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Extra problems - Sheet 2

1. Prove or disprove that the following languages are context-free.

(a) {w#w′ | w,w′ ∈ Σ∗ and w 6= w′}.
(b) {0n1m | n ≤ m ≤ 2n}.
(c) a∗b∗c∗ − {anbncn | n ≥ 0}.
(d) {w ∈ {0, 1, 2}∗ | #0(w) = #1(w) = #2(w)}

2. Assume that L is a regular language. Prove or disprove that the following languages are
regular.

(a) EXP = {w | w|w| ∈ L}.
(b) EQ-a-b = {xy | #a(x) = #b(y)}.
(c) ORCond = {aibj | either i ≥ j or i is odd}

(d) DoubleEXP = {w | ∃y : |y| = 22
|w|

and wy ∈ L}
(e) EQ′ = {x$y | #a(x) = #b(y)}.

3. Give two languages such that L1 and L2 are not regular, but L1 ∩ L2 is regular.

4. Give two languages such that L1 and L2 are not regular, but L1 ◦ L2 is regular.

5. Prove or disprove that the following languages are regular.

(a) EQ = {w · w | w ∈ Σ∗}.
(b) Twice = {w ∈ {a, b}∗ | #a(w) = 2 ·#b(w)}.
(c) Prod = {w ∈ {a, b}∗ | #a(w) ·#b(w) is even}.
(d) Len = {w1n | |w| = n}.
(e) NEQ = {0i1j | i 6= j}.
(f) L = {anbmcn−m | n ≥ m ≥ 0}.

6. Let L be a regular language. One of the following languages is regular and the other is not.
Give a proof and provide a counterexample, respectively.

(a) {w ∈ {a, b}∗ | ∃n ≥ 0,∃x ∈ L, x = wn}
(b) {w ∈ {a, b}∗ | ∃n ≥ 0,∃x ∈ L,w = xn}

7. Let L be any language (not necessarily regular) over a unary alphabet, i.e. L ⊆ {a}∗. Show
that L∗ is regular.
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Tutorial 1

Notation: For w ∈ Σ∗ let wR be the reverse of the string w, i.e. if |w| = 1 then wR = w and for
|w| > 1 and w = u · a then wR = a · uR.

1. Give a DFA over the alphabet {0, 1}∗ such that it accepts strings which are the binary repre-
sentations of a number which is 3 (mod 5).

2. Give a DFA over the alphabet {0, 1}∗ such that it accepts strings which are the binary rep-
resentations of a number which is not 3 (mod 5). i.e. it accepts a string if it is the binary
representation of a number which is 0 (mod 5), 1 (mod 5), 2 (mod 5), or 4 (mod 5).

3. Give a DFA over the alphabet {a, b}∗ that accepts strings which do not contain aaa as a
substring.

4. Give a DFA over the alphabet {a, b}∗ that accepts all strings which contain aab as a substring
but do not contain aaa as a substring.

5. Give a DFA which accepts the following language.

L = {w ∈ {a, b}∗ | w contains atleast two a’s and at most one b}.

6. Give a DFA which accepts the following language.

{w ∈ {a, b}∗ | w either starts with the letter a or ends with the letter b}.

7. Let L be the language in Question 5 above. What is the language L ◦ L?

8. Is there any gadget/object that you use in your day-to-day life which can be modelled as a
DFA? Write down the DFA for it.
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Tutorial 2

Notation: Let Σ = {a, b}. For w ∈ Σ∗ let |w| denote the length of w. Let #a(w) denote the
number of as in w and let #b(w) denote the number of bs in w. Let wR be the reverse of the string
w. For a DFA/NFA A, let L(A) denote the language accepted by A.

Definition 0.1. Given a DFA A = (Q,Σ, q0, F, δ), let δ∗ : Q × Σ∗ → Q be the function defined
inductively as follows:

for any q ∈ Q, δ∗(q, ε) = q

for any q ∈ Q,w ∈ Σ∗ and a ∈ Σ, δ∗(q, wa) = δ(δ∗(q, w), a)).

That is, given a state and a word w ∈ Σ∗, δ∗ outputs the state in which A ends up, after reading the
string w.

1. Given a DFA A = (Q,Σ, q0, F, δ), come up with another DFA A′ = (Q′,Σ, q′0, F
′, δ′) such

that L(A) = L(A′), i.e. they accept the same language and for all a ∈ Σ and for all q ∈ Q′
|δ(q, a)| = 1.

2. Let L1, L2 be two regular languages accepted by DFAs A1 = (Q1,Σ, q
1
0 , F1, δ1), A2 =

(Q2,Σ, q
2
0 , F2, δ2) respectively. Let A = (Q,Σ, q0, F, δ) be the automata obtained by the prod-

uct construction (recall the product construction presented in class). Prove the following
statements:

(a) For any w ∈ Σ∗, such that |w| ≤ 1 and for any q1 ∈ Q1 and q2 ∈ Q2, prove that
δ∗((q1, q2), w) = (δ1(q1, w), δ2(q2, w)).

(b) For any w ∈ Σ∗, a ∈ Σ and for any q1 ∈ Q1 and q2 ∈ Q2, prove that δ∗((q1, q2), wa) =
δ ((δ∗1(q1, w), δ∗2(q2, w)), a).

(c) Using the two parts above, conclude that for any w ∈ Σ∗ and (q, q′) ∈ Q, δ∗((q, q′), w) =
(δ∗1(q, w), δ∗2(q′, w)).

(d) Let F = F1×F2. From (2c), conclude that if w is accepted by A1 and A2, then w is also
accepted by A.

(e) Let F = (F1 ×Q2) ∪ (Q1 × F2). From (2c), conclude that if w is accepted by A1 or A2,
then w is also accepted by A.

3. Let L1, L2 be two regular languages. Show that L1 − L2 = {w | w ∈ L1 and w /∈ L2} is also
regular, i.e. give a DFA for L1 − L2 using the DFA for L1, L2.

4. Give an NFA for the following language.

L = {w · c | w ∈ {0, 1, 2}∗, c ∈ {0, 1, 2} and c occurs in w}

5. Let Σ = {a1, a2, . . . , ak}. Draw an NFA with k + 1 states for the following language:

L := {w | ∃i s. t. 1 ≤ i ≤ k and ai does not appear in w}.

6. Let two-NFA be a non-deterministic finite state automata A = (Q,Σ, q0, F, δ) in which all the
elements are defined exactly like in an NFA, but with a slightly different accepting condiction.
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Definition 0.2 (Accepting run). We say that a non-deterministic finite state automata A has
an accepting run on a word w ∈ (Σ \ {ε})∗ if w can be written as y1y2 . . . ym, where m ≥ |w|,
each yi ∈ Σ and there exists a sequence of states p0, p1, . . . , pm such that

• p0 = q0,

• pm ∈ F ,

• and for every 0 ≤ i ≤ m− 1 δ(pi, yi+1) = pi+1.

We say that a word w ∈ (Σ \ {ε})∗ is accepted by a twoNFA A if A has exactly two accepting
runs on w and A is said to reject w if A has no accepting run on w.

Prove that given any twoNFA A, there exists an NFA, say B, such that L(A) = L(B).
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Tutorial 3

Notation: Let Σ = {a, b}. For w ∈ Σ∗ let |w| denote the length of w. Let #a(w) denote the
number of as in w and let #b(w) denote the number of bs in w.

1. Give an NFA (with ε moves) for the following regular expressions. (You may simplify the
expression as much as possible.)

(a) (aa∗ + bb∗)∗

(b) (ab+ ba) · (ab+ ba) · (ab+ ba)

2. Write the regular expressions corresponding to the following languages.

(a) L = {w ∈ {a, b}∗ | #a(w) = 1 (mod 2)}.
(b) L = {w ∈ {a, b}∗ | every other letter is a}

3. Recall the DFA that we constructed in class that accepts strings which are the binary repre-
sentations of a number which is 0 (mod 3). Give a regular expression corresponding to the
language using the conversion from DFA to regular expression presented in Lecture 5, 6.

4. Let Σ = {a1, a2, . . . , ak}. Recall the NFA with k+1 states that we constructed for the following
language:

L := {w | ∃i s. t. 1 ≤ i ≤ k and ai does not appear in w}.

Let us call the NFA we constructed to be A = (Q,Σ, q0, F, δ).

(a) Create an NFA A′ = (Q′,Σ, q′0, F
′, δ′) for L such that |Q′| = |Q| + 1, ∀a ∈ Σ, ∀q ∈ Q′

|δ′(q, a)| = 1.

(b) Draw a DFA corresponding to L using the subset construction. What is the number of
states in the constructed DFA?

(c) Show that any DFA accepting L must have 2Ω(k) states.

5. A homomorphism on a set Σ is a map from Σ to another set Σ′∗ such that each letter in Σ
is mapped to a string over Σ′. For example, say Σ = {0, 1} and a function h is defined as
follows h(0) := aaab and h(1) := aba then h is a homomorphism on {0, 1}. Let L be a regular
language. Show that the following language is also regular

h(L) := {h(w) | w ∈ L}.

6. Let L,L′ be two regular languages. Let us define L||L′ as follows:

L||L′ := {x1y1x2y2 . . . xnyn | x1x2 . . . xn, y1y2 . . . yn ∈ Σ∗, x1x2 . . . xn ∈ L and y1y2 . . . yn ∈ L2}

Prove that L||L′ is regular by explicitly constructing an NFA/DFA for the language.

7. Prove or disprove that the following languages are regular.

(a) EQ = {w · w | w ∈ Σ∗}.
(b) Twice = {w ∈ {a, b}∗ | #a(w) = 2 ·#b(w)}.
(c) Prod = {w ∈ {a, b}∗ | #a(w) ·#b(w) is even}.
(d) Len = {w1n | |w| = n}.
(e) NEQ = {0i1j | i 6= j}. [This is a slightly hard problem.]
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Tutorial 4

Notation: Let Σ = {a, b}. For w ∈ Σ∗ let |w| denote the length of w. Let #a(w) denote the
number of as in w and let #b(w) denote the number of bs in w. Let wR be the reverse of the string
w. For a language L, let LR be equal to {wR | w ∈ L}.

1. Prove or disprove the following

(a) L∗L∗ = L∗

(b) If L1L2 = L2L1 implies that L1 = L2.

(c) (L∗)∗ = L∗

(d) If L∗
1 = L∗

2 then L1 = L2.

(e) (L∗)R = (LR)∗.

(f) If L · L = L then either L = ∅ or ε ∈ L.

2. Consider the language L = {w ∈ Σ∗ | 2nd letter from the end is a}.

(a) Draw an NFA for L.

(b) Using the ideas of subset construction draw a DFA for L.

(c) Using the DFA minimization idea discussed in class, check whether the DFA thus con-
structed is minimal or not. If it not a minimal DFA then draw the correspoding minimal
DFA for it.

(d) Let Lk = {w ∈ Σ∗ | knd letter from the end is a}. Prove using pigeon hole principle (or
by any other method) that any DFA accepting Lk must have Ω(k) states.

3. Right congruence

Recall that we defined the right congruence property of an equivalence relation. We say that
an equivalence relation ≡ on Σ∗ has the right congruence property if ∀x, y ∈ Σ∗ and a ∈ Σ,
(x ≡ y if and only if xa ≡ ya).

(a) Prove that if ≡ has the right congruence property then ∀x, y, z ∈ Σ∗, (x ≡ y if and only
if xz ≡ yz).

4. Pumping Lemma vs. Myhill-Nerode

(a) Prove that the pumping lemma cannot be used to prove that the following language is
non-regular: L = {anbmc` | m,n, ` ≥ 0 and if n = 1 then m = `}.

(b) Use the Myhill-Nerode theorem to prove that the language above is not regular.

5. DFA minimization

(a) Build an NFA for the following language:
L = {w ∈ {a, c, b, d}∗ | |w| > 1 and the last letter in w does not appear anywhere else in w}

(b) Prove that the minimum DFA for the above language L must have at least 16 states.

6. DFA to Regular expression

1



(a) Given below is the description of a DFA. Give equivalent regular expression for that DFA.

(b) Let x ∈ Σ∗ be any string and Lx = {y | xy ∈ L}. How many distinct Lx languages are
possible for the above DFA?

2
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Tutorial 5

1. Let us assume that we are working over Σ = {a, b}.

(a) Consider the following language.

Li = {w | ith letter from the end in w is an a}.

Let si denote the number of states in an NFA that recognizes this language. Show that
si = O(i).

(b) Construct a DFA for Li with 2O(si) states. Can you give an exact constant hidden under
the O(·) in the exponent?

(c) Argue using the minimization algorithm (or by any other method) that any DFA for Li

must have 2Ω(si) states.

(d) Give a 2DFA for Li with O(si) states. This shows that 2DFAs are exponentially more
powerful than DFAs (in terms of the number of states).

2. Let L be a regular language. Give a 2DFA for the following language. L′ = {w | w · w ∈ L}.

3. Let Σ2 =

{[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
. For any word over Σ∗2, think of the bottom and top

rows as a string over {0, 1}∗. For example, if w =

[
0
0

]
·
[

0
1

]
·
[

1
0

]
, then the top row is a

string 0 · 0 · 1 and the bottom row is a string equal to 0 · 1 · 0.

Prove that the following language is not regular.

L = {w ∈ Σ∗2 | bottom row of w is reverse of top row of w}.

4. Let Σ = {0, 1,+,=}. Prove that the following language is not regular.

ADD = {x = y + z | x, y, z are binary integers and x is a sum of y, z}.

5. Let L be a regular language. Consider the following language:

MIDL = {x · z | ∃y s.t. |x| = |y| = |z| & x · y · z ∈ L}.

Prove or disprove that if L is regular then MIDL is also regular.

6. Recall the algorithm we studied in class to find equivalent states in a DFA. Let us call it the
table filling algorithm.

(a) Prove that if an entry corresponding to two states (p, q) stays −− (blank)when the table
filling algorithm terminates, then the two states are equivalent.

(b) Let A = (Q,Σ, δ, q0, F ), A′ == (Q′,Σ, δ′, q′0, F
′) be two DFAs. Assume that Q ∩Q′ = ∅,

that is, the two DFAs do not have any state name in common. Form a new DFA A =
(Q′′,Σ, δ′′, q′′0 , F

′′), where Q′′ = Q ∪ Q′, δ′′ = δ ∪ δ′, q′′0 = q0 and F ′′ = F ∪ F ′. If we
run the table filling algorithm on A′′ and find that q0 and q′0 are equivalent then in fact
L(A) = L(A′).

1



(c) Show that euivalence of states is transitive, i.e. if p, q are equivalent and q, r are equivalent
then p, r are also equivalent.

(d) Let A = (Q,Σ, δ, q0, F ) be a DFA. Let [q] = {p | p equivalent to q}. We will call this a
block of q. Prove that for each q ∈ Q, q belongs to exactly one block.

(e) Using parts (b), (c), (d) above prove that the minimum DFA for any regular language is
unique (up to state relabellings).

[Hint:IftherearetwominimumDFAsonewithfewerstatesthantheothersayA,A′,thentake
theunionDFAA′′anddostateeliminationforit.Astheybothacceptthesamelanguage,their
initialstatesmustbeequivalent.]

7. Prove that minimal NFA are not unique.
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Tutorial 6

1. Recall the function Tx : Q ∪ {./} → Q × {⊥}. Recall also the relation we defined on words
using Tx. We said that x ∼ y if Tx = Ty.

(a) Show that ∼ is an equivalence relation.

(b) Show that ∼ satisfies right congruence.

(c) Let L be a language accepted by a 2DFA. Show that ∼ refines L.

(d) Show that ∼ has finite index.

(e) Using the parts above, conclude that for any language L accepted by a 2DFA, show that
∼ is a Myhill-Nerode relation for L.

2. Given a 2DFA A give a DFA A′ such that L(A) = L(A′). (You may use the Myhill-Nerode
defined in Question 1 above.)

3. Show that the following functions are FST computable.

(a)
Input: w = an

Output: w′ = an/2

(b)
Input: w = an

Output: w′ = a2n

(c)
Input: w ∈ {0, 1}∗ · 1 · {0, 1}∗
Output: w′ ∈ {0, 1}∗ such that #1(w′) = #1(w)− 1

(d)
Input: w ∈ {0, 1}∗
Output: w′ ∈ {0, 1}∗ such that w′ = 1 · w

(e)
Input: w ∈ {0, 1}∗
Output: w′ ∈ {0, 1}∗ such that bin(w) = 2 · bin(w′)

4. Show that the following function is not FST computable.

Input: w ∈ {0, 1}∗
Output: w′ ∈ {0, 1}∗ such that w′ = wR

1
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Tutorial 7

1. Give a NPDAs for the following languages

(a) {0n1m | either n = m or 2n = m}.
(b) {anbmck | n,m, k ≥ 1, n+ k = m}
(c) {w ∈ {0, 1}∗ | #0(w) = #1(w)}
(d) {anbmck | k 6= n+m}
(e) {w | w ∈ Σ∗, w has odd length and the middle letter is a}
(f) {w#x | w, x ∈ Σ∗, wR is a substring of x}

2. Let N = (Q,Σ,Γ, δ, q0,⊥, F ) be an NPDA accepting language L. Show that there exists
another NPDA N ′ = (Q′,Σ,Γ′, δ′, q′0,⊥, F ′) accepting the same language L such that |Γ′| = 2.

3. Let N = (Q,Σ,Γ, δ, q0,⊥, F ) be an NPDA accepting language L. Show that there exists
another NPDA N ′ = (Q′,Σ,Γ′, δ′, q′0,⊥, F ′) accepting the same language L such that in one
step N ′ pushes at most 2 symbols on the stack.

4. Let L1, L2 ⊆ Σ∗. Let L1/L2 = {x | ∃y ∈ L2, xy ∈ L1}. Show that if L1 is a context-free
language and L2 is a regular language then L1/L2 is a context-free language.

5. Show that if L is a context-free language and R is a regular language then L∩R is a context-free
language.

6. Let L,L′ be two languages. Let us define L||L′ as follows:

L||L′ := {x1y1x2y2 . . . xnyn | x1x2 . . . xn, y1y2 . . . yn ∈ Σ∗, x1x2 . . . xn ∈ L and y1y2 . . . yn ∈ L′}

Prove that if L is a context-free language and L′ is a regular language then L||L′ is a context-
free language by explicitly constructing an NPDA for the language.

1
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Tutorial 8

1. Convert the following grammars into Chomsky Normal form.

(a)

S → ASB | ε
A → aAS | a
B → SBS | A | bb

(b)

S → AAA | b
A → Aa | B
B → ε

(c)

S → aAa | bBb | ε
A → C | a
B → C | b
C → CDC | ε
D → A | B | ab

2. Give equivalent NPDAs for the following grammars.

(a)
S → aAA
A → aS | bS | a

(b)
S → aSbb | T
T → bTaa | S | ε

(c)
S → ABS | AB
A → aA | a
B → bA

3. Prove or disprove the following: any context-free language L that does not contain ε, there is
a grammar G = (V, T, P, S) such that G generates L and every production rule in G has form
A→ BCD or A→ a, where A,B,C,D ∈ V and a ∈ T .

4. Prove that any grammar G = (V, T, P, S) that has only the following types of rules generates
a regular language: A→ aB or A→ a or A→ ε, where A,B ∈ V and a ∈ T .

5. Prove that any grammar G = (V, T, P, S) that has only the following types of rules generates
a regular language: A→ Ba or A→ a or A→ ε, where A,B ∈ V and a ∈ T .

6. A deterministic PDA (DPDA), D = (Q,Σ,Γ, δ, q0,⊥, F ) is a PDA such that

• For any q ∈ Q, a ∈ Σ or a = ε, and X ∈ Γ, |δ(q, a,X)| ≤ 1.

• Moreover, if δ(q, a,X) is non-empty for some a ∈ Σ then δ(q, ε,X) is empty.

The languages accepted by DPDAs are called deterministic CFLs (DCFLs).

(a) Show that REG ⊆ DCFL.

(b) Show that there is a language L that is accepted by a DPDA but is not regular.

(c) Recall the operator || defined in previous tutorials. Prove or disprove that if L is a DCFL
and R is a regular language then L||R is a DCFL.

(d) Show that there is a language L that is accepted by an NPDA but is not DCFL.

1
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Tutorial 9

1. Let M = ({q0, q1, q2, qf}, {0, 1}, {0, 1&}, δ, q0, {qf}). Describe the behavior of the TM with the
following δ transition.

(a) δ(q0, 0) = (q1, 0, R), δ(q0, 1) = (q1, 0, R), δ(q1, 0) = (q1, 0, R), δ(q1, 1) = (q2, 1, R),
δ(q2, 0) = (q2, 0, R), δ(q2, 1) = (q1, 0, R).

(b) δ(q0, 0) = (q1, 1, R), δ(q1, 1) = (q2, 0, L), δ(q2, 1) = (q0, 1, R), δ(q1,&) = (qf ,&, R).

2. Give Turing machines (possibly informal discussion as discussed in class) for the following
languages. Once you design a TM for one of the parts, you may use that as a subroutine in
the subsequent parts of the question. (See for example the description of how to use TMs
as subroutines in the textbook by Hopcroft and Ullman.) Assume that the input alphabet is
Σ = {0, 1,#}.

(a) Given a word x#, where x ∈ {0, 1}∗ on the tape, generate x#1|x| on the tape.

(b) Given a word x#y#, where x, y ∈ {0, 1}∗ on the tape, generate x#y#1max{|x|,|y|} on the
tape.

(c) Given a word x#, where x ∈ {0, 1}∗ on the tape, generate x#x on the tape.

(d) Given a word x#, where x ∈ {0, 1}∗ on the tape, generate x#xR on the tape.

(e) Given a word x#, where x ∈ {0, 1}∗ on the tape, generate xR# on the tape.

(f) Given a word x#y#, where x, y ∈ {0, 1}∗ on the tape, generate x#y#z on the tape, such
that bin(z) = bin(x) + bin(y).

3. Give the full formal description (using the state diagram or by describing the δ transition)
of a deterministic TM that accepts all the words in language {anbncn | n ≥ 0} and rejects
everything else.

4. Give the full formal description (using the state diagram or by describing the δ transition) of
a deterministic TM that accepts all the words in language {an | n ≥ 1 and n is a power of 2}
and rejects everything else.

5. Give an example of a deterministic TM that does not halt (loops forever) on at least some
input.

1
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Tutorial 10

1. Give Turing machines (with full formal descriptions) for the following languages. Once you
design a TM for one of the parts, you may use that as a subroutine in the subsequent parts
of the question. (See for example the description of how to use TMs as subroutines in the
textbook by Hopcroft and Ullman.)

(a) Given a word w on the first tape, copy the word on the second tape and make the first
tape completely blank.

(b) Given a word w ∈ {a, b}∗ on the first tape, keep only every alternate letter of w on that
tape. That is, suppose abbab is written on the tape, you should finally end up with abb
on the same tape. You may design a 2-tape TM for this.

(c) Given a word w = w1w2 . . . w2n over the alphabet {a, b} on the tape, output the word
w1w3 . . . w2n−1w2w4 . . . w2n on the same tape. You may design a 2-tape TM for this.

(d) Given a word w ∈ {a, b, a, b}∗ design a single tape TM that accepts if and only if the
following two conditions are satisfied:

• exactly 3 positions in w come from {a, b} and all the others are from {a, b},
• and the values at those positions are either baa or aba.

(e) Given a word w ∈ {a, b, a, b,#}∗ design a single tape TM that accepts if and only if the
word satisfies all the following three conditions:

• exactly 3 positions in w come from {a, b} and all the others are from {a, b,#},
• every 4th letter in the word w is #, i.e. w = x1#x2# . . . xn#, where xi = xi1xi2xi3

(i.e. |xi| = 3),

• and if a letter with overline appears in a certain block, say xi, at a position j, then
in no other block, say xi′ where i′ 6= i, does the letter with overline appear in that
position, i.e. if there exist i ∈ [n] and j ∈ {1, 2, 3} such that xij ∈ {a, b} then for any
i 6= i′ xi′j

∈ {a, b}.

(f) Given a word w ∈ {a, b, a, b,#}∗ design a single tape TM that does the following:

• checks that the three conditions in part (1e) above are satisfied,

• if they are not satisfied then rejects and halts,

• if they are satisfied then updates the word as follows: (i) if xij = a then changes

xij = a, (ii) if
(
xij = b AND i > 1

)
then overwrites x(i−1)j with b and xij with b,

(iii) makes no updates in all the other cases.

(g) Given 1n on the first tape, output n in binary on the second tape.

(h) Given w ∈ {0, 1}n on the first tape, output the number represented by w in unary on the
second tape.

2. Prove that for any 3-tape TM there is an equivalent 1-tape TM. You may use various subparts
from the Question 1 above as subroutines.

1
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Tutorial 11

1. Prove that any language accepted by an NPDA is Turing decidable.

2. Prove that the following language is decidable: {〈M〉 |M does not move left on any input}.

3. Prove that for any non-deterministic TM there is an equivalent deterministic TM.

4. In class we proved that Halt = {(M,w) |M halts on w} is undecidable by giving a reduction
(from ATM ). Prove that Halt is undecidable by giving a proof by the diagonalization argument.

5. Prove that Halt is not Turing recognizable.

6. A function f : Σ∗ → Γ∗ is called a computable function if there is a single tape TM M such
that on every input w ∈ Σ∗ it halts with exactly f(w) on the tape.

We say that a language L ⊆ Σ∗ is reducible to language L′ ⊆ Γ∗, which we denote by L ≤ L′,
if there is a computable function f : Σ∗ → Γ∗, where for every w, w ∈ L ⇔ f(w) ∈ L′. The
function f of this form is called a reduction. Prove or disprove the following statements:

(a) If L ≤ L′ and L′ is decidable then L is also decidable.

(b) If L ≤ L′ and L is undecidable then L′ is also undecidable.

(c) If L ≤ L′ and L′ is a CFL then so is L.

(d) If L is Turing recognizable and L ≤ L then L is decidable.

(e) L is Turing recognizable if and only if A ≤ ATM .

(f) There is a laguage L such that L is undecidable and L ≤ L.

7. In this problem we will define the Post Correspondence Problem (PCP) and prove that it is
undecidable. This problem and its variants are very useful in proving undecidibility of many
interesting languages.

Definition 0.1. A domino over Σ consists of two strings

[
u
`

]
, where both u, v ∈ Σ∗. Given

a domino w =

[
u
`

]
, u is called the upper(w) and ` is called the lower(w).

Definition 0.2. Given a collection of dominos d1, d2, . . . , dt over Σ. For any n x1x2 . . . xn ∈
{d1, d2, . . . , dt}n is said to be a match if upper(x1) · upper(x2) . . . · upper(xn) equals lower(x1) ·
lower(x2) . . . · lower(xn).

Suppose d1 =

[
a
ab

]
and d2 =

[
ba
a

]
.

(a) Give an x ∈ {d1, d2}∗ such that x is a match.

(b) Give an x ∈ {d1, d2}∗ such that x is not a match.

Definition 0.3. The Post Correspondence Problem can be stated as follows:

Given: a collection of dominos w1, w2, . . . , wt

Output: x ∈ w1 · {w1, w2, . . . , wt}∗ such that x is a match.

Prove that PCP is undecidable by filling in the details below. The overall proof strategy is as
follows: we will create dominos over Γ to encode one valid step of TM M on input w ∈ Σ∗.
We will then prove that there is a match if and only if M accepts w.

1



(a) Let d1 be the domino which checks the initial configuration.

[Hint:d1=[&
&q0w1w2...wn&

].]

(b) Design a domino d2 to check the correctness of the following move: (p, b, R) ∈ δ(q, a).

[Hint:Recallthenotionofaconfigurationandhowitchangesduetosuchatransition.Encode
theupperd2sothatitencodestherelevantinformationregardingtheconfigurationbeforethis
transitontakesplaceandencodethelowerd2sothatitencodestherelevantinformationregarding
theconfigurationafterthistransitontakesplace.]

(c) Design a domino d3 to check the correctness of the following move: (p, b, L) ∈ δ(q, a).

(d) Add a domino d4 which allows parts of the tape to stay the same (wherever the tape head
is not present.)

(e) Add a dominos to handle halting after reaching qacc.

(f) Finally, add a domino to handle parts of the tape which remain after the TM halts.

(g) Let D denote the set of dominos which we designed above. Show that if M accepts w
then there exists a string x ∈ D∗ such that it is a match.

(h) Show that if M does not accept w then there is no match for any string over D∗.

(i) Observe that above parts together show that PCP is undecidable.
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1. Give a O(n log n) time TM for the following problem.

Given: 1n

Output: binary representation of n

2. Give a O(n2) time TM for the following problem.

Given: 1n

Output: binary representation of n2

3. Show that SAT, 3Color are in NP.

4. Show that Min, Verify-SAT are in L.

5. Show that given a directed graph G, whether it has a cycle or not is in NL.

6. Specify the relationships between the following complexity classes: (containment,
strict containment, incomparable)

(a) P. NP, EXP, NEXP, NL

(b) SPACE(n), TIME(n), TIME(2n), SPACE(2n), SPACE(log n)

7. State true or false with justification: Either P is strictly contained in NP or EXP
properly contains NP.

1


