In the last class we gave a randomized (ε, δ) algorithm for approximating the number of distinct elements using space $O\left(\frac{1}{\varepsilon} \cdot \log \left(\frac{1}{\delta}\right) \cdot \log ^{2} m\right)$.

Today we will define the notion of frequency moments and give (ε, δ) algorithm for approximating the second frequency moment using space $O\left(\frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \log m\right)$.

5.1 Frequency Moments

Let $x_{1}, x_{2}, \ldots, x_{n}$ be input stream and for each $i \in[n]$ let $x_{i} \in[m]$. Let f_{j} denote the number of times the element $j \in[m]$ appears in the stream. The k th frequency moment is defined as follows:

$$
F_{k}=\sum_{j \in[m]} f_{j}^{k}
$$

As per this definition, F_{0} is the number of distinct elements in the stream and F_{1} is the length of the stream. We gave space efficient algorithms to approaximate these quantities over the last few lectures. Today we will give an algorithm to approximate F_{2}.

Pick h uniformly randomly from 4 -wise independent family of functions $\mathcal{F}=\{h:[m] \rightarrow\{ \pm 1\}\} ;$
Sum $\leftarrow 0$;
while there exists x, an input element do
Sum $\leftarrow \operatorname{Sum}+h(x) ;$
end
Output $Z \leftarrow(\text { Sum })^{2}$;

We will first analyse the expected value of the output of the algorithm.
Lemma 5.1.1. $\mathbb{E}(Z)=F_{2}$
Proof.

$$
\begin{array}{rlrl}
\mathbb{E}(Z) & =\mathbb{E}\left(\mathrm{Sum}^{2}\right) & \\
& =\mathbb{E}\left(\left(\sum_{x \in \text { stream }} h(x)\right)^{2}\right) & & \text { (From the definition of Sum) } \\
& =\mathbb{E}\left(\left(\sum_{j \in[m]} f_{j} h(j)\right)^{2}\right) & & \text { (From the definition of } h(x))
\end{array}
$$

From here we see that,

$$
\begin{array}{rlr}
\mathbb{E}(Z) & =\mathbb{E}\left(\sum_{j \in[m]} f_{j}^{2} h(j)^{2}+\sum_{j \neq \ell} f_{j} f_{l} h(j) h(\ell)\right) \\
& =\sum_{j \in[m]} f_{j}^{2} \mathbb{E}\left(h(j)^{2}\right)+\sum_{j \neq \ell} f_{j} f_{l} \mathbb{E}(h(j) h(\ell)) & \\
& =\sum_{j \in[m]} f_{j}^{2} \cdot 1+\sum_{j \neq \ell} f_{j} f_{l} \cdot 0 & \left(\text { As } h(j)^{2}=1 \forall j \text { and Pairwise independence of } \mathcal{F}\right) \\
& =F_{2} & \text { (By the definition of } \left.F_{2}\right)
\end{array}
$$

Lemma 5.1.2. $\operatorname{Var}(Z) \leq 2 F_{2}^{2}$.
To reduce the variance even further, we use the averaging trick. If we run t copies of the same algorithm and let the output, say Z^{\prime}, be the average of the outputs of all the t algorithms then we will get the following:

Lemma 5.1.3. $\mathbb{E}\left(Z^{\prime}\right)=F_{2}$ and $\operatorname{Var}\left(Z^{\prime}\right) \leq 2 F_{2}^{2} / t$.
Now using Chebyshev's inequality we know that

$$
\operatorname{Pr}\left[\left|Z^{\prime}-\mathbb{E}\left(Z^{\prime}\right)\right| \geq \varepsilon F_{2}\right] \leq \frac{2 F_{2}^{2}}{t \varepsilon^{2} F_{2}^{2}} \leq 1 / 3 \text { (for appropriate choice of } t \text {) }
$$

We can further reduce the probability of error to be bounded above by δ by using the median trick.

We now argue the space bound. To compute Z, we need to keep track of the variable Sum, which can be stored in $O(\log n)$ space. The number of bits required to pick a random function from the family of 4 -wise independent hash functions equals $\log (\mid \mathcal{F})$. It is known that for any family of functions $\mathcal{H}=\{h:[m] \rightarrow[k]\}$, there exists a subfamily $\mathcal{F} \subset \mathcal{H}$ of 4 -wise independent hash functions of size $k^{\log m}$. Therefore, he number of bits required to pick a random function from the family of 4 -wise independent hash functions equals $\log (\mid \mathcal{F})=O(\log k \log m)$. As $k=2$ here, we can choose a random function using $O(\log m)$ bits. As we saw in Lecture 1, the use of the averaging trick and the median trick along with this space bound we get that the randomized (ε, δ) approximation algorithm for F_{2} uses space $O\left(\frac{1}{\varepsilon^{2}} \cdot \log \left(\frac{1}{\delta}\right) \cdot \log m\right)$.

This algorithm presented here is from a seminal paper by Alon, Matias and Szegedy.

5.2 Exercises

Exercise 1. Prove Lemmas 5.1.2, 5.1.3.

