(CS602) Applied Algorithms
 27 Jan, 2014
 Lecture 8: Sampling based approach for distinct elements
 Lecturer: Nutan Limaye
 Scribe: Nutan Limaye

In the last class we completed the analysis of Count sketch algorithm. Today we will give a sampling based approach for estimating distinct elements.

Recall the distinct element problem deals with given a stream of data $x_{1}, x_{2}, \ldots, x_{n}$, where for all $i x_{i} \in[m]$, counting the number of distinct elements in the stream. As a first step towards solving this problem using sampling, we will look at the restricted version of the same problem and design a sampling algorithm for it. We call this version, the gap version of the problem, GapDist ${ }_{k}$.

Given: $\quad \tilde{x}=x_{1}, x_{2}, \ldots, x_{n}$, where for all $1 \leq i \leq n, x_{i} \in[m]$, and $k \in \mathbb{N}$
Output "Yes" if the number of distinct elements in \tilde{x} is $>2^{k+2}$
"No" if the number of distinct elements in \tilde{x} is $<2^{k-2}$

8.1 Naive Sampling algorithm for GapDist ${ }_{k}$

We first give an algorithm which uses (in the worst case) $O(m)$ number of independent random bits. Later we show how one can raplace independent random bits by pairwise random bits.

Pick every element of $[m]$ into the set S with probability $\frac{1}{2^{k}}$;
Sum $\leftarrow 0$;
while there exists x, an input element do
if $x \in S$ then
Sum \leftarrow Sum +1 ;
end
end
Output "Yes" iff Sum > 0;
Algorithm 1: Algorithm with independent random bits

We now argue the correctness the above algorithm and bound its error probability. Let \tilde{x} be the given input. Let D denote the set of distinct elements in \tilde{x}. Let F_{0} denote $|D|$.

Suppose $F_{0}<2^{k-2}$. Then the probability that the algorithm makes an error is:

$$
\begin{array}{rlr}
\operatorname{Pr}[\text { Algorithm makes an error }] & =\operatorname{Pr}[\operatorname{Sum}>0] \\
& =\operatorname{Pr}[\exists x \in D \text { s.t. } x \in S] \\
& \leq \sum_{x \in D} \operatorname{Pr}[x \in S] & \\
& =\frac{|D|}{2^{k}} & \\
& <\frac{1}{4} \quad \text { (By union bound) } \\
& \\
& \text { (By our assumption that }|D|<2^{k-2} \text {) }
\end{array}
$$

Suppose $F_{0}>2^{k+2}$. Then the probability that the algorithm makes an error is:

$$
\begin{aligned}
\operatorname{Pr}[\text { Algorithm makes an error }] & =\operatorname{Pr}[\operatorname{Sum}=0] \\
& =\operatorname{Pr}[\forall x \in D: x \notin S] \quad \\
& \leq \prod_{x \in D} \operatorname{Pr}[x \notin S] \quad \text { (As the samples are independent) } \\
& =\left(1-\frac{1}{2^{k}}\right)^{2^{k+2}} \quad \text { (By our assumption that }|D|>2^{k+2} \text {) } \\
& \left.<\left(\frac{1}{e}\right)^{4} \quad \text { (Using }\left(1-\frac{1}{x}\right)^{x}=\frac{1}{e}\right)
\end{aligned}
$$

By the above calculations, we get that the algorithm correctly decides GapDist ${ }_{k}$ with probability at least $3 / 4$.

Note that, in the above calculations we used the fact that our samples are independent. Let us do the calculations once again, but in such a way that the analysis will go through even if we draw samples using pairwise independence. Let X_{j} be a $0-1$ random variable defined as follows: $X_{j}=1$ if $j \in S$ and $X_{j}=0$ otherwise. Let $X=\sum_{j \in D} X_{j}$. Note that $\operatorname{Pr}\left[X_{j}=1\right]=\frac{1}{2^{k}}$ for all j. Therefore, $\mathbb{E}\left(X_{j}\right)=\frac{1}{2^{k}}$ and $\mathbb{E}(X)=\frac{|D|}{2^{k}}$. Suppose $X_{j} \mathrm{~s}$ are either purely independent or pairwise independent, we know that $\operatorname{Var}(X) \leq \mathbb{E}(X)$ (by the property of pairwise independent random variables).

Suppose $F_{0}<2^{k-2}$. Then the probability that the algorithm makes an error is:

$$
\begin{array}{rlr}
\operatorname{Pr}[\text { Algorithm makes an error }] & =\operatorname{Pr}[\operatorname{Sum}>0] \\
& =\operatorname{Pr}[X>0] \\
& =\operatorname{Pr}[X \geq 1] \\
& \leq \frac{|D|}{2^{k}} & \\
& <\frac{1}{4} \quad \text { (By Markov's inequality) } & \text { (By our assumption that }|D|<2^{k-2} \text {) }
\end{array}
$$

On the other hand, suppose $F_{0}>2^{k+2}$. Then the probability that the algorithm makes an error is:

$$
\begin{array}{rlr}
\operatorname{Pr}[\text { Algorithm makes an error }] & =\operatorname{Pr}[X=0] \\
& \leq \operatorname{Pr}[|X-\mathbb{E}(X)| \geq \mathbb{E}(X)] \\
& \leq \frac{\mathbb{V} \operatorname{ar}(X)}{\mathbb{E}(X)^{2}} \\
& \leq \frac{1}{\mathbb{E}(X)} \\
& <\frac{1}{4} \quad \quad \text { (By Chebyshev's inequality) } \\
\quad(\mathbb{V} \operatorname{ar}(X) \leq \mathbb{E}(X)) \\
\left.\quad \text { (Using }|D|>2^{k+2} \text { and } \mathbb{E}(X)=\frac{|D|}{2^{k}}\right)
\end{array}
$$

Once again, by the above calculations, we get that the algorithm correctly decides GapDist $_{k}$ with probability at least $3 / 4$.

By using standard Chernoff argument, we can bring down the error probability down to δ using at most $O\left(\log \frac{1}{\delta}\right)$ bits.

Now, we change the algorithm so that independent samples can now be changed by pairwise independent samples.

Pick h from a family of pairwise independent random functions
$\mathcal{F}=\left\{h:[m] \rightarrow\{0,1\}^{k}\right\}$.;
Sum $\leftarrow 0$;
while there exists x, an input element do if $h(x)=0^{k}$ then

Sum \leftarrow Sum +1 ; end
end
Output "Yes" iff Sum > 0;
Algorithm 2: Algorithm with pairwise independent random variables

For the analysis, we define $X_{j}=1$ iff $h(j)=0^{k}$ and $X=\sum_{j \in D} X_{j}$ as before. The analysis of the algorithm is the same as our second analysis.

Let \mathcal{A}_{δ}^{k} denote this randomized algorithm for GapDist ${ }_{k}$ with error at most δ. In the next section we use this algorithm to approximate F_{0}.

8.2 Approximating F_{0} using \mathcal{A}_{δ}^{k}

In this section we will use $\mathcal{A}_{\delta}^{1}, \mathcal{A}_{\delta}^{2}, \ldots, \mathcal{A}_{\delta}^{\lceil\log m\rceil}$ to get an 8 -approximation for F_{0}. In the exercise, you are asked to improve it to $(1+\varepsilon)$-approximation.

Let $\mathcal{A}_{\delta^{\prime}}$ be the following algorithm:

```
for i=\lceil \og m\rceil downto 1 do
        if }\mp@subsup{\mathcal{A}}{\delta}{i}\mathrm{ outputs 0 then
        next i;
        end
        else
            Output 2 }\mp@subsup{}{}{i
    end
end
```

Suppose on some fixed input \mathcal{A}_{δ}^{i} outputs 0 for all $i \geq j$ but $\mathcal{A}_{\delta}^{j-1}$ outputs 1 and suppose also that all the answers are correct. Then this tells us that the answer must be certainly smaller than 2^{j+2} and definitely more than 2^{j-3}. Therefore, if the algorithm outputs 2^{j} then it will be 8 -approximation. But unfortunately, not all answers may be correct. $\operatorname{Pr}\left[A_{\delta^{\prime}}\right.$ makes an error $] \leq \operatorname{Pr}\left[\exists A_{\delta}^{i}\right.$ makes an error $] \leq\lceil\log m\rceil \cdot \delta$. By making $\delta=\frac{\delta^{\prime}}{|\log m|}$, we can make the error bounded by δ^{\prime}.

8.3 Space analysis of \mathcal{A}_{δ}^{i} and $\mathcal{A}_{\delta^{\prime}}$

To pick a random function from a family of pairwise independent functions, we need $O(k$. $\log m)$ bits and to store 'Sum' we need $O(\log n)$ bits. To bring down the overall error to δ, we need to run $O\left(\log \left(\frac{1}{\delta}\right)\right)$ copies of Algorithm 2. Therefore, total number of bits stored by A_{δ}^{i} is $O\left(\log \left(\frac{1}{\delta}\right) \cdot(k \cdot \log m+\log n)\right)$. Say $s=O\left(\log \left(\frac{1}{\delta}\right) \cdot(k \cdot \log m+\log n)\right)$.

Now, the algorithm $\mathcal{A}_{\delta^{\prime}}$ simultaeously runs $\lceil\log m\rceil$ copies of \mathcal{A}_{δ}^{i}, one for every $1 \leq i \leq$ $\lceil\log m\rceil$. This takes space $O(\lceil\log m\rceil \cdot s)$. Finally, for the error to be bounded by δ^{\prime}, we need to set $\delta=\frac{\delta^{\prime}}{\mid \log m\rceil}$. Putting it together, we get that the space used by $\mathcal{A}_{\delta^{\prime}}$ can be bounded by $O\left(\lceil\log m\rceil \cdot \log \left(\frac{\lceil\log m\rceil}{\delta^{\prime}}\right) \cdot(k \cdot \log m+\log n)\right)$. This gives us an 8 -approximation for F_{0} with probability $1-\delta^{\prime}$.

8.4 Exercises

Exercise 1. Modify Algorithm 2, \mathcal{A}_{δ}^{i} and $\mathcal{A}_{\delta^{\prime}}$ to obtain for every $\varepsilon>0,(1+\varepsilon)$-approximation algorithm for F_{0}. Analyze the space used by your algorithm.

