
(CS602) Applied Algorithms 20 Jan, 2014

Lecture 5: Second frequency moment, F2

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we gave a randomized (ε, δ) algorithm for approximating the number
of distinct elements using space O(1ε · log

(
1
δ

)
· log2m).

Today we will define the notion of frequency moments and give (ε, δ) algorithm for
approximating the second frequency moment using space O(1

ε2
· log

(
1
δ

)
· logm).

5.1 Frequency Moments

Let x1, x2, . . . , xn be input stream and for each i ∈ [n] let xi ∈ [m]. Let fj denote the
number of times the element j ∈ [m] appears in the stream. The kth frequency moment is
defined as follows:

Fk =
∑
j∈[m]

fkj

As per this definition, F0 is the number of distinct elements in the stream and F1 is the
length of the stream. We gave space efficient algorithms to approaximate these quantities
over the last few lectures. Today we will give an algorithm to approximate F2.

Pick h uniformly randomly from 4-wise independent family of functions
F = {h : [m]→ {±1}};
Sum ← 0;
while there exists x, an input element do

Sum ← Sum + h(x);
end
Output Z ← (Sum)2;

We will first analyse the expected value of the output of the algorithm.

Lemma 5.1.1. E(Z) = F2

Proof.

E(Z) = E
(
Sum2

)
= E

(∑
x∈stream

h(x)

)2
 (From the definition of Sum)

= E

∑
j∈[m]

fjh(j)

2 (From the definition of h(x))

5-1

From here we see that,

E(Z) = E

∑
j∈[m]

f2j h(j)2 +
∑
j 6=`

fjflh(j)h(`)


=
∑
j∈[m]

f2j E(h(j)2) +
∑
j 6=`

fjflE(h(j)h(`)) (By linearity of expectation)

=
∑
j∈[m]

f2j · 1 +
∑
j 6=`

fjfl · 0 (As h(j)2 = 1 ∀j and Pairwise independence of F)

= F2 (By the definition of F2)

Lemma 5.1.2. Var(Z) ≤ 2F 2
2 .

To reduce the variance even further, we use the averaging trick. If we run t copies of
the same algorithm and let the output, say Z ′, be the average of the outputs of all the t
algorithms then we will get the following:

Lemma 5.1.3. E(Z ′) = F2 and Var(Z ′) ≤ 2F 2
2 /t.

Now using Chebyshev’s inequality we know that

Pr
[
|Z ′ − E(Z ′)| ≥ εF2

]
≤ 2F 2

2

tε2F 2
2

≤ 1/3 (for appropriate choice of t)

We can further reduce the probability of error to be bounded above by δ by using the
median trick.

We now argue the space bound. To compute Z, we need to keep track of the variable
Sum, which can be stored in O(log n) space. The number of bits required to pick a random
function from the family of 4-wise independent hash functions equals log(|F). It is known
that for any family of functions H = {h : [m] → [k]}, there exists a subfamily F ⊂ H
of 4-wise independent hash functions of size klogm. Therefore, he number of bits required
to pick a random function from the family of 4-wise independent hash functions equals
log(|F) = O(log k logm). As k = 2 here, we can choose a random function using O(logm)
bits. As we saw in Lecture 1, the use of the averaging trick and the median trick along with
this space bound we get that the randomized (ε, δ) approximation algorithm for F2 uses
space O(1

ε2
· log

(
1
δ

)
· logm).

This algorithm presented here is from a seminal paper by Alon, Matias and Szegedy.

5.2 Exercises

Exercise 1. Prove Lemmas 5.1.2, 5.1.3.

5-2

	Frequency Moments
	Exercises

