
CS310 Automata Theory – 2017-2018

Nutan Limaye

Indian Institute of Technology, Bombay
nutan@cse.iitb.ac.in

Module 2: Extensions of DFA/NFAs
February, 2018

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 1 / 54

Module - II: Different models of computation

What do we plan to do in this module?

2DFA, a variant of a DFA where the input head moves right/left.

Chapter 18, from the text of Dexter Kozen

Finite state transducers, machines that read and input and output a
string.

Lecture notes shared on Moodle

Pushdown automata, context-free languages(CFLs), context-free
grammar(CFG), closure properties of CFLs.

Any textbook among the three reference books.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 2 / 54

Module - II: Different models of computation

2DFA: Two-way deterministic finite state automata.

w1 w2 wn $

Input head moves left/right on this tape.

It does not go to the left of #.

It does not go to the right of $.

Can potentially get stuck in an infinite loop!

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 3 / 54

Formal definition of 2DFA

Definition

A 2DFA A = (Q,Σ ∪ {#,$}, δ,q0,qacc,qrej), where

Q : set of states, Σ: input alphabet
#: left endmarker $: right endmarker
q0: start state
qacc: accept state qrej: reject state

δ ∶ Q × (Σ ∪ {#,$} → Q × {L,R}

The following conditions are forced:

∀q ∈ Q, ∃q′,q′′ ∈ Q s.t. δ(q,#) = (q′,R) and δ(q,$) = (q′′,L).

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 4 / 54

2DFA: Two-way deterministic finite state automata

Example

L1 = {w ∈ Σ∗ ∣ the second last letter is a}.

2DFA is best described by giving its δ function.

Assume that initially the input head is on #.

Read the input and move right till $ is encountered.

Up on seeing $ move left two positions.

If that letter is a, then accept else reject.

Handle other corner cases such as the word length is less than 2.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 5 / 54

2DFA: Two-way deterministic finite state automata

Example

L1 = {w ∈ Σ∗ ∣ the second last letter is a}.

2DFA is best described by giving its δ function.

Assume that initially the input head is on #.

The description of δ for the 2DFA for L1 is given below.

δ(q0,#) = (q1,R)

δ(q1,$) = (qrej ,L)
δ(q1, c) = (q2,R) for all c ∈ Σ
δ(q2,$) = (qrej ,L)
δ(q2, c) = (q3,R) for all c ∈ Σ
δ(q3, c) = (q3,R) for all c ∈ Σ
δ(q3,$) = (q4,L)
δ(q4, c) = (q5,L) for all c ∈ Σ
δ(q5, a) = (qacc ,L)
δ(q5, c) = (qrej ,L) for all c ∈ (Σ ∖ {a}).

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 6 / 54

2DFA: Two-way deterministic finite state automata

Examples

Let Σ = {a,b} and L be a regular language.

L2 = {w ∈ Σ∗ ∣ w ⋅w ∈ L}

Let A = (Q,Σ, δ,q0,F) be a DFA for L. The 2DFA for L2 works as follows:

2DFA keeps two copies of states of A, say Q1 and Q2. Additionally it
has an extra start state q′0 and ∣Q ∣ many special state q←,i for each
1 ≤ i ≤ ∣Q ∣.

The first copy Q1 is used to read the whole input the first time and
do as per δ in that copy.Suppose we reach state q1i at the end.

The special state q←,i is used to move left after having read the input
once.

The second copy Q2 is used to read the input the second time.
Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 7 / 54

2DFA: Two-way deterministic finite state automata

Examples

Let Σ = {a,b} and L be a regular language.

L2 = {w ∈ Σ∗ ∣ w ⋅w ∈ L}

Let A = (Q,Σ, δ,q0,F) be a DFA for L. The 2DFA for L2 works as follows:

Start from a special start state q′0.

Reading # move to the state q10 and move right.

Do exactly as per δ in Q1 till $ is encontered. Say the state reached
is q1i just before reading $.

Upon seeing $, move to a special state q←,i and left.

In q←,i , reading any letter (other than #), stay in q←,i and move left.

In q←,i , reading #, move to the state q2i and move right.

Do exactly as per δ in Q2 till $ is encontered.

If the state is q2f , where qf ∈ F , when reading $ then go to state qacc
and move left, else go to state qrej and move right.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 8 / 54

2DFA: Two-way deterministic finite state automata

Examples

Let Σ = {a,b} and L be a regular language.

L1 = {w ∈ Σ∗ ∣ second letter from the end if a}.

L2 = {w ∈ Σ∗ ∣ w ⋅w ∈ L}

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 9 / 54

Acceptance by 2DFA

Definition

Let A be a 2DFA.

A word w is said to be accepted by A if A reaches qacc on w .

A word w is said to be rejected by A if A reaches qrej on w .

A is said to accept a language L if ∀w ∈ L, A reaches qacc.

2DFA may loop forever if w ∉ L or may enter qrej.

Lemma

If L is regular then there is a 2DFA accepting L.

This holds trivially.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 10 / 54

Languages accepted by 2DFA

Example

La,b = {anbn ∣ n ≥ 0}.

Can a 2DFA accept La,b?

PAL = {w ⋅wR ∣ w ∈ {a,b}∗}.

Can a 2DFA accept PAL?

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 11 / 54

Power of 2DFAs

Lemma

The class of language recognized by 2DFAs is regular.

Proof idea.

For any language accepted by a 2DFA we will define a Myhill-Nerode
relation.

How should we form word equivalences?

Using the behaviour of the input head for the given set of words.

To obtain finite index property, the equivalence should be with
respect to states.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 12 / 54

Power of 2DFAs

Lemma

The class of language recognized by 2DFAs is regular.

Proof.

Let Tx ∶ Q × {&} → Q × {⊥}, which is defined as follows:

Tx(p) ∶= q if whenever A enters x on p
it leaves x on q.

Tx(&) ∶= q q is the state in which A emerges
on x the first time.

Tx(q) ∶= ⊥ if A loops on x forever.

We will say that two words, x , y are equivalent, i.e. x ∼ y , if Tx = Ty .

We will show that ∼ is a Myhill-Nerode relation.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 13 / 54

Power of 2DFAs

Lemma

The class of language recognized by 2DFAs is regular.

Proof.

Let Tx ∶ Q × {&} → Q × {⊥}, which is defined as follows:

Tx(p) ∶= q if whenever A enters x on p
it leaves x on q.

Tx(&) ∶= q q is the state in which A emerges
on x the first time.

Tx(q) ∶= ⊥ if A loops on x forever.

Total number of functions of the type

Tx ≤ (∣Q ∣ + 1)(∣Q ∣+1)

Tx = Ty ⇒ ∀z(xz ∈ F ⇔ yz ∈ F). Prove this.

Tx = Ty ⇔ x ≡A y

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 14 / 54

Finite state transducer FST

A finite state trasducer is a finite state machine that reads an input and
produces an output.

the input head moves from left to right only.

the input comes from some alphabet, say Σ and the output may come
from a possibly different alphabet, say Γ.

after reading each latter, the machine may output a string from Γ∗.

the output depends on the state of the machine and the letter being
read at that state.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 15 / 54

Finite state transducer, FST

A finite state trasducer is a finite state machine that reads an input and
produces an output.

Definition

A finite state transducer T = (Q,Σ,Γ, δ,q0), where

Q : set of states, Σ: input alphabet

Γ: output alphabet q0: start state

δ: Q ×Σ→ Q × Γ∗

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 16 / 54

Finite state transducer, FST

Example

Input: w ∈ {0,1}∗

Output: a string w ′ ∈ {0,1}∗ such that, #0(w) = #1(w
′) = ∣w ∣ −#1(w)

q0start

1:0, 0:1

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 17 / 54

Finite state transducer, FST

Example

Input: w ∈ {a,b}∗

Output: a string w ′ ∈ {0,1}∗ such that, if #0(w
′) = 2 ⋅#a(w)

and #1(w
′) = #b(w)

q0start q1

a:00

b:1

a:00

b:1

q0start

a:00, b:1

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 18 / 54

Finite state transducer, FST

Example

Input: w ∈ {0,1}∗

Output: w ′ ∈ {0,1}∗ such that, bin(w ′) = bin(w) (mod 2i), where
2i ≤ bin(w) < 2i+1

That is, for instance if w = 0110 then w ′ = 10 if w = 1000110 then
w ′ = 110.

q0start q1
1:ε

0:ε 0:0, 1:1

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 19 / 54

Finite state transducer, FST

Application

Input: w ∈ {a,b, . . . , z}∗

Output: w ′ ∈ {woof , yip}∗ such that, for each instance of the word ‘bark’ in w output ‘woof’
for each instance of the word ‘yelp’ in w output ‘yip’
for all else do nothing.

Speech recognition literature uses such FSTs (and variants of FSTs)
heavily to build tools.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 20 / 54

Output of an FST

Transition function δ extended to δ∗.

Definition

Given an FST T = (Q,Σ,Γ,q0, δ), let δ∗ ∶ Q ×Σ∗ → Q × Γ∗ be the
function defined inductively as follows:

for any q ∈ Q, δ∗(q, ε) = (q, ε)

for any q ∈ Q,w ∈ Σ∗ and a ∈ Σ, δ∗(q, aw) = (q′′,u ⋅ u′), where

δ(q, a) = (q′,u) and δ∗(q′,w) = (q′′,u′).

That is, given a state and a word w ∈ Σ∗, δ∗ outputs the state in which T
ends up, after reading the string w and outputs the string that T outputs
after reading w .

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 21 / 54

Function computed by an FST

Output of an FST

Definition

Let T be an FST. The FST T is said to output u on w , denoted by
fT (w) = u, if there exists a state q ∈ Q such that δ∗(q0,w) = (q,u).

Functions computed by an FSTs.

Definition

A function f ∶ Σ∗ → Γ∗ is said to be FST computable, if there exists an
FST T such that ∀w ∈ Σ∗, f (w) = fT (w).

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 22 / 54

Composibility of FST computable functions

Definition

Let f ∶ Σ∗ →∆∗ and g ∶ ∆∗ → Γ∗ be two functions. The function
composition, (g ○ f) ∶ Σ∗ → Γ∗, is defined as (g ○ f)(w) = g(f (w)).

Lemma

Let T1 = (Q1,Σ,∆, δ1,q
1
0) and T2 = (Q2,∆,Γ, δ2,q

2
0) be two finite state

transducers. There is a finite state transducer T such that fT = (fT2 ○ fT1).

Proof.

We define T = (Q,Σ,Γ, δ,q0) using the product construction.

Q = Q1 ×Q2, q0 = (q10 ,q
2
0).

δ((q1,q2), a) = ((q′1,q
′
2), v), where

δ1(q1, a) = (q′1,w) and
δ∗2 (q2,w) = (q′2, v).

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 23 / 54

Closure property of regular languages

Lemma

Let fT ∶ Σ∗ → Γ∗ be an FST computable function computed by an FST T.
Let L ⊆ Γ∗ be a regular language, then

L′ = f −1T (L) = {w ∈ Σ∗ ∣ f (w) ∈ L}

is also regular.

Proof.

Modified product construction. Let A = (Q,Γ, δ,q0,F) be a DFA for L.
Let T = (QT ,Σ,Γ, δT ,q(0,T)).

We design B = (Q ′,Σ, δ′,q′0,F
′) a DFA for L′ as follows.

Q ′ = Q ×QT , q′0 = (q0,q(0,T)), F ′ = F ×QT ,

δ′((p,q), a) = (δ∗(p,w), r), where δT (q, a) = (r ,w).

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 24 / 54

Pushdown automata

NFA + Stack

La,b = {anbn ∣ n ≥ 0}.

PAL = {w ⋅wR ∣ w ∈ Σ∗}.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 25 / 54

Pushdown automata: formal definition

Definition

A non-deterministic pushdown automaton (NPDA)
A = (Q,Σ,Γ, δ,q0,⊥,F), where

Q: set of states Σ: input alphabet
Γ: stack alphabet q0: start state
⊥: start symbol F : set of final states

δ ⊆ Q ×Σ × Γ ×Q × Γ∗.

Understanding δ

For q ∈ Q, a ∈ Σ and X ∈ Γ, if δ(q, a,X) = (p, γ),

then p is the new state and γ replaces X in the stack.

if γ = ε then X is popped.
if γ = X then X stays unchanges on the top of the stack.
if γ = γ1γ2 . . . γk then X is replaced by γk
and γ1γ2 . . . γk−1 are pushed on top of that.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 26 / 54

Nondeterministic pushdown automata

Example: La,b = {anbn ∣ n ≥ 0}.
N = (Q = {q0,q1,q2,q

′},Σ = {a,b},Γ = {B},q0,F = {q2}).

δ(q0, a,⊥) = (q0,B ⊥)

δ(q0, a,B) = (q0,BB) push B while reading a on q0

δ(q0,b,B) = (q1, ε) move to q1 on seeing b

δ(q1,b,B) = (q1, ε) pop B while reading b on q1

δ(q1,b,⊥) = (q′,⊥) extra b in the input then go to some state q′

δ(q1, ε,⊥) = (q2,⊥) else go to accepting state q2

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 27 / 54

Nondeterministic pushdown automata

Example: PAL = {w ⋅wR ∣ w ∈ Σ∗}.
N = (Q = {q0,q1,q2,q

′},Σ = {a,b},Γ = {A,B},q0,F = {q2}).

δ(q0, a,⊥) = {(q0,A ⊥), (q1,A ⊥)}

δ(q0,b,⊥) = {(q0,B ⊥), (q1,B ⊥)}

δ(q0, a,A) = {(q0,AA), (q1,AA)}, δ(q0, a,B) = {(q0,AB), (q1,AB)}

δ(q0,b,A) = {(q0,BA), (q1,BA)}, δ(q0,b,B) = {(q0,BB), (q1,BB)}

δ(q1, a,A) = (q1, ε)

δ(q1,b,B) = (q1, ε)

δ(q1, a,B) = (q′, ε)
δ(q1,b,A) = (q′, ε)
δ(q1, a,⊥) = (q′, ε)
δ(q1,b,⊥) = (q′, ε)
δ(q1, ε,⊥) = (q2,⊥)

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 28 / 54

Configuration of an NPDA

Definition (Configurations)

A configuration of an NPDA A = (Q,Σ,Γ, δ,q0,⊥,F) is a three tuple
(q,w , γ), where q ∈ Q, w ∈ Σ∗, and γ ∈ Γ∗.

if (p, γ) ∈ δ(q, a,X) then ∀w ∈ Σ∗ and γ′ ∈ Γ∗,

(q, a ⋅w ,Xγ′) ⊢ (p,w , γ ⋅ γ′)

Let I , J are two configurations of A.

We say that I ⊢k J iff ∃I ′ such that I ⊢ I ′ and I ′ ⊢k−1 J.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 29 / 54

Language recognized by pushdown automata

Definition

We say that a word is accepted by an NPDA A if
(q0,w ,⊥) ⊢

∗ (q, ε, γ), where q ∈ F . acceptance by a final state.

A language L is said to be recognized by an NPDA A if the set
{w ∣ w is accepted by A} is the same as L.

The class of languages recognized by NPDAs is called Context-free
languages.

Another notion of acceptance of words:

We say that a word is accepted by an NPDA A if
(q0,w ,⊥) ⊢

∗ (q, ε, ε), where q ∈ Q. acceptance by an empty stack.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 30 / 54

Context-free languages

Examples

PAL = {w ⋅wR ∣ w ∈ Σ∗}.

Balanced = {w ∈ {(,), [,]} ∣ w balanced string of paranthesis }.

La/b/c = {aibjck ∣ i ≠ j or j ≠ k}.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 31 / 54

Closure property of CFLs

Lemma

Let L1,L2 be two context-free languages. Then L1 ∪ L2 is also a
context-free language.

Proof.

Let L1 be accepted by an NPDA N1 = (Q1,Σ,Γ, δ1,q10 ,⊥,F
1).

Let L2 be accepted by an NPDA N2 = (Q2,Σ,Γ, δ2,q20 ,⊥,F
2).

Let N = (Q,Σ,Γ, δ,q0,⊥,F) be an NPDA defined as follows:

Q = Q1 ∪Q2 ∪ {q0}, F = F 1 ∪ F 2,
δ = δ1 ∪ δ2 ∪ {δ(q0, ε,⊥) = {(q10 ,⊥), (q

2
0 ,⊥)}}.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 32 / 54

Context-free languages

Examples

PAL = {w ⋅wR ∣ w ∈ Σ∗}.

Balanced = {w ∈ {(,), [,]} ∣ w balanced string of paranthesis }.

La/b/c = {aibjck ∣ i ≠ j or j ≠ k}.

La/b/c = {aibjck ∣ i ≠ j and j ≠ k}. ?

La,b,c = {an ⋅ bn ⋅ cn ∣ n ≥ 0}. ?

EQ = {w ⋅w ∣ w ∈ Σ∗}. ?

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 33 / 54

Non-context-free languages

Lemma (Pumping lemma for CFLs)

Say L is a language over the alphabet Σ∗. If

/ for all n ∈ N,

, ∃z ∈ Σ∗, such that z ∈ L

/ for all possible ways of breaking z into z = u ⋅ v ⋅w ⋅ x ⋅ y, s.t.

∣v ⋅w ⋅ x ∣ ≤ n and ∣v ⋅ x ∣ > 0,

, ∃i ∈ N s. t. u ⋅ v i ⋅w ⋅ x i ⋅ y ∉ L,

then L is not a CFL.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 34 / 54

Applications of the pumping lemma for CFLs

Let La,b,c = {ambmcm ∣ m ≥ 0}

/ For any chosen n,

, let z = an ⋅ bn ⋅ cn

/ For any split of z into
u, v ,w , x , y

, as ∣v ⋅w ⋅ x ∣ ≤ n
Either v ⋅w ⋅ x has no c’s, or no
a’s.
Therefore, u ⋅ v0 ⋅w ⋅ x0 ⋅ y ∉ L.

Say L is a language over the alphabet
Σ∗. If

/ for all n ∈ N,

, ∃z ∈ Σ∗, such that z ∈ L

/ for all possible ways of breaking
z into z = u ⋅ v ⋅w ⋅ x ⋅ y , s.t.

∣v ⋅w ⋅ x ∣ ≤ n and ∣v ⋅ x ∣ > 0,

, ∃i ∈ N s. t. u ⋅ v i ⋅w ⋅ x i ⋅ y ∉ L,

then L is not a CFL.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 35 / 54

Applications of the pumping lemma for CFLs

Let EQ = {w ⋅w ∣ w ∈ {a,b}∗}.

/ For any chosen n,

, let z = an ⋅ b2n ⋅ an ⋅ b2n

/ For any split of z into
u, v ,w , x , y

, Note that ∣v ⋅w ⋅ x ∣ ≤ n.
(after some case analysis.)

Therefore, u ⋅ v0 ⋅w ⋅ x0 ⋅ y ∉ L.

Say L is a language over the alphabet
Σ∗. If

/ for all n ∈ N,

, ∃z ∈ Σ∗, such that z ∈ L

/ for all possible ways of breaking
z into z = u ⋅ v ⋅w ⋅ x ⋅ y , s.t.

∣v ⋅w ⋅ x ∣ ≤ n and ∣v ⋅ x ∣ > 0,

, ∃i ∈ N s. t. u ⋅ v i ⋅w ⋅ x i ⋅ y ∉ L,

then L is not a CFL.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 36 / 54

Context-free grammars

Inductive definition of PAL.

ε is in PAL.

If w is in PAL then 0 ⋅w ⋅ 0 ∈ PAL.

If w is in PAL then 1 ⋅w ⋅ 1 ∈ PAL.

Context-free grammar for PAL.

S → ε.

S → 0S0.

S → 1S1.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 37 / 54

Context-free grammars

PAL’ = {w ⋅ c ⋅wR ∣ w ∈ {0,1}∗, c ∈ {0,1, ε}}
Inductive definition of PAL’.

ε,0,1 is in PAL’.

If w is in PAL’ then 0 ⋅w ⋅ 0 ∈ PAL’.

If w is in PAL’ then 1 ⋅w ⋅ 1 ∈ PAL’.

Context-free grammar for PAL’.

S → ε.

S → 0.

S → 1.

S → 0S0.

S → 1S1.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 38 / 54

Context-free grammar

Definition

A context-free grammar (CFG) G is given by (V ,T ,P,S0), where

V is a set of variables,

T is a set of terminal symbols or the alphabet,

P is a set of productions, P ⊆ V × (V ∪T)∗,

S0 ∈ V , a start symbol.

Example: Grammar for PAL.

S → ε.

S → 0.

S → 1.

S → 0S0.

S → 1S1.

Gpal = (V ,T ,P,S0) such that

V = {S},

T = {0,1},

P = {S → ε,S → 0,S → 1,S → 0S0,S → 1S1},

S0 = S .

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 39 / 54

Context-free grammars

Example: La,b = {anbn ∣ n ≥ 0}

S → ε ∣ aSb

Example: L′ = {aibj ∣ i < j}

S ′ → b ∣ aS ′b ∣ S ′b
Example: L′′ = {aibj ∣ i > j}

S ′′ → a ∣ aS ′′b ∣ aS ′′

Example: L = {aibj ∣ i ≠ j}

S → S ′ ∣ S ′′

S ′ → b ∣ aS ′b ∣ S ′b
S ′′ → a ∣ aS ′′b ∣ aS ′′.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 40 / 54

Derivations of a CFG

Definition

Let G be a CFG given by (V ,T ,P,S0).

Let w ,w ′ ∈ (V ∪T)∗,

let A ∈ V and let (A→ v) ∈ P be a production in the grammar, where
v ∈ (V ∪T)∗.

Then we say that w ⋅A ⋅w ′ derives w ⋅ v ⋅w ′ in one step.

We denote it as follows: w ⋅A ⋅w ′ ⇒ w ⋅ v ⋅w ′.

Definition (⇒∗)

Let G be a CFG given by (V ,T ,P,S0).

For all α ∈ (V ∪T)∗, we say that α⇒0 α.

For all α,β, γ ∈ (V ∪T)∗,

if α⇒k−1 β and β ⇒ γ then α⇒k γ.

For all α,β ∈ (V ∪T)∗, we say that α⇒∗ β, if ∃k ≥ 0 s.t. α⇒k β.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 41 / 54

Language of a CFG

Definition

Let G be a CFG given by (V ,T ,P,S0). The language of G , L(G), is the
set of all the strings over T which can be derived from S0, i.e.

L(G) = {w ∈ T ∗ ∣ S ⇒∗ w}.

Lemma

L(Gpal) is equal to PAL.
∀w ∈ {0,1},∗ w ∈ PAL if and only if w = wR .

Proof.

By Induction on ∣w ∣.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 42 / 54

Examples

Give context-free grammars for the following languages.

{ai ⋅ bj ⋅ ck ∣ either i ≠ j or j ≠ k}.

First we give a grammar for {ai ⋅ bj ⋅ ck ∣ i ≠ j}.

S → S ′C ∣ S ′′C
S ′ → b ∣ aS ′b ∣ S ′b
S ′′ → a ∣ aS ′′b ∣ aS ′′.
C → cC ∣ ε

Now we give a grammar for {ai ⋅ bj ⋅ ck ∣ j ≠ k}.

S → AS ′ ∣ AS ′′

S ′ → c ∣ bS ′c ∣ S ′c
S ′′ → b ∣ bS ′′c ∣ bS ′′.
C → aA ∣ ε

Now simply take the union.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 43 / 54

Chomsky normal form

Definition

A context-free grammar is said to be in Chomsky normal form if every rule
is of the form

A→ BC

A→ a

where a ∈ T , A,B,C ∈ V , neither B nor C is the start variable, i.e. start
variabe does not appear on the right of any rule. Moreover, epsilon does
not appear on the right of any rule except as S → ε.

Lemma

Any context-free grammar G can be converted into another context-free
grammar G ′ such that L(G) = L(G ′) and G ′ is in the Chomsky normal
form.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 44 / 54

Chomsky normal form

Step 1: Add a new start symbol

S0 → S

Step 2: Remove ε rules.

Suppose A→ ε is a rule and A is not the start symbol.

If R → uAv is a rule then delete the rule and add R → uv to the rules.

If R → uAvAw is a rule then delete the rule and add
R → uvAw ∣ uAvw ∣ uvw .

If R → A is a rule then delete the rule and add R → ε unless R → ε
was already removed.

Step 3: Remove unit rules.

If A→ B is a rule and if B → u appears

then remove A→ B and add A→ u.

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 45 / 54

Chomsky normal form

Step 1: Add a new start symbol

Step 2: Remove ε rules.

Step 3: Remove unit rules.

Step 4: Put the rest of the rules in the proper form.

If A→ u1u2 . . .uk is a rule, where k ≥ 3 and ui ∈ V ∪T

Remove this rule and add the following rules:

A→ u1A1, A1 → u2A2 . . .Ak−2 → uk−1uk .
If ui ∈ T , moreover replace each ui with a variable Ui

and add Ui → ui .

Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 46 / 54

Equivalence of CFGs and PDAs

Theorem

A language is context-free if and only if it is generated by a context-free
grammar.

Proof idea: from CFGs to NPDAs.

Assume CFG is in the Chomsky normal form.

Push S0 on the stack and make it the current variable.

Push non-deterministically one of the strings in the right hand side of
the rule generated from the current variable on the stack.

e.g. A→ BC ∣ DE then non-deterministically choose either BC or DE
and depending on the choice, say it is BC , push the string BC on the
stack with B on the top of the stack.

If the the top is a terminal, then match it off with the input bit,

if the top of the stack is ⊥ then accept

else make that the new current variable,

Repeat the above procedure. (It will either accept or loop forever.)
Nutan (IITB) CS310 Automata Theory – 2017-2018 February 2018 47 / 54

