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Lecture 2: Computing the length of the input

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class, we started with two problems:
Problem 1: Given a stream of numbers, output the length of the input stream.
Problem 2: Given a graph as a set of edges, output the maximum matching in a graph.

We saw a O(n log n) space 2-approximation algorithm for Problem 2. We gave an
algorithm for Problem 1. Today we will analyze the algorithm.

2.1 Algorithm for Problem 1 and analysis

Let us start by recalling the algorithm.

Y ← 0;
while there exists xi, an input element do

Y ← Y + 1 w.p. 1
2Y

;

Y ← Y w.p. 1− 1
2Y

;

end
Output 2Y − 1

The algorithm increments the counter with lower and lower probability as the length of
the input increases. We will first analyze the expected value and the variance of the output
after i steps.

Lemma 2.1.1. E(2Yi) = i+ 1

Proof.

E(2Yi) =

∞∑
j=0

([
E(2Yi)|Yi−1 = j

]
Pr [Yi−1 = j]

)
=

∞∑
j=0

(
2j+1 1

2j
+ 2j(1− 1

2j
)

)
Pr [Yi−1 = j]

=

∞∑
j=0

2j Pr [Yi−1 = j] +

∞∑
j=0

Pr [Yi−1 = j]

= E(2Yi−1) + 1

Using the recurrence, we get the lemma.

Lemma 2.1.2. Var(2Yi) = i(i−1)
2
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Proof.

E(22Yi) =

∞∑
j=0

([
E(22Yi)|Yi−1 = j

]
Pr [Yi−1 = j]

)
=
∞∑
j=0

(
22(j+1) 1

2j
+ 22j(1− 1

2j
)

)
Pr [Yi−1 = j]

=
∞∑
j=0

22j Pr [Yi−1 = j] + 3
∞∑
j=0

2j Pr [Yi−1 = j]

= E(22Yi−1) + 3i

Solving the recurrence, we get that E(22Yi) = 1 +
∑i

k=1 3k = 1 + 3i(i+1)
2 . Therefore,

Var(2Yi) = 1 + 3i(i+1)
2 − (i+ 1)2 = i(i−1)

2

Lemmas 2.1.1 indicates that the expected value of the output of the algorithm is
equal to the actual length of the input. This is a good sign. Lemma 2.1.2 indicates
that the variance is not too large. This again is useful. Now using Chebyshev we have
Pr
[
|2Yn+1 − (n+ 1)| ≥ 0.9(n+ 1)

]
≤ n(n−1)

1.62(n+1)2
< 3

4 . This tells us that with probability at

least 1/4 the algorithm gives a 0.9 approximation.

Definition 2.1.3. A randomized algorithm A computing a Boolean function f is said to be
an (ε, δ) algorithm for f if for every input x, Pr [(1− ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥ 1−δ.

In this sense, the algorithm we have is an (0.9, 3/4) algorithm for computing the length
of the input.

2.2 Improving approximation guarantee

We now describe the standard trick used to increase the approximation gurantee. Let us
call the algorithm designed in Section 2.1 as A1. Given an ε > 0 and algorithm A1, we give
another algorithm A2 such that Pr [(1− ε)f(x) ≤ A2(x) ≤ (1 + ε)f(x)] ≥ 2/3.

for j = 1 to t do

Y (j) ← 0;
end
while there exists xi, an input element do

for j = 1 to t do

Y (j) ← Y (j) + 1 w.p. 1

2Y
(j) ;

Y (j) ← Y (j) w.p. 1− 1

2Y
(j) ;

end

end

Output
∑t

i=1 2
Y (i)−1
t
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Here, t is a parameter, which we will fix shortly. Let Zn denote the output of A2 for
inputs of length n. It is easy to see that E(Zn) = n and Var(Zn) = n(n−1)

2t . Therefore,

by applying Chebyshev’s inequality we get Pr [|Zn − n| ≥ εn] ≤ n(n−1)
2tε2n2 < 1

2tε2
. By set-

ting t = d 3
2ε2
e we get that Pr [|Zn − n| ≥ εn] < 1/3. That is, we get for every input x

Pr [(1− ε)f(x) ≤ A2(x) ≤ (1 + ε)f(x)]≥ 2/3. Suppose s(n) is the space used by A1 for
inputs of length n, then as t = O(1/ε2), the space used by A2 is ts(n) = O(s(n)/ε2).

Remark 2.2.1. Observe that the error probability that we obtained here could be made
small enough by setting t appropriately. Suppose we needed the error probability to be δ, the
space used by the algorithm would take an additional blow of O(1/δ). In the next section,
we show how to reduce the error by increasing the space by only O(log(1δ )).

2.3 Decreasing the error probability

Consider the following modified algorithm:

for j = 1 to t do
for ` = 1 to k do

Y (j,`) ← 0;
end

end
while there exists xi, an input element do

for j = 1 to t do
for ` = 1 to k do

Y (j,`) ← Y (j,`) + 1 w.p. 1

2Y
(j,`) ;

Y (j,`) ← Y (j,`) w.p. 1− 1

2Y
(j,`) ;

end

end

end

Output Median of

(∑t
j=1 2

Y (j,1)−1
t ,

∑t
j=1 2

Y (j,2)−1
t , . . . ,

∑t
j=1 2

Y (j,k)−1
t

)

Let us call this algorithm A3. Here, let t be as fixed in Section 2.2, i.e. t = 3
2ε2

. Let

us define Z` =
∑t

j=1 2
Y (j,`)−1
t for 1 ≤ ` ≤ k. And let Y` be a 0-1 random variable which is

set to 1 if (1 + ε)n ≤ Y` ≤ (1 + ε)n for 1 ≤ ` ≤ k. Then we know that for 1 ≤ ` ≤ k,
E(Y`) = 2/3. That is, in expectation, about 2/3rd of the Y`s are in the correct range
of values. The algorithm A3 outputs the medial of these Y`s. If more than half of the
Y`s have the values in the right range, the median will be in the right range. Therefore,
to bound the error of the algorithm we need to bound the probability of the event that
strictly less than half of the Y`s are in the right range. Let Y =

∑k
`=1 Y`. We wish to

bound the probability that Y < k/2. Note that E(Y ) = 2k/3 by linearity of expectations.

Pr [Y > k/2] = Pr [|Y − E(Y )| ≥ k/6] = Pr
[
|Y − E(Y )| ≥ E(Y )

4

]
. This can be bounded by
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using the Chernoff bound as follows: Pr
[
|Y − E(Y )| ≥ E(Y )

4

]
≤ 2.e−

2k
16·3 . To make this

smaller than δ > 0, we need to k = O(log(1δ )).
To summarize, we have designed an algorithm A3 which runs for O

(
1
ε2

log
(
1
δ

))
iterations

and has the following guarantee: Pr [(1− ε)n ≤ A3(x) ≤ (1 + ε)n] ≥ 1− δ.
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