
(CS602) Applied Algorithms 27 Jan, 2014

Lecture 8: Sampling based approach for distinct elements

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we completed the analysis of Count sketch algorithm. Today we will
give a sampling based approach for estimating distinct elements.

Recall the distinct element problem deals with given a stream of data x1, x2, . . . , xn,
where for all i xi ∈ [m], counting the number of distinct elements in the stream. As a first
step towards solving this problem using sampling, we will look at the restricted version of
the same problem and design a sampling algorithm for it. We call this version, the gap
version of the problem, GapDistk.

Given: x̃ = x1, x2, . . . , xn, where for all 1 ≤ i ≤ n, xi ∈ [m], and k ∈ N
Output “Yes” if the number of distinct elements in x̃ is > 2k+2

“No” if the number of distinct elements in x̃ is < 2k−2

8.1 Naive Sampling algorithm for GapDistk

We first give an algorithm which uses (in the worst case) O(m) number of independent
random bits. Later we show how one can raplace independent random bits by pairwise
random bits.

Pick every element of [m] into the set S with probability 1
2k

;

Sum ← 0;
while there exists x, an input element do

if x ∈ S then
Sum ← Sum +1;

end

end
Output “Yes” iff Sum > 0;

Algorithm 1: Algorithm with independent random bits

We now argue the correctness the above algorithm and bound its error probability. Let
x̃ be the given input. Let D denote the set of distinct elements in x̃. Let F0 denote |D|.

Suppose F0 < 2k−2. Then the probability that the algorithm makes an error is:

8-1

Pr [Algorithm makes an error] = Pr [Sum > 0]

= Pr [∃x ∈ D s.t. x ∈ S]

≤
∑
x∈D

Pr [x ∈ S] (By union bound)

=
|D|
2k

<
1

4
(By our assumption that |D| < 2k−2)

Suppose F0 > 2k+2. Then the probability that the algorithm makes an error is:

Pr [Algorithm makes an error] = Pr [Sum = 0]

= Pr [∀x ∈ D : x /∈ S]

≤
∏
x∈D

Pr [x /∈ S] (As the samples are independent)

=

(
1− 1

2k

)2k+2

(By our assumption that |D| > 2k+2)

<

(
1

e

)4

(Using

(
1− 1

x

)x
=

1

e
)

By the above calculations, we get that the algorithm correctly decides GapDistk with
probability at least 3/4.

Note that, in the above calculations we used the fact that our samples are independent.
Let us do the calculations once again, but in such a way that the analysis will go through
even if we draw samples using pairwise independence. Let Xj be a 0-1 random variable
defined as follows: Xj = 1 if j ∈ S and Xj = 0 otherwise. Let X =

∑
j∈DXj . Note

that Pr [Xj = 1] = 1
2k

for all j. Therefore, E(Xj) = 1
2k

and E(X) = |D|
2k

. Suppose Xjs are
either purely independent or pairwise independent, we know that Var(X) ≤ E(X) (by the
property of pairwise independent random variables).

Suppose F0 < 2k−2. Then the probability that the algorithm makes an error is:

8-2

Pr [Algorithm makes an error] = Pr [Sum > 0]

= Pr [X > 0]

= Pr [X ≥ 1]

≤ |D|
2k

(By Markov’s inequality)

<
1

4
(By our assumption that |D| < 2k−2)

On the other hand, suppose F0 > 2k+2. Then the probability that the algorithm makes
an error is:

Pr [Algorithm makes an error] = Pr [X = 0]

≤ Pr [|X − E(X)| ≥ E(X)]

≤ Var(X)

E(X)2
(By Chebyshev’s inequality)

≤ 1

E(X)
(Var(X) ≤ E(X))

<
1

4
(Using |D| > 2k+2 and E(X) =

|D|
2k

)

Once again, by the above calculations, we get that the algorithm correctly decides
GapDistk with probability at least 3/4.

By using standard Chernoff argument, we can bring down the error probability down
to δ using at most O(log 1

δ) bits.
Now, we change the algorithm so that independent samples can now be changed by

pairwise independent samples.

Pick h from a family of pairwise independent random functions
F = {h : [m]→ {0, 1}k}.;
Sum ← 0;
while there exists x, an input element do

if h(x) = 0k then
Sum ← Sum +1;

end

end
Output “Yes” iff Sum > 0;

Algorithm 2: Algorithm with pairwise independent random variables

8-3

For the analysis, we define Xj = 1 iff h(j) = 0k and X =
∑

j∈DXj as before. The
analysis of the algorithm is the same as our second analysis.

Let Akδ denote this randomized algorithm for GapDistk with error at most δ. In the next
section we use this algorithm to approximate F0.

8.2 Approximating F0 using Akδ
In this section we will use A1

δ ,A2
δ , . . . ,A

dlogme
δ to get an 8-approximation for F0. In the

exercise, you are asked to improve it to (1 + ε)-approximation.
Let Aδ′ be the following algorithm:

for i = dlogme downto 1 do
if Aiδ outputs 0 then

next i;
end
else

Output 2i;
end

end

Suppose on some fixed input Aiδ outputs 0 for all i ≥ j but Aj−1δ outputs 1 and sup-
pose also that all the answers are correct. Then this tells us that the answer must be
certainly smaller than 2j+2 and definitely more than 2j−3. Therefore, if the algorithm out-
puts 2j then it will be 8-approximation. But unfortunately, not all answers may be correct.
Pr [Aδ′ makes an error] ≤ Pr

[
∃Aiδ makes an error

]
≤ dlogme · δ. By making δ = δ′

dlogme ,

we can make the error bounded by δ′.

8.3 Space analysis of Aiδ and Aδ′

To pick a random function from a family of pairwise independent functions, we need O(k ·
logm) bits and to store ‘Sum’ we need O(log n) bits. To bring down the overall error to δ,
we need to run O(log(1δ)) copies of Algorithm 2. Therefore, total number of bits stored by
Aiδ is O(log(1δ) · (k · logm+ log n)). Say s = O(log(1δ) · (k · logm+ log n)).

Now, the algorithm Aδ′ simultaeously runs dlogme copies of Aiδ, one for every 1 ≤ i ≤
dlogme. This takes space O(dlogme ·s). Finally, for the error to be bounded by δ′, we need
to set δ = δ′

dlogme . Putting it together, we get that the space used by Aδ′ can be bounded

by O
(
dlogme · log(dlogmeδ′) · (k · logm+ log n)

)
. This gives us an 8-approximation for F0

with probability 1− δ′.

8.4 Exercises

Exercise 1. Modify Algorithm 2, Aiδ and Aδ′ to obtain for every ε > 0, (1+ε)-approximation
algorithm for F0. Analyze the space used by your algorithm.

8-4

	Naive Sampling algorithm for GapDistk
	Approximating F0 using Ak
	Space analysis of Ai and A'
	Exercises

