Lecture 8: Sampling based approach for distinct elements

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we completed the analysis of Count sketch algorithm. Today we will give a sampling based approach for estimating distinct elements.

Recall the distinct element problem deals with given a stream of data x_1, x_2, \ldots, x_n , where for all i $x_i \in [m]$, counting the number of distinct elements in the stream. As a first step towards solving this problem using sampling, we will look at the restricted version of the same problem and design a sampling algorithm for it. We call this version, the gap version of the problem, $\mathsf{GapDist}_k$.

```
Given: \tilde{x} = x_1, x_2, \dots, x_n, where for all 1 \le i \le n, x_i \in [m], and k \in \mathbb{N}
Output "Yes" if the number of distinct elements in \tilde{x} is > 2^{k+2}
"No" if the number of distinct elements in \tilde{x} is < 2^{k-2}
```

8.1 Naive Sampling algorithm for $GapDist_k$

We first give an algorithm which uses (in the worst case) O(m) number of independent random bits. Later we show how one can raplace independent random bits by pairwise random bits.

```
Pick every element of [m] into the set S with probability \frac{1}{2^k};

Sum \leftarrow 0;

while there exists x, an input element do

| if x \in S then

| Sum \leftarrow Sum +1;

| end

end

Output "Yes" iff Sum > 0;

Algorithm 1: Algorithm with independent random bits
```

We now argue the correctness the above algorithm and bound its error probability. Let \tilde{x} be the given input. Let D denote the set of distinct elements in \tilde{x} . Let F_0 denote |D|. Suppose $F_0 < 2^{k-2}$. Then the probability that the algorithm makes an error is:

$$\Pr\left[\text{Algorithm makes an error}\right] = \Pr\left[\text{Sum }>0\right]$$

$$= \Pr\left[\exists x \in D \text{ s.t. } x \in S\right]$$

$$\leq \sum_{x \in D} \Pr\left[x \in S\right] \qquad \text{(By union bound)}$$

$$= \frac{|D|}{2^k}$$

$$< \frac{1}{4} \qquad \text{(By our assumption that } |D| < 2^{k-2})$$

Suppose $F_0 > 2^{k+2}$. Then the probability that the algorithm makes an error is:

$$\begin{split} \Pr\left[\text{Algorithm makes an error}\right] &= \Pr\left[\text{Sum } = 0\right] \\ &= \Pr\left[\forall x \in D : x \notin S\right] \\ &\leq \prod_{x \in D} \Pr\left[x \notin S\right] \qquad \text{(As the samples are independent)} \\ &= \left(1 - \frac{1}{2^k}\right)^{2^{k+2}} \qquad \text{(By our assumption that } |D| > 2^{k+2}) \\ &< \left(\frac{1}{e}\right)^4 \qquad \qquad \text{(Using } \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}\text{)} \end{split}$$

By the above calculations, we get that the algorithm correctly decides $\mathsf{GapDist}_k$ with probability at least 3/4.

Note that, in the above calculations we used the fact that our samples are independent. Let us do the calculations once again, but in such a way that the analysis will go through even if we draw samples using pairwise independence. Let X_j be a 0-1 random variable defined as follows: $X_j = 1$ if $j \in S$ and $X_j = 0$ otherwise. Let $X = \sum_{j \in D} X_j$. Note that $\Pr[X_j = 1] = \frac{1}{2^k}$ for all j. Therefore, $\mathbb{E}(X_j) = \frac{1}{2^k}$ and $\mathbb{E}(X) = \frac{|D|}{2^k}$. Suppose X_j s are either purely independent or pairwise independent, we know that $\mathbb{V}ar(X) \leq \mathbb{E}(X)$ (by the property of pairwise independent random variables).

Suppose $F_0 < 2^{k-2}$. Then the probability that the algorithm makes an error is:

$$\begin{array}{l} \Pr\left[\text{Algorithm makes an error}\right] = \Pr\left[\text{Sum }>0\right] \\ &= \Pr\left[X>0\right] \\ &= \Pr\left[X\geq 1\right] \\ &\leq \frac{|D|}{2^k} \qquad \qquad \text{(By Markov's inequality)} \\ &< \frac{1}{4} \qquad \qquad \text{(By our assumption that } |D| < 2^{k-2}) \end{array}$$

On the other hand, suppose $F_0 > 2^{k+2}$. Then the probability that the algorithm makes an error is:

$$\begin{split} \Pr\left[\text{Algorithm makes an error}\right] &= \Pr\left[X = 0\right] \\ &\leq \Pr\left[|X - \mathbb{E}(X)| \geq \mathbb{E}(X)\right] \\ &\leq \frac{\mathbb{V}ar(X)}{\mathbb{E}(X)^2} & \text{(By Chebyshev's inequality)} \\ &\leq \frac{1}{\mathbb{E}(X)} & \text{($\mathbb{V}ar(X) \leq \mathbb{E}(X)$)} \\ &< \frac{1}{4} & \text{(Using $|D| > 2^{k+2}$ and $\mathbb{E}(X) = \frac{|D|}{2^k}$)} \end{split}$$

Once again, by the above calculations, we get that the algorithm correctly decides $\mathsf{GapDist}_k$ with probability at least 3/4.

By using standard Chernoff argument, we can bring down the error probability down to δ using at most $O(\log \frac{1}{\delta})$ bits.

Now, we change the algorithm so that independent samples can now be changed by pairwise independent samples.

```
Pick h from a family of pairwise independent random functions \mathcal{F} = \{h : [m] \to \{0,1\}^k\}.;

Sum \leftarrow 0;

while there exists x, an input element do

if h(x) = 0^k then

Sum \leftarrow Sum +1;
end

end

Output "Yes" iff Sum > 0;
```

Algorithm 2: Algorithm with pairwise independent random variables

For the analysis, we define $X_j = 1$ iff $h(j) = 0^k$ and $X = \sum_{j \in D} X_j$ as before. The analysis of the algorithm is the same as our second analysis.

Let \mathcal{A}_{δ}^{k} denote this randomized algorithm for $\mathsf{GapDist}_{k}$ with error at most δ . In the next section we use this algorithm to approximate F_{0} .

8.2 Approximating F_0 using \mathcal{A}^k_{δ}

In this section we will use $\mathcal{A}^1_{\delta}, \mathcal{A}^2_{\delta}, \dots, \mathcal{A}^{\lceil \log m \rceil}_{\delta}$ to get an 8-approximation for F_0 . In the exercise, you are asked to improve it to $(1 + \varepsilon)$ -approximation.

Let $\mathcal{A}_{\delta'}$ be the following algorithm:

```
\begin{array}{l} \mathbf{for} \ i = \lceil \log m \rceil \ downto \ 1 \ \mathbf{do} \\ & \mathbf{if} \ \mathcal{A}^i_{\delta} \ outputs \ \theta \ \mathbf{then} \\ & \mid \ \operatorname{next} \ i; \\ & \mathbf{end} \\ & \mathbf{else} \\ & \mid \ \operatorname{Output} \ 2^i; \\ & \mathbf{end} \\ & \mathbf{end} \end{array}
```

Suppose on some fixed input \mathcal{A}^i_{δ} outputs 0 for all $i \geq j$ but $\mathcal{A}^{j-1}_{\delta}$ outputs 1 and suppose also that all the answers are correct. Then this tells us that the answer must be certainly smaller than 2^{j+2} and definitely more than 2^{j-3} . Therefore, if the algorithm outputs 2^j then it will be 8-approximation. But unfortunately, not all answers may be correct. $\Pr\left[\exists A^i_{\delta} \text{ makes an error}\right] \leq \left\lceil \log m \right\rceil \cdot \delta$. By making $\delta = \frac{\delta'}{\left\lceil \log m \right\rceil}$, we can make the error bounded by δ' .

8.3 Space analysis of \mathcal{A}^i_δ and $\mathcal{A}_{\delta'}$

To pick a random function from a family of pairwise independent functions, we need $O(k \cdot \log m)$ bits and to store 'Sum' we need $O(\log n)$ bits. To bring down the overall error to δ , we need to run $O(\log(\frac{1}{\delta}))$ copies of Algorithm 2. Therefore, total number of bits stored by A^i_{δ} is $O(\log(\frac{1}{\delta}) \cdot (k \cdot \log m + \log n))$. Say $s = O(\log(\frac{1}{\delta}) \cdot (k \cdot \log m + \log n))$.

Now, the algorithm $\mathcal{A}_{\delta'}$ simultaeously runs $\lceil \log m \rceil$ copies of \mathcal{A}_{δ}^i , one for every $1 \leq i \leq \lceil \log m \rceil$. This takes space $O(\lceil \log m \rceil \cdot s)$. Finally, for the error to be bounded by δ' , we need to set $\delta = \frac{\delta'}{\lceil \log m \rceil}$. Putting it together, we get that the space used by $\mathcal{A}_{\delta'}$ can be bounded by $O\left(\lceil \log m \rceil \cdot \log(\frac{\lceil \log m \rceil}{\delta'}) \cdot (k \cdot \log m + \log n)\right)$. This gives us an 8-approximation for F_0 with probability $1 - \delta'$.

8.4 Exercises

Exercise 1. Modify Algorithm 2, \mathcal{A}^{i}_{δ} and $\mathcal{A}_{\delta'}$ to obtain for every $\varepsilon > 0$, $(1+\varepsilon)$ -approximation algorithm for F_0 . Analyze the space used by your algorithm.