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Lecture 0: Mathematical Preliminaries

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In this note we will cover some basics of probability theory and algebra which will be
used during the course.

0.1 Some useful inequalities

We will use capital letters to denote random variables. The notations E(X) and Var(X)
stand for expectation and variance of the random variable X, respectively.

Lemma 0.1.1 (Markov’s inequality). Let X be any non-negative random variable. Then,

Pr [X ≥ α] ≤ E(X)

α

Lemma 0.1.2 (Chebyshev’s inequality). Let X be any random variable and α > 0. Then,

Pr [|X − E(X)| ≥ α] ≤ Var(X)

α2

Markov’s inequality can be used to prove Chebyshev’s inequality. From Markov’s in-
equality, one can also obtain the following strong tail bound for independent random vari-
ables.

Lemma 0.1.3 (Chernoff bound). Let X1, X2, . . . , Xn be i.i.d random variables and ∀i Xi ∈
{0, 1}. Let X =

∑n
i=1Xi. Then,

Pr [|X − E(X)| ≥ αE(X)] ≤ 2e−α
2E(X)

Exercise 1. You are given a fair unbiased coin. The coin is tossed n times independently.
Use all the above inequalities and compute the probability of the following events.

1. More than 3n/4 heads are observed.

2. More than n/2 + 2
√
n heads are observed.

Comment on which inequalities are applicable and comment on which inequality gives the
best bounds.

Exercise 2. You are given n independent random variables X1, X2, . . . , Xk. For every
i ∈ [n], Pr [Xi = 1] ≥ 3/4 and Pr [Xi = 0] ≤ 1/4. Let X =

∑
iXi. In terms of k compute

the probability of the event X ≤ k/4.

Exercise 3. Let b{0, 1} be a fixed bit. We generate bits X1, X2, . . . , Xk from b by tossing
independent coins. Each coin comes up HEAD with probability 3/4 and TAIL with proba-
bility 1/4. If the ith coin toss comes out to be HEAD then Xi = b else Xi = 1 − b. Let
X = majorityi(Xi), that is X = 1 iff

∑
iXi ≥ k/2. What is the probability that X 6= b?
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0.2 Abstract algebra

A field F = (S,+, ∗) is a set S with two binary operators, + and ∗ with the following
properties:

• Closure: For all a, b ∈ S, a+ b ∈ S and a ∗ b ∈ S.

• Associativity: For all a, b, c ∈ S a+ (b+ c) = (a+ b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• Identity: There exist two special elements i0, i1 ∈ S such that for all a ∈ S a + i0 =
i0 + a = a and a ∗ i1 = i1 ∗ a = a. Here, i0 is called the additive identity and i1 is
called the multiplicative identity.

• Inverses: For each element a ∈ S there exist a′, a′′ ∈ S such that a+ a′ = a′ + a = i0
and a ∗ a′′ = a′′ ∗ a = i1.

• Distributivity: For all a, b, c ∈ S, a ∗ (b+ c) = a ∗ b+ a ∗ c.

A field is called a finite field if |S| is finite.

Exercise 4. Let p be a prime and let Fp denote ({0, 1, . . . , p− 1},+ (mod p),× (mod p)).
Prove that Fp is a finite field. Here, +(mod p) and ×(mod p) represent addition and mul-
tiplication modulo p.

Is F6 a finite field? Justify your answer.

Exercise 5. Let p be a prime and let Fp[x] = (S(x),⊕p,⊗p) be a structure defined so
that S = {polynomials over the indeterminate x with coefficients from {0, 1, . . . , p−1}}, for
two polynomials r(x), q(x) ∈ S, r(x) ⊕p q(x) defined as addition of two polynomials with
coefficients modulo p and r(x) ⊗p q(x) defined as multiplication of two polynomials with
coefficients modulo p. Prove that Fp[x] is not a field.

The above is a very useful structure and we may encounter it many times during the
course.

Exercise 6. Let us consider the following structure: ({1, 0, x, 1+x},+ (mod 2),× (mod x2+
x+ 1)). Prove that this is a finite field. This finite field is often denoted as F22, as this is
a finite field with 4 elements.

In the Exercise 6 we have constructed a field of size 22 by performing additions modulo
2 and multiplications modulo a certain fixed polynomial of degree 2. In the same way, if
we were to create fields of size 2k, we can do this by performing additions modulo 2 and
multiplications modulo a certain fixed polynomial of degree k.

0.3 Linear algebra

Exercise 7. Let Q be a 2× n 0-1 matrix. Suppose the rank of Q is 2, then

Pr
α∈{0,1}n

[
Qα =

[
0
0

]]
= Pr

α∈{0,1}n

[
Qα =

[
0
1

]]
= Pr

α∈{0,1}n

[
Qα =

[
1
0

]]
= Pr

α∈{0,1}n

[
Qα =

[
1
1

]]
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0.4 Pairwise independence

Let us define a set of functions H = {h : {0, 1}m → {0, 1}n}. The number of functions in
this set is (2n)2

m
. The number of bits required to pick a random function from this family

is log((2n)2
m

), i.e. O(2mn).

Definition 0.4.1. We call a set of functions F ⊆ H a pairwise independent family of
functions if ∀x 6= y ∈ {0, 1}m and for any fixed u, v ∈ {0, 1}nwe have

Pr
f∈F

[f(x) = u ∧ f(y) = v] =
1

22n

In class we will often design an algorithm which picks a purely random function from a
set of all functions, i.e. from H . We will then analyze the algorithm and observe that we
only need to pick a purely random function from a set of pairwise independent family of
functions. We will first give a construction of such a family and then observe some useful
properties of such families.

Exercise 8 (Pairwise independent hash functions). Let A ∈ {0, 1}m×n and b ∈ {0, 1}n.
Let us define a function fA,b : {0, 1}m → {0, 1}n as fA,b(x) = Ax + b, where all additions
and multiplications are defined modulo 2. Let F = {fA,b | A ∈ {0, 1}n×m, b ∈ {0, 1}n}.
Prove that F is a family of pairwise independent hash functions. Formally, prove that
∀x 6= y ∈ {0, 1}m and for any fixed u, v ∈ {0, 1}nwe have

Pr
A∈{0,1}m×n,b∈{0,1}n

[fA,b(x) = u ∧ fA,b(y) = v] =
1

22n

Proof. Let x 6= y ∈ {0, 1}m be any two fixed vectors and let u, v ∈ {0, 1}n also be two
fixed vectors. For an n × m matrix A, let the ith row of the matrix be denoted as ãi.
For a vector b let bi denote its ith bit. Then the condition Ax + b = u can be written as
∧ni=1(〈ãi, x〉+ bi = ui). Therefore,

Pr [fA,b(x) = u ∧ fA,b(y) = v] = Pr [∧ni=1 (〈ãi, x〉+ bi = ui ∧ 〈ãi, y〉+ bi = vi)]

As A, b are chosen independently and uniformly at random, we get that

Pr [∧ni=1 (〈ãi, x〉+ bi = ui ∧ 〈ãi, y〉+ bi = vi))] =
n∏
i=1

Pr
ãi,bi

[〈ãi, x〉+ bi = ui ∧ 〈ãi, y〉+ bi = vi]

Suppose we are able to prove that for every i, Prãi∈{0,1}n,bi{0,1} [〈ãi, x〉+ bi = ui] = 1
4 then

we will be done. To prove that consider the following:[
x1, x2, ..., xn, 1
y1, y2, ..., yn, 1

] [
ãi1, ãi2, . . . , ãin, bi

]T
=

[
ui
vi

]
As x 6= y, there exists j ∈ [n] such that xj 6= yj . Therefore the matrix

[
x1, x2, ..., xn, 1
y1, y2, ..., yn, 1

]
has full row rank.

Therefore, using Exercise 7, we get Prãi∈{0,1}n,bi∈{0,1} [〈ãi, x〉+ bi = ui] = 1
4 .
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Note that |F| is 2mn + 2n. Therefore, the number of bits required for pick a random
function from F is O(mn).

Here is one useful property of pairwise independent 0-1 random variables.

Exercise 9. Let X1, X2, . . . , Xn be pairwise independent 0-1 random variables. Let X =∑n
i=1Xi. Then Var(X) ≤ E(X).

Proof.

E(X2) = E

(
(

n∑
i=1

Xi)
2

)

= E

 n∑
i=1

X2
i +

∑
i 6=j

XiXj


= E

 n∑
i=1

Xi +
∑
i 6=j

XiXj

 (As Xis are 0-1 valued)

= E(X) +
∑
i 6=j

E(XiXj) (By linearity of expectation)

= E(X) +
∑
i 6=j

1.Pr [Xi = 1 ∧Xj = 1] (By the definition of expectation)

= E(X) +
∑
i 6=j

Pr [Xi = 1] Pr [Xj = 1] (By pairwise independence of Xis)

= E(X) +
∑
i 6=j

E(Xi)E(Xj) (By the definition of expectation)

Similarly, we can evaluate (E(X))2 as follows:

(E(X))2 =

(
E(

n∑
i=1

Xi)

)2

=

(
n∑
i=1

E(Xi)

)2

(By linearity of expectation)

=

n∑
i=1

E(Xi)
2 +

∑
i 6=j

E(Xi)E(Xj)

Therefore, Var(X) = E(X2)− (E(X))2 = E(X)−
∑n

i=1 E(Xi)
2 ≤ E(X).
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