
(CS602) Applied Algorithms 23 Jan, 2014

Lecture 7: Count-Min and Count sketches

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we studied two different randomized approximation algorithm for com-
puting all frequency moments using O(1ε · log

(
1
δ

)
· logm) space and additive approximation

error. We fully analyzed the first algorithm. Recall that the algorithm used a sketch which
is known as Count-Min sketch, which was developed by Cormode and Muthukrishnana [2].
Towards the end of the last class, we presented the second algorithm and we were in the pro-
cess of analysing the second algorithm. The second algorithm was developed by Charikar,
Chen and Farach-Colton [1]. It also uses a sketch, which is known as Count sketch.

Both these sketching algorithms have found a plethora of applications in varied areas of
computer science including compressed sensing, natural language processing, databses, and
networking. (See for example: https://sites.google.com/site/countminsketch/)

We will finish the analysis of the second algorithm in this class.

7.1 Recalling the Count sketch algorithm

Let us start by recalling the algorithm we presented last time, the notation we introduced,
and the Lemmas we proved.

Pick h1, h2, . . . , ht uniformly randomly from pairwise independent family of functions
F = {f : [m]→ [k]} and pick g1, g2, . . . , gt uniformly randomly from pairwise
independent family of functions G = {g : [m]→ {±}};
for i = 1 to t do

for j = 1 to k do
C[i][hi(j)]← 0;

end

end
while there exists x, an input element do

for i = 1 to t do
C[i][hi(x)]← C[i][hi(x)] + gi(x);

end

end
On query a, output Median1≤i≤t {gi(a)C[i][hi(a)]};

Like in the previous section, let for j ∈ [n] \ {a}, Yi,j denote the excess in the counter
C[i][hi(a)].

Then we have, Yi,j =


fj if hi(a) = hi(j) and gi(j) = +1 (with probability 1/2k)
−fj if hi(a) = hi(j) and gi(j) = −1 (with probability 1/2k)

0 otherwise (with probability 1− 1/k)
Let Yi :=

∑
j Yi,j . The output of the algorithm and the Yis are related in the following

way: Yi counts the total error terms in C[i][hi(a)]. Therefore, C[i][hi(a)] = Yi + gi(a) · fa.

7-1

In order to bound the error in the output, let us first compute the expected value of Yi and
variance of Yi.

Lemma 6.2.1. For every 1 ≤ i ≤ t, E(Yi) = 0 and Var(Yi) =
∑

j∈[m]\{a} f
2
j

k .
The proof of this emma was presented in the last lecture note.

7.2 Analysis of the algorithm

We now use Lemma 6.2.1 to analyze the performance of the algorithm. Let
ˆ̂
fa denote the

output of the algorithm. Therefore,
ˆ̂
fa = Median{ ˆ̂

fa,i}, where
ˆ̂
fa,i = gi(a)×(Yi + gi(a) · fa).

We will first compute the expectation and variance of
ˆ̂
fa,i.

Lemma 7.2.1. For every 1 ≤ i ≤ t, E(
ˆ̂
fa,i) = fa and Var(ˆ̂

fa,i) =
∑

j∈[m]\{a} f
2
j

k

Proof.

E(
ˆ̂
fa,i) = E(gi(a)× (Yi + gi(a) · fa))

= E(gi(a)Yi + fa) (As gi(a)2 = 1)

= E(gi(a)Yi) + fa

= fa +
k∑
j=1

E(gi(a)Yi,j)

= fa +
k∑
j=1

+fj
4k

+
−fj
4k

+
+fj
4k

+
−fj
4k

= 0

Remark 7.2.2. Note that as an intermediate step, the above proof also proved that E(gi(a)Yi) =
0. We will use this fact in the analysis of the variance.

E(
ˆ̂
f2a,i) = E

(
(gi(a)Yi + fa)

2
)

(From Step 2 above)

= f2a + E
(
gi(a)2Y 2

i + 2fagi(a)Yi
)

= f2a + E
(
Y 2
i

)
+ 2faE(gi(a)Yi) (As gi(a)2 = 1)

= f2a + E
(
Y 2
i

)
+ 0 (By Remark 7.2.2)

= f2a +

∑
j∈[m]\{a} f

2
j

k
(By proof of Lemma 6.2.1)

Therefore, we get Var(ˆ̂
fa,i) =

∑
j∈[m]\{a} f

2
j

k

7-2

By using Chebyshev’s inequality, we get Pr
[
| ˆ̂fa,i − fa| ≥ ε

√
F2

]
≤

∑
j∈[m]\{a} f

2
j

kε2F2
, where

F2 =
∑

j∈[m] f
2
j . By choosing k appropriately, we can bound this probability by 1/3,

that is Pr
[
| ˆ̂fa,i − fa| ≥ ε

√
F2

]
≤ 1/3. Now by the standard median trick, by choosing

t = O
(
log 1

δ

)
, we get Pr

[
| ˆ̂fa,i − fa| ≥ ε

√
F2

]
≤ δ for any constant δ > 0.

7.3 Comparison of the two algorithms

Recall that in the last lecture note we proved that Pr
[
|f̂a,i − fa| ≥ εF1

]
≤ δ for any con-

stant δ > 0. That is, in the Count-Min algorithm, the additive approximation error was
proportional to F1 where as here it is proportional to

√
F2. However, the dependence on ε

is 1/ε for Count-Min and 1/ε2 for Count sketch.

References

[1] Finding frequent items in data streams. Theoretical Computer Science, 312(1):3 – 15,
2004. ¡ce:title¿Automata, Languages and Programming¡/ce:title¿.

[2] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

7.4 Exercises

Exercise 1. In the algorithm presented here, say the last line is changed from

“On query a, output Median1≤i≤t {gi(a)C[i][hi(a)]}”

to

“On query a, output
∑t

i=1{gi(a)C[i][hi(a)]}
t

The rest of the algorithm is kept as it is. Analyze the performance of this modified
algorithm.

7-3

	Recalling the Count sketch algorithm
	Analysis of the algorithm
	Comparison of the two algorithms
	Exercises

