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Last two modules

Regular languages, NFA/DFA, Regular expressions, Myhill-Nerode
relations.

2DFA: DFA + two-way head movement. They recognize exactly
regular languages.

Finite state transducers (FSTs). Machines that output languages.

Pushdown automata: NFA + Stack. The class of languages
recognized by these is called Context-free languages (CFLs).

Context-free grammars: Recursive programs. The class of languages
generated by these grammars is CFLs.
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Turing machines

What is a Turing machine? (Informal description.)

a. . .b . . . c

q

Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

Special states for accepting and rejecting.
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Formal definition

Definition

A Turing machine (TM) is given by M = (Q,Σ,Γ, δ,q0,qf ,qrej)
Q: set of states Σ: input alphabet
q0: start state Γ: tape alphabet, Σ ⊆ Γ, & ∈ Γ
qacc : accept state qrej : reject state

δ ⊆ Q × Γ ×Q × Γ × {L,R}.

Understanding δ

For a q ∈ Q, a ∈ Γ if δ(q, a) = (p,b,L),

then p is the new state of the machine,

b is the letter with which a gets overwritten,

the head moves to the left of the current position.
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Turing machine for a non-context free language

Example

EQ = {w ⋅# ⋅w ∣ w ∈ Σ∗}.

Example from Sipser
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Another example from Sipser

L = {aibjck ∣ i × j = k and i , j , k ≥ 1}.
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Configuration

Definition

The configuration of a TM M = (Q,Σ,Γ, δ,q0,qf ,qrej) is given by

Γ∗ ×Q × Γ∗

A configuration need not include blank symbols.

Let u, v ∈ Γ∗, a,b, c ∈ Γ and q,q′ ∈ Q.

Suppose (q′, c ,L) ∈ δ(q,b) is a transition in M,

then starting from u ⋅ a ⋅ q ⋅ b ⋅ v in one step we get u ⋅ q′ ⋅ a ⋅ c ⋅ v .

We say that u ⋅ a ⋅ q ⋅ b ⋅ v yields u ⋅ q′ ⋅ a ⋅ c ⋅ v .

We denote it by u ⋅ a ⋅ q ⋅ b ⋅ v ↦ u ⋅ q′ ⋅ a ⋅ c ⋅ v .
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Special configurations

Start configuration

We assume that the head is on the left of the input in the beginning.

Therefore, q0 ⋅w is the start configuration.

Accepting configuration

Any configulation that contains qacc is an accepting configuration.

Rejecting configuration

Any configulation that contains qrej is a rejecting configuration.

Halting configurations: if a configuration is accepting or rejecting then it is
called a halting configuration.

A TM may not halt!
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Acceptance by a TM

A TM M is said to accept a word w ∈ Σ∗ if there exists a sequence of
configurations C0,C1, . . . ,Ck such that

C0 is a start configuration,

Ci ↦ Ci+1 for all 0 ≤ i ≤ k − 1,

Ck is an accepting configuration.

Let ρ = C0,C1, . . . ,Ck be a sequence of configuration of M on w .

This sequence ρ is called a run of the machine M on w .

If Ck is an accepting configuration then ρ is called an accepting run.

If Ck is a rejecting configuration then ρ is called a rejecting run.
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Turing recognizable languages

Definition

A language L is said to be Turing recognizable if there is a Turing machine
M such that ∀w ∈ L, M has at least one accepting run on w .

We say that M recognizes L.

For words not in L

the machine may run forever,

or may reach qrej ,

both are valid outcomes,

and the machine is allowed to do either of the two.
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Turning decidable languages

Definition

A language L is said to be Turing decidable if there is a Turing machine M
such that for all w ∈ Σ∗, M halts on w and

if w ∈ L, M has an accepting run on w .

if w ∉ L, all runs of M on w are rejecting runs.

We say that M decides L.

If a language L is Turing decidable then

the TM deciding L always halts.

L is also Turing recognizable.

Turing decidable languages form a subclass of Turing recognizable
languages.
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Comparing decidability and recognizability

Theorem

A language L is Turing decidable if and only if L and L are both Turing
recognizable.

Proof.

(⇒)

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then L is also Turing decidable. (Needs proof.)

Therefore, L is also Turing recognizable.

(⇐)

Let M1,M2 be two TMs recognizing L,L, respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M1,M2, if M1 reaches accepting configuration then accept.

Else M2 will reach the accepting configuraion. In that case, reject.
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Variants of Turing machines

k-tape Turing machines

Usual TM + Multiples tapes + independent tape-head for each tape.

δ ⊆ Q × Γk ×Q × Γk × {L,R,S}k .

Example

Given: 1n on the input tape

Output: 1n
2

on the same tape.

Nutan (IITB) CS310 Automata Theory – 2017-2018 March 2018 13 / 82



k-tape Turing machines

Example

Given: 1n on the input tape

Output: 1n
2

on the same tape.

0 While there is a 1 symbol on the first tape,

0.1 Change the leftmost 1 symbol to X .
0.2 For each X or 1 symbol on the first tape

write a 1 symbol on the second tape.
end for

end while

1 Copy the contents of the second tape on the first tape.

2 Halt and accept.
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Variants of Turing machines

k-tape Turing machines

Usual TM + Multiples tapes + independent tape-head for each tape.

δ ⊆ Q × Γk ×Q × Γk × {L,R,S}k .

Example

Given: 1n on the input tape

Output: 1n
2

on the same tape.

Are k-tape TMs more powerful than 1-tape TMs?

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.
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k-tape Turing machines

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let M = (Q,Σ,Γ, δ,q0,qacc ,qrej , ) be the k-tape Turing machine.

Let M ′ = (Q ′,Σ,Γ′, δ′,q0,qacc ,qrej) be such that,

Γ = {a ∣ a ∈ Γ}, Γ = Γ ∪ Γ ∪ {#}.
Γ symbols used to denote tape head positions.
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k-tape Turing machines

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M ′ works follows:

reads the tape left to right once, remembeing the marked symbols in
its states,

uses δ to determine the next state,

sweeps the input left to right again to update marked symbols.
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Back to Comparing decidability and recognizability

Theorem

A language L is Turing decidable if and only if L and L are both Turing
recognizable.

Proof.

(⇒)

If L is Turing decidable then L is also Turing recognizable

If L is Turing decidable, then L is also Turing decidable. (Needs proof.)

Therefore, L is also Turing recognizable.

(⇐)

Let M1,M2 be two TMs recognizing L,L, respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M1,M2, if M1 reaches accepting configuration then accept.

Else M2 will reach the accepting configuraion. In that case, reject.
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Turing recognizability for L,L ⇒ Turing decidibility for L

We design 2-tape TM M, using TMs M1,M2 as follows:

M copies input from tape 1 to tape 2.

It acts as M1 on tape 1 and as M2 on tape 2.

M keeps track of the state control of M1, M2 in Q1 ×Q2.

Can you give a full decsription of M?
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Turing machines as strings

Every TM can be represented as a string in {0,1}∗.
Just encode the description of the machine.

Every string over {0,1}∗ represents some TM.
If a string does not represent any TM, as per our encoding, let us
assume that it represents a TM that does nothing.

Every TM is represented by infinitely many strings.
Any encoding of TMs will have a null character, say 010101. Then for
any string α ∈ {0,1}∗, suppose it represents machine M then all strings
of the form (010101)∗α also represent the same machine M.
This has a similar effect as adding comments in the C program.

Notation

M Ð→ ⟨M⟩, a string representation of M.

α Ð→Mα, a machine corresponding to α.
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{0,1}∗ is countable

Definition (Countable set)

A set S is said to be countable if there is an injective map from S to N.

Lemma

The set {0,1}∗ is countable.

Proof.

Let x ∈ {0,1}∗.

Let φ(x) be defined as the number in y ∈ N such that y is a binary
encoding of the number 1x .

φ is a map from {0,1}∗ to N.

If ∣x ∣ ≠ ∣x ′∣ then φ(x) ≠ φ(x ′). If ∣x ∣ = ∣x ′∣, then bin(1x) ≠ bin(1x ′) as
long as x ≠ x ′.

Hence the map φ is injective.

Corollary

The set of Turing recognisable languages is countable.
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Cantor’s diagonalisation

Theorem (Cantor, 1891)

There is no bijection between N and 2N (set of all subsets of N).

Proof.

Suppose for the sake of contradiction that there is a bijection, say f ,
between set of all subsets of N.

0 1 2 3 ...

∅ 7 7 7 7 . . .
{1} 7 7 7 7 . . .
{2} 7 7 7 7 . . .
{1,2} 7 7 . . .
: . . . . . . . . . . . . . . .
: . . . . . . . . . . . . . . .

The inverted diagonal set does not belong to any of the existing sets!
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Turing recognizable languages

Lemma

There exists a language which is not Turing recognizable.

Proof.

Fix an alphabet Σ.

Let L be a language, i.e. L ⊆ Σ∗, w ∈ Σ∗.

χL(w) = { 1 if w ∈ L
0 otherwise

languages over Σ∗ bijection
ÐÐÐÐ→ 2N

Therefore, set of all languages is uncountable.

However, the set of all TMs is countable. ({0,1}∗ is countable.)

There must be a language which is not Turing recognizable.
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A decision problem about TMs

ATM = {(M,w) ∣ M accepts w}

Lemma

ATM is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step,

if M reaches qacc then N also accepts.

Is ATM decidable?
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A decision problem about TMs

Lemma

ATM = {(M,w) ∣ M accepts w} is not Turing decidable.

Assume that there exists M such that M decides ATM .

M

w

qacc if M accepts w

qrej if M does not accepts w
H

H

M

⟨M⟩

M

D

NOT
?
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A decision problem about TMs

Lemma

ATM is not Turing decidable.

Assume that there exists M such that M decides ATM .

M

w

qacc if M accepts w

qrej if M does not accepts w
H

What happens if we give D as input to itself?

H

D

⟨D⟩

D

D

NOT
?
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A decision problem about TMs

Lemma

ATM is not Turing decidable.

H

D

⟨D⟩

D

D

NOT
?

If D accepts ⟨D⟩ then D rejects ⟨D⟩.

If D rejects ⟨D⟩ then D accepts ⟨D⟩.

,
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A few notable things

Note the following about the proof.

H accepts ⟨M,w⟩ when M accepts w .

D rejects ⟨M⟩ when M accepts ⟨M⟩.

D rejects ⟨D⟩ when D accepts ⟨D⟩.
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Diagonalization inside the proof

Behaviour of the machines.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . . . . . . . . . .

M1 . . . . . . . . .

M2 × × . . . . . . × . . .

M3 × × . . . × . . . . . .
⋮
⋮
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Diagonalization inside the proof

Behaviour of H.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . . . . . . . . . .

M1 × . . . . . . . . .

M2 × × × . . . . . . × . . .

M3 × × . . . × . . . . . .
⋮
⋮
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Diagonalization inside the proof

Behaviour of H.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . . . . . . . . . .

M1 × . . . . . . . . .

M2 × × × . . . . . . × . . .

M3 × × . . . × . . . . . .
⋮
⋮
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Diagonalization inside the proof

Behaviour of D.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . . . . . . . . . .

M1 ///× × . . . . . . . . .

M2 /× × × . . . . . . × . . .

M3 × × ///× . . . × . . . . . .
⋮
⋮

Nutan (IITB) CS310 Automata Theory – 2017-2018 March 2018 32 / 82



Diagonalization inside the proof

Behaviour of D on itself.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ . . . ⟨D⟩ . . . . . . . . .

M1 ///× × . . . . . . . . .

M2 /× × × . . . . . . × . . .

M3 × × ///× . . . × . . . . . .
⋮
⋮
D . . . ? . . . . . . . . .
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Deteministic Turing machines

Theorem

Let L be a language decided by a non-deterministic TM N. Then there is
a deterministic Turing machine M such that M decides L.

Possible proof idea:

Think of the runs of N on an input w as a tree.

Do DFS.

Simulate the non-deterministic TM one run at a time.
If the run accepts then accept and halt.
Else go to the next path.

If after exploring all the paths we do not reach the accept state, then
reject.

Corollary

If L is decidable then L is also decidable.
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Deteministic Turing machines

Theorem

Let L be a language recognised by a non-deterministic TM N. Then there
is a deterministic Turing machine M such that M recognises L.

Possible proof idea:

Think of the runs of N on an input w as a tree.
Do DFS.

Simulate the non-deterministic TM one run at a time.
If the run accepts then accept and halt. Else ... ?

DFS does not work! Use BFS. Proof Idea:

Explore the tree of the NTM in rounds.

In round i ,
for 1 ≤ k ≤ 2i

open up the kth runs of the NTM of length i .
if it is an accepting run then accept
else go to next k

endfor
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Deteministic Turing machines

Theorem

Let L be a language recognised by a non-deterministic TM N. Then there
is a deterministic Turing machine M such that M recognises L.

For exploring the tree

Note that the degree of every node of the tree is at most

D ∶= maxa∈Γ,q∈Q{∣δ(q, a)∣}

Hence, the tree is a D-ary tree.

For exploring runs of length i , keep track of the current run using a
string over [D]i .
Say D = 3, the kth path of length 5 is 1,2,3,1,2 then the k + 1th
path of length 5 is 1,2,3,1,3.
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Back to Comparing decidability and recognizability

Theorem

A language L is Turing decidable if and only if L and L are both Turing
recognizable.

Proof.

(⇒)

If L is Turing decidable then L is also Turing recognizable

If L is Turing decidable, then L is also Turing decidable.

Therefore, L is also Turing recognizable.

(⇐)

Let M1,M2 be two TMs recognizing L,L, respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M1,M2, if M1 reaches accepting configuration then accept.

Else M2 will reach the accepting configuraion. In that case, reject.
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A decision problem about TMs

ATM = {(M,w) ∣ M accepts w}

Lemma

ATM is Turing recognizable.

Proof sketch

Design a TM, say N such that,

N behaves like M on w at each step,

if M reaches qacc then N also accepts.

Is ATM decidable?
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Universal Turing machines

Definition

A Turing machine is called a Universal Turing machine if it can given the
decsription of any Turing machine M and an input w , simulate the
machine M on w .

Lemma

Universal Turing machine (UTM) exists. [Turing, 1940s]

Proof.

We will prove the lemma by explicitly constructing such a machine.

Proof idea:

Find a good encoding for Turing machines.
Tape 1: Hold the input, namely M and w .
Tape 2: Copy the decription of M and use it for referencing moves.
Tape 3: Store the current state M and letter of w being read.
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Other undecidable problems and reducibility

Reducing ATM to another problem to prove undecidibility.

Halt = {(M,w) ∣ M halts on w}

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let H be the TM deciding Halt.

A: Run H on (M,w). If it rejects then reject, else do as per M on w .

A accepts (M,w) if M accepts w and rejects it if either M rejects w
or M loops forever on w .

H decides Halt if and only if A decides ATM .
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The halting problem

Lemma

The halting problem, Halt = {(M,w) ∣ M halts on w}, is undecidable.

Another way to describe the same proof.

H
M

w

A

if rej then rej

else do as M

If Halt is decidable then A decides ATM , which is a contradiction.
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Emptiness problem for TM

Lemma

The emptiness problem for TMs, ETM = {⟨M⟩ ∣ L(M) = ∅}, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a
machine that decides ETM .

Let T ′
M,w be as follows:

On input x

{
if w ≠ x then reject

else do as per M

}

L(T ′
M,w) = { {w} if M acc w

∅ otherwise

Let A be as follows:

On input M,w

{
Create machine T ′

M,w .

If T on ⟨T ′
M,w ⟩ rejects

then accept

else reject

}
This shows that if ETM is decidable then ATM is decidable.
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Equality for TM

Lemma

The equality problem for TMs, EQTM = {(M1,M2) ∣ L(M1) = L(M2)}, is
undecidable.

Assume for the sake of contradiction that EQTM is decidable. Let M be
the TM for it.

Let M1 be a machine that rejects all strings. That is, L(M1) = ∅.

Given a machine M2 as an input, use M to check whether
L(M2) = L(M1), i.e. to check whether L(M2) = ∅ or not.

This implies that if EQTM is decidable then ETM is decidable.

But from the previous result we know that ETM is undecidable.
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Regularity checking

Lemma

REGTM = {⟨M⟩ ∣ L(M) is regular} is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides
REGTM .

Let R ′
M,w be s.t.

L(R ′M,w ) = {
{0n1n ∣ n ≥ 0} if M rej w

Σ∗ if M acc w

If we get such an R ′
M,w we can

design A as a follows.

Let A be as follows:

On input M,w

{
Create machine R ′

M,w .

If R on ⟨R ′
M,w ⟩ accepts

then accept

else reject

}
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Regularity checking

Lemma

REGTM = {⟨M⟩ ∣ L(M) is regular} is undecidable.

Assume for the sake of contradiction that a TM R be a TM that decides
REGTM .

Let R ′
M,w be as follows:

On input x

{
if x = 0n1n

then accept

else run M on w and

if M acc w then acc
else rej

}

Let A be as follows:

On input M,w

{
Create machine R ′

M,w .

If R on ⟨R ′
M,w ⟩ accepts

then accept

else reject

}
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Rice’s theorem

The following languages are undecidable.

{M ∣ L(M) is regular}.

{M ∣ L(M) is context-free}.

{M ∣ L(M) = ∅}.

The following languages are decidable.

{M ∣ M has more than 10 states}.

{M ∣ M does not have a left move}.

Rice’s theorem: A systematic way of proving undecidability of languages.
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Property P

Definition

A property P is simply a subset of Turing recognizable languages. We
say that a language L satisfies a property P, if L ∈ P.

Examples

Set of regular languages.

Set of context-free languages.

{∅}.
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Rice’s theorem

Definition

A property P of Turing recognizable languages is called a non-trivial
property if

there exists a TM M such that L(M) ∈ P, and

there exists a TM M ′ such that L(M ′) ∉ P.

Examples

Set of all TMs whose language is Σ∗

Set of all Turing recognizable languages such that a TM recognising
it has at least 10 states. ×

Rice’s theorem

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let
LP = {M ∣ L(M) ∈ P}. Then LP is undecidable.
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Property P and LP

Definition

A property P is simply a subset of Turing recognizable languages. We
say that a language L satisfies a property P, if L ∈ P.

For any property P, let LP = {M ∣ L(M) ∈ P}, i.e. the set of all
Turing machine such that L(M) ∈ P.

We say that a property P is trivial if either LP = ∅ or LP is the set of
all the Turing recognizable languages.
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Examples of properties

Examples

1. LP = {M ∣ L(M) is regular}.

LP is collection of TMs M such that L(M) is regular.

Is LP = ∅? No. For example, a TM accepting a∗b∗ is in LP .

Is LP = all TMs? No. For example, a TM accepting {anbn ∣ n ≥ 0} is
not in LP .

Therefore, P is not trivial.
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Examples of properties

Examples

2 LP = {M ∣ L(M) = ∅}.

Here LP is a collection of TMs M such that L(M) = ∅.

Is LP = ∅? No. For example, a TM M that rejects any string is in LP .

Is LP = all TMs? No. For example, a TM M that accepts a single
string {a} is not in LP .
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Example of a trivial property

Examples

3. LP = { M M is a TM and L(M) is accepted by
a TM that has even number of states

}.

Here P is a property of Turing recognizable languages.

But any TM can be converted into another one that has even number
of states.

Therefore, any Turing recognizable language has property P.

Therefore, P is in fact all Turing recognizable languages.
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Rice’s theorem

Theorem

Let P be a property such that it is not trivial. Recall that
LP = {M ∣ L(M) ∈ P}. Then LP is undecidable.

When is the theorem NOT applicable?

When P is a property about TMs and not about Turing recognizable
languages.

{⟨M⟩ ∣ M has at least ten states}.

{⟨M⟩ ∣ M never moves left on any input string }.

{⟨M⟩ ∣ M has no useless state }.

To prove non-recognizability of a property of languages.

Rice’s theorem cannot be used to prove non-recognizability of
languages.

It is only used to prove undecidability.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ M runs for atmost 10 steps on aab}.

Not applicable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ L(M) is recognized by a TM with at least 10 states}.

Applicable, but property is trivial.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ L(M) is recognized by a TM with atmost 10 states}.

Applicable and property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ M has at most 10 states}.

Not applicable, but the language is decidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) contains ⟨M⟩}.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) contains ⟨M⟩}.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ L(M) is recognized a TM with atmost 10 states}.

Applicable.
If we can simulate any TM with another with less than 10 states, then
the property will be trivial.

This is doable if we allow for the tape alphabet size to grow.

In that case, the property is trivial.

Textbooks usually consider this property to be not trivial.

This is because the usual assumption is that you always fix the tape
alphabet.
In that case, Rice’s theorem is applicable and the property is not trivial,
therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{⟨M⟩ ∣ M has at most 10 states}.

Not applicable, but the language is decidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) contains ⟨M⟩}.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) contains ⟨M⟩}.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) is finite }.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ L(M) = Σ∗}.

Applicable, the property is not trivial, therefore undecidable.
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{(M,w) ∣ M writes a symbol a on the tape on input w}.

Not applicable, but the language is in fact undecidable.

Rice’s theorem cannot be used to prove the undecidability of this
language!
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{ M M tries to write on the left of the cell when it
is at the leftmost bit of the input

}.

Not applicable, but the language is in fact undecidable.

Rice’s theorem cannot be used to prove the undecidability of this
language!
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Proof of Rice’s theorem

Theorem

Let P be a property such that it is not trivial. Recall that
LP = {M ∣ L(M) ∈ P}. Then LP is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that LP is decidable.

Using this assumption prove that ATM is decidable.

More specifically:

(M,w) Ð→ N

if w ∈ L(M) Ð→ ⟨N⟩ ∈ LP
if w ∉ L(M) Ð→ ⟨N⟩ ∉ LP
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Proof of Rice’s theorem

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let
LP = {M ∣ L(M) ∈ P}. Then LP is undecidable.

Design of N

Let M1 be the TM s.t. L(M1) has Property P.

Let L(M2) be the TM s.t. L(M2) = ∅.
we assume that ∅ does not have property P1

on input x
{

if M accepts w

then if M1 accepts x

then accept

}

Claim: w ∈ L(M) if and only if ⟨N⟩ ∈ LP

1We will remove this assumption later.
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Getting rid of the assumption on P

We now show how to get around the assumption.

Suppose ∅ has property P.

Consider P.

Now ∅ does not have property P.

Use Rice’s theorem on LP to prove undecidibility.

Conclude undecidibility of LP .
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Applications of Rice’s theorem

We now learn how to apply Rice’s theorem

{M ∣ M has a useless state }.

Not applicable, but the language is in fact undecidable.

Rice’s theorem cannot be used to prove the undecidability of this
language!
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Summary of Module III

Introduction to Turing machines

Equivalent models

multi-tape TM,
non-deterministic TM

Turing decidable languages

Turing recognizable languages

Diagonalization in automata
theory

Proving undecidability

ATM = {(M,w) ∣ M accepts w},
Halt = {(M,w) ∣ M hants on w},
ETM = {⟨M⟩ ∣ L(M) = ∅}, EQTM =
{(M1,M2) ∣ L(M1) = L(M2)},
REGTM = {⟨M⟩ ∣ L(M) is regular},

Rice’s theorem

MPCP problem (Tutorial 11)

Notion of reduction (Tutorial 11)
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At the end of last class

Undecidability of the following languages:

ATM = {(M,w) ∣ M accepts w}.

Halt = {(M,w) ∣ M hants on w}.

ETM = {⟨M⟩ ∣ L(M) = ∅}.

EQTM = {(M1,M2) ∣ L(M1) = L(M2)}.

REGTM = {⟨M⟩ ∣ L(M) is regular}.

Note that undecidability of REGTM and ETM can be proved using
Rice’s theorem.
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