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Module IV: Effective computation

Turing machines with resource constraints.

Resources for computation.

Time: the number steps for which the TM runs
Space: the number of different cells on which the TM writes
The number of times an input bit can be read
The amount of energy used
⋮

Why bound resorces?

Viewing TM as algorithms.
TM to help in computation of important problems.
Finer study of decidable languages.

How should we bound the resources?

Many different ways exist. . . .
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Time complexity and complexity classes

Let t ∶ N→ N.

Definition

A language L ⊆ Σ∗ is said to be in class TIME(t(n)) if there exists a
deterministic Turing machine M such that ∀x ∈ Σ∗,

M halts on x in time O(t(∣x ∣)), where ∣x ∣ indicates the length of x .

if x ∈ L then M accepts x .

if x ∉ L then M rejects x .

P = ⋃
k

TIME(nk)

EXP = ⋃
k

TIME(2n
k

)
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Time complexity and complexity classes

Let t ∶ N→ N.

Definition

A language L ⊆ Σ∗ is said to be in class NTIME(t(n)) if there exists a
non-deterministic Turing machine M such that ∀x ∈ Σ∗,

each run of M halts on x in time O(t(∣x ∣)), where ∣x ∣ indicates the
length of x .

if x ∈ L then M accepts x on at least one run.

if x ∉ L then M rejects x on all runs.

NP = ⋃
k

NTIME(nk)

NEXP = ⋃
k

NTIME(2n
k

)
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Relationships between models

Lemma

Let t(n) > n. Let L be a language decided by a multitape TM in time
t(n). Then there is a single tape TM that decides L in time O((t(n))2).

Proof idea:

East step of multitape machine can be executed on a single tape
machine in time O (t(n)).

Lemma

Let t(n) > n. Let L be a language decided by a non-deterministic TM in
time t(n). Then there is a deterministic TM that decides L in time
2O(t(n)).

Proof idea: DFS or BFS.
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Relationships between complexity classes

How are P, NP, EXP, and NEXP related?

P ⊆ NP by definition.

P ⊆ EXP again by definition.

Similarly, NP ⊆ NEXP by definition.

Finally, NP ⊆ EXP due to the previous lemma.

P NP

EXP NEXP
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P vs. NP

P the class of languages where membership can be decided quickly.

NP the class of languages where membership can be verified quickly.
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Examples

SAT = {φ ∣ φ is satisfiable}. in NP (and not known to be in P)

Reach = {(G , s, t) ∣ t is reachable from s in G}. in P

3-SAT = {φ ∣ φ is a 3-CNF and satisfiable}. in NP (and not known
to be in P)

2-SAT = {φ ∣ φ is a 2-CNF and satisfiable}. in P

Factoring = {(k,n) ∣ n has a factor ≤ k}. Google it!

Clique = {(G , k) ∣ G has a clique of size ≥ k}. in NP (and not
known to be in P)
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Time heirarchy theorem

How do we separate NP from P?

To prove Method used

not regular pumping lemma for REG

non-context-free pumping lemma or CFLs

not recognizable diagonalization

not decidable Rice’s theorem or diagonalization and reductions

not in P ???
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Finer structure inside P

Definition

A function t ∶ N→ N is said to be time constructible if the there exists a
TM that on input 1n, it outputs t(n) in time O(t(n)).

Examples

n2, n log n.

Theorem

Let t ∶ N→ N be a time constructible function. There exists a language L
such that L ∈ TIME(t(n)2), but L ∉ TIME(o(t(n))).
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Polynomial time reductions and NP-hardness

Definition

A function f ∶ Σ∗ → Σ∗ is polynomial time computable if there is a
polynomial time Turing machine TM, say M, such that on any input
w ∈ Σ∗, M stops with only f (w) on its tape.
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Polynomial time reductions and NP-hardness

Definition

A language L1 is said to be polynomial time reducible to another language
L2, denoted as L1 ≤m L2, if there exists a polynomial time computable
function f such that for all w ∈ Σ∗, w ∈ L1⇔ f (w) ∈ L2.

L1

L2
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Polynomial time reductions and NP-hardness

Definition

A language L1 is said to be polynomial time reducible to another language
L2, denoted as L1 ≤m L2, if there exists a polynomial time computable
function f such that for all w ∈ Σ∗, w ∈ L1⇔ f (w) ∈ L2.

L1

L2w

○

f

w
○

f
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Polynomial time reductions and NP-hardness

Definition

A language L is said to be NP-hard if for every language L′ ∈ NP, there is
a polynomial time reduction such that L′ ≤m L.

Definition

A language L is said to be NP-complete if the following two conditions
hold:

L is in NP.

L is NP-hard.

Theorem ([Cook-Levin, 1970])

SAT is NP-complete.
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Space bounded Turing Machines

The Turing Machine model with space bounds

The input tape is assumed to be read-only.

The space required to write down the input is not counted towards
the space of the machine.

The output tape assumed to be write-only.

The space required to write down the output is not counted towards
the space of the machine.
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Space complexity and complexity classes

Let s ∶ N→ N.

Definition

A language L ⊆ Σ∗ is said to be in class SPACE(s(n)) if there exists a
deterministic Turing machine M such that ∀x ∈ Σ∗,

M halts on x using at most space O(s(∣x ∣)),
where ∣x ∣ indicates the length of x .

if x ∈ L then M accepts x .

if x ∉ L then M rejects x .

L = SPACE(log n)

PSPACE = ⋃
k

SPACE(nk)
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Examples of languages in Log

Min = {(w1,w2, . . . ,wn, i) ∣ wi is the minimum among w1 . . .wn}.

Deg = {(G = (V ,E),d , i) ∣ vi has degree d}.

ADD = {(u, v , i) ∣ ith bit of u + v is 1}.

Verify-SAT

= {(φ, a) ∣ a = a1, a2, . . . , an is an assignment satisfying φ}.
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Space complexity and complexity classes

Let s ∶ N→ N.

Definition

A language L ⊆ Σ∗ is said to be in class NSPACE(s(n)) if there exists a
non-deterministic Turing machine M such that ∀x ∈ Σ∗,

M halts on x using at most space O(s(∣x ∣)) on any run of the
machine,

where ∣x ∣ indicates the length of x .

if x ∈ L then there exists an accepting run of M on x .

if x ∉ L then M rejects x on all the runs.

NL = NSPACE(log n)

NPSPACE = ⋃
k

NSPACE(nk)
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Example of a language in NL

Reach = {(G = (V ,E), s, t) ∣ there is a path in G from s to t}

current ← s; count ← 0;

while count < n + 1 or current ≠ t;

{
next ← non-det. guess a vertex from neighbors of current;
current ← next;
count ++;

}
if current = t then accept;

else reject;
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NL is contained in P

Configurations of a non-deterministic space bounded machine.

Configuration of a space bounded Turing machine M

index: input head position (uses O(log n) bits)

data: the working space bits (uses O(s(n)) bits)

SM : machine related information (Q, δ) (uses O(1) bits)

A typical configuration ⟨index, data,SM⟩

Let CM be the set of all possible configuration of M.

Let C0 be the initial configuration.

Let Cacc be the accepting configuration.
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NL is contained in P

Definition

Let L be a language in NSPACE(s(n)) with TM M. Let C ,C ′ be two
configurations in CM . We say that a configuration C yields C ′ on input w
if the machine M in one step goes from C to C ′ on input w .

Configurations Graph of M on input w .

Let EM,w = {(C ,C ′) ∣ C ,C ′ ∈ CM and C yields C ′ on input w}

Let GM,w = (CM ,EM,w)

Let GM,w be the configuration graph of M on w .
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NL is contained in P

Theorem

If L is in NSPACE(s(n)) then L is in TIME(2O(s(n))).

We know that L ∈ NSPACE(s(n)). Let M be the machine.

First note that, w ∈ L if and only if Cacc is reachable from C0 in GM,w .
On any input w , the graph GM,w can be computed in time

TIME(2O(s(n))).
∣CM ∣ = 2O(s(n)).
Given C ,C ′, checking whether (C ,C ′) ∈ EM,w or not is checkable in
time 2O(s(n)).

Checking whether Cacc is reachable from C0 can be checked in time
2O(s(n)).

Reachability in a graph of size 2O(s(n)).

Corollary

NL is contained in P.
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