i = j and δ(qi , a) = qj
ε if i = j and δ(qi , a) ≠ qj
∅ otherwise.
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DFA to regular expression

Transitive closure method:

Example

q1start q2 q3
a

b

a,b

R0
1,1 = b + ε, R0

1,2 = a, R0
2,2 = ε, R0

3,3 = ε.

R0
2,3 = a + b, R0

1,3, R0
2,1, R0

3,1, R0
3,2 = ∅.

R1
1,1 = (b + ε) + (b + ε)(b + ε)∗(b + ε) = b∗

R1
1,2 = a + (b + ε)(b + ε)∗a = b∗a

R1
2,2 = ε, R1

3,3 = ε

R1
2,3 = a + b, R1

1,3, R1
2,1, R1

3,1, R1
3,2 = ∅.

R2
1,3 = ∅ + b∗a(ε)∗(a + b) = b∗a(a + b).
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Proving that PAL is not a regular language

Lemma

∀n ∈ N let PALn = {w ⋅wR ∣ w ∈ Σ∗, ∣w ∣ = n}. Any automaton accepting
PALn must have ∣Σ∣n states.

Proof.

By Pigeon Hole Principle.

Suppose ∃x , y ∈ Σn such that x ≠ y ,

automaton reaches the same state after reading both x , y .

Then x ⋅ xR and y ⋅ xR are both accepted or both rejected,

which is a contradiction.

Corollary

Let PAL = ∪n≥0PALn. PAL is not regular.
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Proving that La,b is not a regular language

Lemma

There is no finite state automaton accepting La,b, where
La,b = {anbn ∣ n ≥ 0}.

Proof.

By Pigeon Hole Principle.

Suppose ∃i , j ∈ N such that i ≠ j ,

automaton reaches the same state after reading both ai , aj .

Then ai ⋅ bj and aj ⋅ bj are both accepted or both rejected,

which is a contradiction.
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Pumping lemma

A recipe for proving that a given language is non-regular.

Lemma (Pumping Lemma)

If L is a regular language, then ∃p ∈ N such that for any strings x , y , z with
x ⋅ y ⋅ z ∈ L and ∣y ∣ ≥ p,

1 there exist strings u, v ,w , s.t. y can be written as y = u ⋅ v ⋅w ,

2 ∀i ≥ 0 x ⋅ u ⋅ v i ⋅w ⋅ z ∈ L,

3 ∣v ∣ > 0.

To prove that a given language L is not regular, the contrapositive of the
above statement is useful.
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Contrapositive of the pumping lemma

Lemma

We say that a language L satisfies Property-NR if the following
conditions hold:

/ ∀p ≥ 0,

, ∃x , y , z such that x ⋅ y ⋅ z ∈ L and ∣y ∣ ≥ p,

/ ∀u, v , y such that ∣v ∣ > 0, y = u ⋅ v ⋅w ,

, ∃i x ⋅ u ⋅ v i ⋅w ⋅ z ∉ L.

If L satisfies Property-NR then L is not regular.
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Using the pumping lemma

We say that a language L satisfies Property-NR
if the following conditions hold:

/ ∀p ≥ 0,

, ∃x , y , z such that x ⋅ y ⋅ z ∈ L and ∣y ∣ ≥ p,

/ ∀u, v , y such that ∣v ∣ > 0, y = u ⋅ v ⋅w ,

, ∃i x ⋅ u ⋅ v i ⋅w ⋅ z ∉ L.

If L satisfies Property-NR then L is not regular.

We will now use the lemma to prove that
La,b = {anbn ∣ n ≥ n} is not regular.

For any chosen p ≥ 0, let x ∶= ap,
y ∶= bp, z = ε.

For any split of y as u ⋅ v ⋅w , if we
take x ⋅ u ⋅ v i ⋅w = 0p1q, where q > p as
long as i > 0.

In particular, x ⋅ u ⋅ v2 ⋅w ⋅ z ∉ L.
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Applications of pumping lemma

Let L = {wwR ∣ w ∈ Σ∗}

/ For any chosen p,

, let x = ε, y = 0p, z = 110p.

/ For any split of y into u, v ,w

, xuv iwz = 0q110p, as long as
i > 0.
In particular, xuv2wz ∉ L.

We say that a language L satisfies
Property-NR
if the following conditions hold:

/ ∀p ≥ 0,

, ∃x , y , z such that x ⋅ y ⋅ z ∈ L
and ∣y ∣ ≥ p,

/ ∀u, v , y such that ∣v ∣ > 0,
y = u ⋅ v ⋅w ,

, ∃i x ⋅ u ⋅ v i ⋅w ⋅ z ∉ L.

If L satisfies Property-NR then L is
not regular.
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Applications of pumping lemma

L = {aq ∣ q is a prime number }

/ For any chosen p,

, let x , z = ε, y = an, n ≥ p and a
prime.

/ For any split of y into u, v ,w

, xuvn+1wz = an(k+1), where
k ∶= ∣v ∣.
That is, xuvn+1wz = an(k+1) ∉ L.

We say that a language L satisfies
Property-NR
if the following conditions hold:

/ ∀p ≥ 0,

, ∃x , y , z such that x ⋅ y ⋅ z ∈ L
and ∣y ∣ ≥ p,

/ ∀u, v , y such that ∣v ∣ > 0,
y = u ⋅ v ⋅w ,

, ∃i x ⋅ u ⋅ v i ⋅w ⋅ z ∉ L.

If L satisfies Property-NR then L is
not regular.
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Building on pumping lemma

The following language is not regular:

EQ = {w ∈ {a,b}∗ ∣ #a(w) = #b(w)}

Suppose D is regular.

D ∩ L(a∗b∗) is also regular, as the intersection of two regular
languages is regular and any regular expression defines a regular
language.

But D ∩ L(a∗b∗) = {anbn ∣ n ≥ 0} is not regular, which we proved
using the pumping lemma.
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Pumping down

Let L = {0i1j ∣ i , j ∈ N and i > j}.

For any choice of p ≥ 0,

Let x = ε, y = 0p+1, z = 1p.

Then x ⋅ y ⋅ z ∈ L.

Now for any choice of u, v ,w , s.t u ⋅ v ⋅w = y and ∣v ∣ > 0

x ⋅ u ⋅ v0 ⋅w ⋅ z = 0p
′

1p, where p′ ≤ p.

∴ x ⋅ u ⋅ v0 ⋅w ⋅ z ∉ L.
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Relations on Σ

Let R be an equivalence relation on the set Σ∗, i.e. R ⊆ Σ∗ ×Σ∗ such that

Reflexive ∀x ∈ Σ∗ R(x , x) holds.

Symmetric ∀x , y ∈ Σ∗ R(x , y) = R(y , x) hold.

Transitive ∀x , y , z ∈ Σ∗ if R(x , y),R(y , z) hold then R(x , z)
also holds.
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Transition function δ extended to δ∗

Recall the definition from Tutorial 2

Definition

Given a DFA A = (Q,Σ,q0,F , δ), let δ∗ ∶ Q ×Σ∗ → Q be the function
defined inductively as follows:

for any q ∈ Q, δ∗(q, ε) = q

for any q ∈ Q,w ∈ Σ∗ and a ∈ Σ, δ∗(q,wa) = δ(δ∗(q,w), a)).

That is, given a state and a word w ∈ Σ∗, δ∗ outputs the state in which A
ends up, after reading the string w .

Nutan (IITB) CS310 Automata Theory – 2017-2018 January 2018 54 / 91



Relation of Σ∗

Let L be a regular language recognized by a DFA A = (Q,Σ, δ,q0,F ).

We say that ∀x , y ∈ Σ∗

x ≡A y iff δ∗(q0, x) = δ∗(q0, y)

state state
reached reached

on x on y
from q0 from q0

Assume that the auomaton is complete.

Observe that ≡A is an equivalence relation.
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Example

Example of an equivalence relation.

Consider the following automaton, say A.

q0start q1

a

b

a

b

aab ≡A abababa.

aabaaa ≡A a.

The words with even number of a’s form one equivalence class.

The words with odd number of a’s form the other equivalence class.

There are no other equivalence classes.
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Properties of equivalence relation on Σ∗

Definition (right congruence)

An equivalence relation ≡ defined on Σ∗ is said to be a right congruence
if ∀x , y ∈ Σ∗ and ∀a ∈ Σ, x ≡ y Ô⇒ x ⋅ a ≡ y ⋅ a.

Definition (Refinement)

An equivalence relation ≡ is said to refine a language L, if x ≡ y then
(x ∈ L⇐⇒ y ∈ L).

Definition (Finite index)

An equivalence relation is said to have finite index if the number of
equivalence classes defined by ≡ is finite.

Lemma

For a DFA A, the equivalence relation ≡A defined as before is

is a right congruence, refines L(A), has finite index.
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Properties of ≡A

Lemma

For a DFA A, the equivalence relation ≡A defined as before is

is a right congruence, refines L(A), has finite index.

Proof.

right congruence

δ∗(q0, x ⋅ a) = δ(δ∗(q0, x), a)

= δ(δ∗(q0, y), a) ∵ x ≡A y

= δ∗(q0, y ⋅ a)
finite index

For q ∈ Q,

[q] ∶= {w ∈ Σ∗ ∣ δ∗(q0,w) = q}

# equivalence classes = ∣Q ∣.

refinement

If x ≡A y

then δ∗(q0, x) = δ
∗(q0, y)

∴ x , y both accepted or

both rejected.
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Myhill-Nerode relation

Definition

An equivalence relation ≡ on Σ∗ is said to be a Myhill-Nerode relation
for a language L if

it is a right congruence

refining L

and has a finite index.

Lemma (Regular language Ô⇒ Myhill-Nerode relation)

For any regular language there is a Myhill-Nerode relation.

What about the converse?
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Generalised right contruence

Definition (generalised right congruence)

An equivalence relation ≡ defined on Σ∗ is said to be a generalised right
congruence if ∀x , y ∈ Σ∗ and ∀z ∈ Σ∗, x ≡ y Ô⇒ x ⋅ z ≡ y ⋅ z .

Lemma (right congruence ⇒ generalised right congruence)

Let ≡ be an equivalence relation defined on Σ∗. If ≡ is a right congruence
then it is also a generalised right congruence.

The proof is by induction. (Problem 3, Tutorial 4.)

From now on we will use generalised right congruence and right
congruence interchangeably and call both right congruence.
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Non-regular languages

Let La,b = {anbn ∣ n ≥ 0}.

Consider any relation ≡ on {a,b}∗.

Assume that it is a right congruence and refines L.

Now we will show that it does not have finite index.

For n ≠ m, say an ≡ am.
By right congruence an ⋅ bn ≡ am ⋅ bn.
But anbn ∈ L and ambn ∉ L.

Let FACTORIAL = {an! ∣ n ≥ 0}.

Consider any relation ≡ on {a}∗.

Assume that it is a right congruence and refines L.

Now we will show that it does not have finite index.

Say an! ≡ an+1!?
By right congruence an! ⋅ an⋅n! ≡ an+1! ⋅ an⋅n!.
But an! ⋅ an⋅n! ∈ L and an+1! ⋅ an⋅n! ∉ L.
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Converse also holds

Lemma

Let L ⊆ Σ∗. If there is a Myhill-Nerode relation for L then L is regular.

Proof idea

Using the relation, construct a finite state automaton.

Let each equivalence class of the relation be a state of the automaton.

Define transitions naturally.
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Converse also holds

Lemma

Let L ⊆ Σ∗. If there is a Myhill-Nerode relation for L then L is regular.

Proof.

Construction

Let ≡ be a Myhill-Nerode relation.

Let [x] = {y ∣ y ≡ x}.

Let A≡ = (Q,Σ, δ,q0,F ) be defined as follows:

Q = {[x] ∣ x ∈ Σ∗},

q0 = [ε], F = {[x] ∣ x ∈ L}, δ([x], a) = [xa].

Correctness: Can be proved using induction.

Theorem (Myhill-Nerode theorem)

Let L ⊆ Σ∗. There is a Myhill-Nerode relation for L if and only if L is
regular.
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Application of Myhill-Nerode theorem

Show that PAL = {w ⋅wR ∣ w ∈ Σ∗} is not regular.

Consider any relation ≡ on {a,b}∗.

Assume that it is a right congruence and refines PAL.

Now we will show that it does not have finite index.

For x ≠ y , say x ≡ y .
By right congruence x ⋅ xR ≡ y ⋅ xR .
But x ⋅ xR ∈ L and y ⋅ xR ∉ L.
Therefore, no two x ≠ y are equivalent. Hence ≡ not finite index.

Let PRIME = {aq ∣ q is a prime number}.

Consider any relation ≡ on {a}∗.

Assume that it is a right congruence and refines L.

Now show that it does not have finite index.
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Decision problems on regular languages

Acceptance problem (for fixed Σ)

Given: DFA A, input string w ∈ Σ∗

Output: “yes” iff A accepts w .

Construct a graph from an automaton:

Let Q = {q0, . . . ,qm−1}, q0 be the start state,
F ⊆ Q be the set of final states.

Create a layered graph GA,n, where ∣w ∣ = n, as follows:

Make n+ 1 copies of Q: Q0,Q1, . . . ,Qn, where Qi = {qi,0, . . . ,qi,m−1}.

Add edge (qi,u,qi+1,v) with label a ∈ Σ
if δ(qu, a) = qv .

Lemma

There is a path from q0,0 to qn,u labelled by a string w in GA,∣w ∣ if and
only if δ∗(q0,w) = qu in A.
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Decision problems on regular languages

Nonemptiness problem (for fixed Σ)

Given: DFA A
Output: “yes” iff ∃w ∶ A accepts w .

Lemma

If a DFA A = (Q,Σ, δ,q0,F ) accepts some string then it accepts a string
of length ≤ ∣Q ∣.
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

Definition

Let A = (Q,Σ,q0,F , δ). We call states p,q indistinguishable if
∀w ∈ Σ∗, δ∗(p,w) ⇔ δ∗(q,w).

Definition

Let A = (Q,Σ, δ,q0,F ). We call states p,q equivalent if
∀w ∈ Σ∗, δ∗(p,w) ∈ F ⇔ δ∗(q,w) ∈ F .

Minimization algorithm.

Identify equivalent states.

Collapse them.
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Finding equivalent states

Finding equivalent states

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

0
1

– 2
– – 3

– 4
– – – 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

0
1

2
– – 3

– 4
– – – 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

0
1

2
– – 3

– 4
– – 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

0
1

2
– 3

– 4
– – 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Example

0 1 2 3 4 5

a 1 2 3 4 5 0

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

0
1

2
– 3

– 4
– 5
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: sets of states of A equivalent to each other

Algorithm

Let Q = {q1, . . . ,qn}.

1. For each 1 ≤ i < j ≤ n, initialize T (i , j) = −−

2. For each 1 ≤ i < j ≤ n

If (qi ∈ F AND qj ∉ F ) OR (qi ∈ F AND qj ∉ F )

T (i , j)←

3. Repeat

{ For each 1 ≤ i < j ≤ n
If ∃a ∈ Σ,T (δ(qi , a), δ(qj , a)) =
then T (i , j)←
}

Untill T stays unchanged.

Nutan (IITB) CS310 Automata Theory – 2017-2018 January 2018 74 / 91



Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

Example

0 1 2 3 4 5

a 1 3 4 5 5 5
b 2 4 3 5 5 5

(Red color indicates final states.)
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Minimization problem

Minimization problem (for fixed Σ)

Given: DFA A
Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

Example

0 1 2 3 4 5

a 1 3 4 5 5 5
b 2 4 3 5 5 5

(Red color indicates final states.)

0
– 1
– – 2
– – – 3
– – – – 4
– – – – – 5

DIY!
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Recap of Module - I

DFA, NFA, Regular expressions and their equivalence.

Closure properties of regular languages.

Non-regular languages and Pigeon Hole Principle.

Pumping lemma and its applications.

Myhill Nerode relation and characterization of regular languages.

Polynomial time algorithms for membership problem, emptiness
problem and minimization problem.
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Module - II: Different models of computation

What do we plan to do in this module?

2DFA, a variant of a DFA where the input head moves right/left.

Chapter 18, from the text of Dexter Kozen

Pushdown automata, context-free languages(CFLs), context-free
grammar(CFG), closure properties of CFLs.
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Module - II: Different models of computation

2DFA: Two-way deterministic finite state automata.

# w1 w2 . . . . . . . . . . . . . . . . . . wn $

Input head moves left/right on this tape.

It does not go to the left of #.

It does not go to the right of $.

Can potentially get stuck in an infinite loop!
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Formal definition of 2DFA

Definition

A 2DFA A = (Q,Σ ∪ {#,$}, δ,q0,qacc,qrej), where

Q : set of states, Σ: input alphabet
#: left endmarker $: right endmarker
q0: start state
qacc: accept state qrej: reject state

δ ∶ Q × (Σ ∪ {#,$}→ Q × {L,R}

The following conditions are forced:

∀q ∈ Q, ∃q′,q′′ ∈ Q s.t. δ(q,#) = (q′,R) and δ(q,$) = (q′′,L).
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