
(CS602) Applied Algorithms 14 Jan, 2015

Lecture 3: Introduction

Lecturer: Nutan Limaye Scribe: Nutan Limaye

This course will focus on algorithms for large data. The course is vaguely divided into
four modules.

• Algorithms for large datasets – frequency moments computations.

• Algorithms for problems in linear algebra – dimension reduction, norm computation.

• Algorithms for graph problems.

• Lower bound results via information theory.

The first two modules will be discussed before the midsem and the last two after midsem.
The grading scheme will be uploaded on the Moodle page of the course.

3.1 Introduction

We begin with two simple problems:
Problem 1: Given a stream of numbers, output the length of the input stream.
Problem 2: Given a graph as a set of edges, output the maximum matching in a graph.

Problem 1 is easily solvable in spaceO(log n), where n is the length of the input. Problem
2 has a polynomial time algorithm. Therefore, both the problems are easy in the classical
model of computation. However, the model that we will study in this course is slightly
restrictive:

• The input data is very large as compared to the space available to the algorithm.

• Rereading input bits is very expensive.

• Time for computation per input bit is very small.

Typically, if the input is of length, say n, we will be required to design algorithms which
use space o(n) and read every input bit O(1) times. Under these assumptions, let us first
design a 2-approximation algorithm for Problem 2.

3.2 Problem 2

Consider a simple greedy algorithm which starts with an empty set M and adds a new edge
say e to M i↵ M [{e} is a matching. This algorithm looks at every edge exactly once, uses
space O(n log n) which is o(n2). However, this does not necessarily output the maximum
matching. For every edge it adds to M , it may in the worst case exclude 2 edges from the
optimal matching. Therefore, this algorithm gives a 2-approximation.

3-1

3.3 Problem 1

For Problem 1 the naive algorithm already has all the desired properties, i.e. it looks at
every input element exactly once, and uses space O(log n) which is o(n). However, one
could ask whether we can reduce the space used by the algorithm even further. It is easy
to see that if we wish to compute the length of the input exactly, then ⌦(log n) bits are
necessary. We now discuss a randomized algorithm design by Morris [1], which gives a
2-approximation with probability at least 3/4 and uses space O(log log n).

Y 0;
while there exists xi, an input element do

Y Y + 1 w.p. 1
2Y

;

Y Y w.p. 1� 1
2Y

;

end
Output 2Y

We will analyze the algorithm in the next class.

References

[1] R. Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, Oct. 1978.

3-2

(CS602) Applied Algorithms 16 Jan, 2014

Lecture 4: Computing the length of the input

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class, we started with two problems:
Problem 1: Given a stream of numbers, output the length of the input stream.
Problem 2: Given a graph as a set of edges, output the maximum matching in a graph.

We saw a O(n log n) space 2-approximation algorithm for Problem 2. We gave an
algorithm for Problem 1. Today we will analyze the algorithm.

4.1 Algorithm for Problem 1 and analysis

Let us start by recalling the algorithm.

Y 0;
while there exists xi, an input element do

Y Y + 1 w.p. 1
2Y

;

Y Y w.p. 1� 1
2Y

;

end
Output 2Y � 1

The algorithm increments the counter with lower and lower probability as the length of
the input increases. We will first analyze the expected value and the variance of the output
after i steps.

Lemma 4.1.1. E(2Yi) = i+ 1

Proof.

E(2Yi) =
1X

j=0

⇣⇥
E(2Yi)|Yi�1 = j

⇤
Pr [Yi�1 = j]

⌘

=
1X

j=0

✓
2j+1 1

2j
+ 2j(1� 1

2j
)

◆
Pr [Yi�1 = j]

=
1X

j=0

2j Pr [Yi�1 = j] +
1X

j=0

Pr [Yi�1 = j]

= E(2Yi�1) + 1

Using the recurrence, we get the lemma.

Lemma 4.1.2. Var(2Yi) = i(i�1)
2

4-1

Proof.

E(22Yi) =
1X

j=0

⇣⇥
E(22Yi)|Yi�1 = j

⇤
Pr [Yi�1 = j]

⌘

=
1X

j=0

✓
22(j+1) 1

2j
+ 22j(1� 1

2j
)

◆
Pr [Yi�1 = j]

=
1X

j=0

22j Pr [Yi�1 = j] + 3
1X

j=0

2j Pr [Yi�1 = j]

= E(22Yi�1) + 3i

Solving the recurrence, we get that E(22Yi) = 1 +
Pi

k=1 3k = 1 + 3i(i+1)
2 . Therefore,

Var(2Yi) = 1 + 3i(i+1)
2 � (i+ 1)2 = i(i�1)

2

Lemmas 4.1.1 indicates that the expected value of the output of the algorithm is
equal to the actual length of the input. This is a good sign. Lemma 4.1.2 indicates
that the variance is not too large. This again is useful. Now using Chebyshev we have
Pr

⇥
|2Yn+1 � (n+ 1)| � 0.9(n+ 1)

⇤
 n(n�1)

1.62(n+1)2 <
3
4 . This tells us that with probability at

least 1/4 the algorithm gives a 0.9 approximation.

Definition 4.1.3. A randomized algorithm A computing a function f is said to be an (", �)
algorithm for f if for every input x, Pr [(1� ")f(x) A(x) (1 + ")f(x)] � 1� �.

In this sense, the algorithm we have is an (0.9, 3/4) algorithm for computing the length
of the input.

4.2 Improving approximation guarantee

We now describe the standard trick used to increase the approximation gurantee. Let us
call the algorithm designed in Section 4.1 as A1. Given an " > 0 and algorithm A1, we give
another algorithm A2 such that Pr [(1� ")f(x) A2(x) (1 + ")f(x)] � 2/3.

for j = 1 to t do
Y

(j) 0;
end
while there exists xi, an input element do

for j = 1 to t do
Y

(j) Y
(j) + 1 w.p. 1

2Y
(j) ;

Y
(j) Y

(j) w.p. 1� 1

2Y
(j) ;

end

end

Output
Pt

i=1 2
Y (i)�1
t

4-2

Here, t is a parameter, which we will fix shortly. Let Zn denote the output of A2 for
inputs of length n. It is easy to see that E(Zn) = n and Var(Zn) = n(n�1)

2t . Therefore,

by applying Chebyshev’s inequality we get Pr [|Zn � n| � "n] n(n�1)
2t"2n2 <

1
2t"2 . By set-

ting t = d 3
2"2 e we get that Pr [|Zn � n| � "n] < 1/3. That is, we get for every input x

Pr [(1� ")f(x) A2(x) (1 + ")f(x)]� 2/3. Suppose s(n) is the space used by A1 for
inputs of length n, then as t = O(1/"2), the space used by A2 is ts(n) = O(s(n)/"2).

Remark 4.2.1. Observe that the error probability that we obtained here could be made

small enough by setting t appropriately. Suppose we needed the error probability to be �, the

space used by the algorithm would take an additional blow of O(1/�). In the next section,

we show how to reduce the error by increasing the space by only O(log(1�)).

4.3 Decreasing the error probability

Consider the following modified algorithm:

for j = 1 to t do
for ` = 1 to k do

Y
(j,`) 0;

end

end
while there exists xi, an input element do

for j = 1 to t do
for ` = 1 to k do

Y
(j,`) Y

(j,`) + 1 w.p. 1

2Y
(j,`) ;

Y
(j,`) Y

(j,`) w.p. 1� 1

2Y
(j,`) ;

end

end

end

Output Median of

✓Pt
j=1 2

Y (j,1)�1

t ,

Pt
j=1 2

Y (j,2)�1

t , . . . ,

Pt
j=1 2

Y (j,k)�1

t

◆

Let us call this algorithm A3. Here, let t be as fixed in Section 4.2, i.e. t = 3
2"2 . Let

us define Z` =
Pt

j=1 2
Y (j,`)�1

t for 1 ` k. And let Y` be a 0-1 random variable which is
set to 1 if (1 + ")n Z` (1 + ")n for 1 ` k. Then we know that for 1 ` k,
E(Y`) = 2/3. That is, in expectation, about 2/3rd of the Y`s are in the correct range
of values. The algorithm A3 outputs the medial of these Y`s. If more than half of the
Y`s have the values in the right range, the median will be in the right range. Therefore,
to bound the error of the algorithm we need to bound the probability of the event that
strictly less than half of the Y`s are in the right range. Let Y =

Pk
`=1 Y`. We wish to

bound the probability that Y < k/2. Note that E(Y) = 2k/3 by linearity of expectations.

Pr [Y < k/2] = Pr [|Y � E(Y)| � k/6] = Pr
h
|Y � E(Y)| � E(Y)

4

i
. This can be bounded by

4-3

using the Cherno↵ bound as follows: Pr
h
|Y � E(Y)| � E(Y)

4

i
 2.e�

2k
16·3 . To make this

smaller than � > 0, we need to k = O(log(1�)).
To summarize, we have designed an algorithm A3 which runs for O

�
1
"2 log

�
1
�

��
iterations

and has the following guarantee: Pr [(1� ")n A3(x) (1 + ")n] � 1� �.

4-4

(CS602) Applied Algorithms 28 Jan, 2015

Lecture 7: Computing the number of distinct elements

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we gave a randomized (", �) algorithm1 for approximating the length of
the input. In this class we will build towards coming up with an algorithm for approximating
the number of distinct elements in the input stream.

Given an input stream x1, x2, . . . , xn, where each xi 2 [m] and ", � > 0 constants, our
goal is to design a randomized (", �) algorithm for approximating the number of distinct
elements using space O(logm). We will give two approaches for this, which will introduce
you to two ideas. Unfortunately, none of them will manage to achieve the correct space
bounds. Finally, the exact space bounds will be achieved in the next class.

7.1 Approach 1

Pick h uniformly randomly from H = {h : [m]! [0, 1]};
Z 1;
while there exists x, an input element do

if Z > h(x) then
Z h(x);

end

end

The algorithm assigns minimum over all x, h(x) to Z. For a fixed input string, suppose
D ✓ [m] is the set of distinct elements in the string. Let d = |D|. The above algorithm
takes the set D and maps it to the real interval [0, 1]. As this happens uniformly in the
interval, intuitively the elements in D will be equispaced inside the interval [0, 1]. Therefore,
suppose minx2Dh(x) is equal to 0.25 then it is very likely that there were 3 = (1/0.25� 1)
elements in D: one which got mapped to 0.25, another to 0.5 and the last to 0.75. It seems
that by simply randomly hashing into the [0, 1] interval, and computing the min of the hash
values, we can get a good idea about the number of distinct elements in the input.

We will now make this intuition concrete in the next few steps of calculations. We will
compute the expectation and variance of Z. Note that the probability is over the random
choice of h 2 H.

1Defined in last lecture note.

7-1

E(Z) =

Z 1

0
Pr [Z > �] d�

=

Z 1

0
Pr

"
Y

x2D

h(x) > �

#
d� (Z is the min among all h(x))

=

Z 1

0
(1� �)dd� (As h(x)s are uniformaly distributed over [0, 1] and |D| = d)

=
u
d+1

d+ 1

����
1

0

(By change of variables)

=
1

d+ 1

To compute Var(Z), we first compute E(Z2) similarly.

E(Z2) =

Z 1

0
Pr
⇥
Z

2
> �

⇤
d�

=

Z 1

0
Pr
h
Z >

p

�

i
d�

=

Z 1

0
Pr

"
Y

x2D

⇣
h(x) >

p

�

⌘#
d� (Z is the min among all h(x))

=

Z 1

0
(1�

p

�)dd� (As h(x)s are uniformaly distributed over [0, 1] and |D| = d)

= 2

✓
u
d+1

d+ 1
�

u
d+2

d+ 2

◆����
1

0

(By change of variables)

=
2

(d+ 1)(d+ 2)

From this we get that Var(Z) = O(1/d2).
To bring down the variance by a factor of q, we run q parallel copies of the algorithm

and take average of their outputs and declare that as our new output. This is called the
averaging trick and is decsribed in Lecture 2, Section 2.2. Let Z̃ denote the averaged output.
Then it is easy to see that E(Z̃) = E(Z) and Var(Z̃) = Var(Z)

q . By Chebyshev’s inequality
we will get the following:

Pr
h2H

����Z̃ �
1

d+ 1

���� �
"

d+ 1

�
 O

✓
1

q"2

◆

Now choosing q appropriately, we get the above probability is strictly smaller than 1/3.
This finishes the description of this approach. There are a couple of problems with this

approach:

• As the range of the functions is [0, 1], the family H is uncountable. Therefore, we will
not be able to implement the step of picking a random function from H.

7-2

• Again, as Z takes value in [0, 1] infinite precision may be required to store Z.

Our next approach partially addresses these issues.

7.2 Approach 2

We first change the family of functions. Let H
0 = {h : [m] ! {0, 1}K}, where K is such

that 2K > m. Note that by changing the range of the functions, we manage to address the
problems related to Approach 1. However, if we implement the exact same algorithm as in
Section 7.1 with respect to this family then the algorithm will use log(2mK) = O(m2) bits
to pick a random function.2 This is better than Approach 1, however not good enough — as
we already know a O(m) algorithm for exactly computing the number of distinct elements
in any input stream. So this change of family of functions is not quite enough to achieve
good space bounds.

In any case, we will use this familyH
0 to design a di↵erent randomized algorithm, sayA2,

to approximate the number of distinct elements. We will then observe some properties of
the algorithm. These properties will indicate that to achieve the same performce guarantee
— that is the same approximation factor and the same amount of error — we need not pick
a random function from the family H

0 but from a sub-family H
00
⇢ H

0. In the next class
we will construct a sub-family H

00 and an algorithm A
0
2 such that |H00

| = O(m2) and A
0
2

is the same as A2, except that it chooses a random function from H
00. Note that picking a

random function from H
00 will need only O(logm) bits.

We now describe the algorithm.

Pick h uniformly randomly from H
0 = {h : [m]! {0, 1}K};

Z 0;
while there exists x, an input element do

if Z < #traling zeroes in h(x) then
Z h(x);

end

end

Output 2Z ;

Let D denote the distinct elements in the streams and |D| = d. The algorithm spreads
the elements of D uniformaly in the range {0, 1}K . It then stores the maximum over x 2 D

the number of trailing 0s observed in h(x). The rationale behind counting the trailing
zeroes can be explained as follows: consider the random experiment in which you pick a
random subset from {1, 2, . . . , n}. In this case, about half the elements will be divisible by
2, about 1/4th will be divisible by 4 and so on. Turning it around, if d elements are mapped
uniformly and randomly to {1, 2, . . . , n} then at least 1 of them will be divisible by 2log d.

We now work out the calculations. For the ease of calculations, let us introduce some no-
tation. Let Yx,` be a 0-1 random variable, which is defined to be 1 i↵#traling zeroes in h(x) >
`. And let Ỹ` denote

P
x2D Yx,`.

2This is because |H
0
| = (2K)m.

7-3

Observation 7.2.1. Ỹ` = 0 if and only if Z < `.

The proof of the above observation is left as an easy exercise. To bound the error
probability of the algorithm, we would like to show that the following probability is high:
Pr
⇥
d
c 2Z cd

⇤
. We will do this by bounding the probabilities of the following two quan-

tities:

Pr
⇥
2Z > cd

⇤
 Pr [Z > dlog(cd)e] (A)

Pr
⇥
2Z < d/c

⇤
 Pr [Z < blog(d/c)c] (B)

Let U denote dlog(cd)e and L denote blog(d/c)c in (A), (B), respectively. Using Observation

7.2.1 we know that Pr [Z < L] = Pr
h
ỸL = 0

i
. Similarly, we also know that Pr [Z > U] =

Pr
h
ỸU > 0

i
. Therefore, now we are left to upper bound the probability of these two events.

We bound them as follows:

Pr
h
ỸU > 0

i
= Pr

h
ỸU � 1

i

 E(ỸU)/1 (By Markov’s inequality)

Pr
h
ỸL = 0

i
= Pr

h���ỸL � E(ỸL)
��� � E(ỸL)

i

 Var(ỸL)/(E(ỸL))2 (By Chebyshev’s inequality)

Lemma 7.2.2. For every 1 ` K, E(Ỹ`) = d
2l

and Var(Ỹ`) < d
2l

Proof. E(Ỹ`) = E(
P

x2D Yx,`) =
P

x2D E(Yx,`) = F0 ·E(Yx,`) = F0/2`. Here, the first equal-

ity comes from the definition of Ỹ`, the second equality comes from linearity of expectation,
the third equality comes from the fact that E(Yx,`) is the same for every x 2 D and the
final equality comes from the fact that Pr [Yx,` = 1] = 1/2`.

For computing variance, we first compute E(Ỹ 2
`).

E(Ỹ 2
`) = E

(
X

x2D

Yx,`)
2

!

= E

0

@
X

x2D

Y
2
x,` +

X

x6=x02D

Yx,` · Yx0,`

1

A

=
X

x2D

E(Y 2
x,`) +

X

x 6=x02D

E(Yx,` · Yx0,`)

7-4

The proof was worked out in detail in class. It is now left as an exercise. Now putting

it all together we get that Pr
h
ỸU > 0

i

d
2U
 1/c. The first inequality is due to Lemma

7.2.2 and the second inequality is by using the value of U . Similarly, we get Pr
h
ỸL = 0

i
<

2L

d 1/c. Again, the first inequality is due to Lemma 7.2.2 and the second inequality is by
using the value of L.

7-5

7.3 Exercise

Exercise 1. Suppose the algorithm for Approach 1 is changed as follows:

Pick h uniformly randomly from H = {h : [m]! [0, 1]};
Z 0;
while there exists x, an input element do

if Z < h(x) then
Z h(x);

end

end

Compute E(Z) and Var(Z).

Exercise 2. Prove Observation 7.2.1.

Exercise 3. Prove Lemma 7.2.2.

7-6

(CS602) Applied Algorithms 30 Jan, 2015

Lecture 8: Pairwise Independence

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class, we considered the following problem: given an input stream x1, x2, . . . , xn,

where each xi 2 [m] and ", � > 0 constants, design a randomized (", �) algorithm for approx-

imating the number of distinct elements using space O(logm). We gave two approaches for

this. however, none of them will managed to achieve the correct space bounds.

Today we will introduce the notion of pairwise independent hash functions and use it in

the second algorithm studied in the last class. This will give a randomized (", �) algorithm

for approximating the number of distinct elements using space O(log
2
m).

8.1 Modified Approach 2

The details regarding the definition of pairwise independence and their construction can be

found in Lecture 0 (we will not rewrite them here).

In this lecture note we will simply observe some properties of Approach 2 from the last

class and show one can use pairwise independence to bring the space usage from O(m
2
) to

O(log
2
m).

Recall Approach 2 from last class.

Pick h uniformly randomly from H
0
= {h : [m]! {0, 1}

K
};

Z 0;

while there exists x, an input element do
if Z < #traling zeroes in h(x) then

Z h(x);

end

end
Output 2

Z
;

The only change we make to this algorithm is that we use a family of pairwise indepen-

dent hash functions which is a subfamily of H of size O(2
K
m). Therefore, the number of

bits needed to choose a function from this family is O(K logm) = O(log
2
m) if we choose

K such that m 2
K
 2m. Therefore, the upper bound on the space is enough. Now, let

us see why the same analysis can go through for the modified algorithm.

The only property of the randomly chosen hash function we used was that 8` 2 [K],

Var(Ỹ`) E(Ỹ`), where Ỹ` is a sum of 0-1 random variables. From Exercise 9 of lecture 0,

sum of pairwise independent 0-1 random variables also has this property. And hence, the

same analysis as n Approach 2 will go through even for this modified approach.

8-1

(CS602) Applied Algorithms 23 Jan, 2015

Lecture 5: Second frequency moment, F2

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we gave a randomized (", �) algorithm for approximating the number

of distinct elements using space O(
1
" · log

�
1
�

�
· log

2
m).

Today we will define the notion of frequency moments and give (", �) algorithm for

approximating the second frequency moment using space O(
1
"2 · log

�
1
�

�
· logm).

5.1 Frequency Moments

Let x1, x2, . . . , xn be input stream and for each i 2 [n] let xi 2 [m]. Let fj denote the

number of times the element j 2 [m] appears in the stream. The kth frequency moment is

defined as follows:

Fk =

X

j2[m]

f
k
j

As per this definition, F0 is the number of distinct elements in the stream and F1 is the

length of the stream. We gave space e�cient algorithms to approaximate these quantities

over the last few lectures. Today we will give an algorithm to approximate F2.

Pick h uniformly randomly from 4-wise independent family of functions

F = {h : [m]! {±1}};

Sum 0;

while there exists x, an input element do
Sum Sum + h(x);

end
Output Z (Sum)

2
;

We will first analyse the expected value of the output of the algorithm.

Lemma 5.1.1. E(Z) = F2

Proof.

E(Z) = E
�
Sum

2
�

= E

0

@

X

x2stream
h(x)

!2
1

A (From the definition of Sum)

= E

0

@

0

@
X

j2[m]

fjh(j)

1

A
21

A (From the definition of h(x))

5-1

From here we see that,

E(Z) = E

0

@
X

j2[m]

f
2
j h(j)

2
+

X

j 6=`

fjflh(j)h(`)

1

A

=

X

j2[m]

f
2
j E(h(j)2) +

X

j 6=`

fjflE(h(j)h(`)) (By linearity of expectation)

=

X

j2[m]

f
2
j · 1 +

X

j 6=`

fjfl · 0 (As h(j)
2
= 1 8j and Pairwise independence of F)

= F2 (By the definition of F2)

Lemma 5.1.2. Var(Z) 2F
2
2 .

To reduce the variance even further, we use the averaging trick. If we run t copies of

the same algorithm and let the output, say Z
0
, be the average of the outputs of all the t

algorithms then we will get the following:

Lemma 5.1.3. E(Z 0
) = F2 and Var(Z 0

) 2F
2
2 /t.

Now using Chebyshev’s inequality we know that

Pr
⇥
|Z

0
� E(Z 0

)| � "F2
⇤

2F
2
2

t"2F 2
2

 1/3 (for appropriate choice of t)

We can further reduce the probability of error to be bounded above by � by using the

median trick.
We now argue the space bound. To compute Z, we need to keep track of the variable

Sum, which can be stored in O(log n) space. The number of bits required to pick a random

function from the family of 4-wise independent hash functions equals log(|F). It is known

that for any family of functions H = {h : [m] ! [k]}, there exists a subfamily F ⇢ H

of 4-wise independent hash functions of size k
logm

. Therefore, he number of bits required

to pick a random function from the family of 4-wise independent hash functions equals

log(|F) = O(log k logm). As k = 2 here, we can choose a random function using O(logm)

bits. As we saw in Lecture 1, the use of the averaging trick and the median trick along with

this space bound we get that the randomized (", �) approximation algorithm for F2 uses

space O(
1
"2 · log

�
1
�

�
· logm).

This algorithm presented here is from a seminal paper by Alon, Matias and Szegedy.

5.2 Exercises

Exercise 1. Prove Lemmas 5.1.2, 5.1.3.

5-2

(CS602) Applied Algorithms 11 Feb, 2015

Lecture 11: Count-Min and Count sketches

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we defined the notion of frequency moments and gave (", �) approxima-

tion algorithm for approximating the second frequency moment using space O(
1
"2 · log

�
1
�

�
·

logm).

Today we will present two di↵erent randomized approximation algorithm which can

compute all frequency moments using O(
1
" · log

�
1
�

�
· logm) space, albeit their approximation

guarantee will be weaker: i.e. approximation error will be absolute instead of relative (as

in the previous classes).

11.1 Algorithm 1: Count-Min sketch algorithm

Recall some notation from the last time. Let x1, x2, . . . , xn be the input stream and for

each i 2 [n] let xi 2 [m]. Let fj denote the number of times the element j 2 [m] appears in

the stream. After the algorithm processes the entire stream, the task is to answer queries

of the following form: how many times has element “a” appeared in the stream? or what is
the most frequently occuring element in the stream? etc.

We now give the first algorithm.

Pick h1, h2, . . . , ht uniformly randomly from pairwise independent family of functions

F = {h : [m]! [k]};
for i = 1 to t do

for j = 1 to k do
C[i][hi(j)] 0;

end

end
while there exists x, an input element do

for i = 1 to t do
C[i][hi(x)] C[i][hi(x)] + 1;

end

end

On query a, output f̂a mini{C[i][hi(a)]};

This algorithm is called the Count-Min sketch algorithm for obvious reasons and has

been designed by Cormode and Muthukrishnan in 2003 [2].

In the algorithm, k, t are parameters which will be fixed later. In terms of these

parameters, the space used by the algorithm can analysed easily. The number of bits

needed to pick pairwise independent hash functions is O(t logm log k) and the number of

bits needed to store the table C is O(tk log n). Therefore, the total space requirement is

O(kt(logm+log n)). This indicates that to minimize the space usage, we need to keep both

parameters as low as possible.

11-1

Suppose k ⌧ m, then a random function from [m] to [k], maps around m/k elements of

the domain to the same element in the range. Suppose the stream has a lot of occurences of

one element, say a1, while very few of the other, say a2, and say under a random function

they get mapped to the same bucket (which can happen with probability 1/k), then the

algorithm’s estimate for the number of a2 will be very erroneous. To counter this e↵ect,

the algorithm chooses t (pairwise) random functions. Now the probability that a1 and a2

collide under all t functions is small.

One thing we can quickly observe is that fa, which is the number of times the element

‘a’ appears in the stream, is cerianly upper bounded by f̂a. This is because if under some

hi, no other element gets mapped to hi(a) then the count C[i][hi(a)] will be equal to fa and

all other C[j][hj(a)] � C[i][hi(a)].

We will now prove the following lemma:

Lemma 11.1.1. For every constant ", � > 0, Pr
h⇣

f̂a � fa

⌘
� "n

i
 �.

Remark 11.1.2. Ideally, we would have liked to prove that for every constant ", � > 0,

Pr

h⇣
f̂a � fa

⌘
� "fa

i
 �. That is, we would have liked to have a multiplicative approxima-

tion error, but we get an additive error. In fact, it is known that any randomized approxi-
mation algorithm (with multiplicative approximation error) for maxi {fi} (which trivially is
a restriction of the function we are computing here) requires space ⌦(n) [1].

Proof of Lemma 11.1.1: For j 2 [n]\{a} let Yi,j denote the excess in the counter C[i][hi(a)].

Then we have, Yi,j =

⇢
fj if hi(a) = hi(j) (with probability 1/k)

0 otherwise (with probability 1� 1/k)

Let Yi :=
P

j Yi,j . Then we have that f̂a = mini {Yi} + fa. Therefore, f̂a � fa =

mini {Yi}. Therefore, we need to prove that for every constant ", � > 0, Pr [mini {Yi} � "n]
�. That is, we need to prove that for every constant ", � > 0, Pr [8i : Yi � "n] �.

Now, note that all Yis are independent, therefore, it su�ces to prove that for every con-

stant ", � > 0, Pr [Yi � "n] �
1/t

. We will analyze the expected value of Yi in or-

der to prove this. From the definition of Yi,j and linearity of expectation, we get that

E(Yi) =
P

j2[m]\{a} E(Yi,j) =

P
j2[m]\{a} fj

k =
n�fa
k . Therefore, using Markov’s inequality

we get that Pr [Yi � "n] n�fa
k"n . If k is chosen such that k = d2"e then we get that

Pr [Yi � "n] <
1
2 . And if t is chosen to be d2 log 1

� e, we get the lemma.

11.2 Count Sketch

In this section, we present a small modification of the algorithm presented in the previ-

ous section. We will analyze the algorithm in this lecture and compare and contrast the

performance of the two algorithms in the next lecture.

Like in the previous section, let for j 2 [n] \ {a} let Yi,j denote the excess in the counter

C[i][hi(a)].

Then we have, Yi,j =

8
<

:

fj if hi(a) = hi(j) and gi(j) = +1 (with probability 1/2k)

�fj if hi(a) = hi(j) and gi(j) = �1 (with probability 1/2k)

0 otherwise (with probability 1� 1/k)

11-2

Pick h1, h2, . . . , ht uniformly randomly from pairwise independent family of functions

F = {f : [m]! [k]} and pick g1, g2, . . . , gt uniformly randomly from pairwise

independent family of functions G = {g : [m]! {±}};
for i = 1 to t do

for j = 1 to k do
C[i][hi(j)] 0;

end

end
while there exists x, an input element do

for i = 1 to t do
C[i][hi(x)] C[i][hi(x)] + gi(x);

end

end
On query a, output Median1it {gi(a)C[i][hi(a)]};

Let Yi :=
P

j Yi,j . The output of the algorithm and the Yis are related in the following

way: Yi counts the total error terms in C[i][hi(a)]. Therefore, C[i][hi(a)] = Yi + gi(a) · fa.
In order to bound the error in the output, let us first compute the expected value of Yi and

variance of Yi.

Lemma 11.2.1. For every 1 i t E(Yi) = 0 and Var(Yi) =
P

j2[m]\{a} f2
j

k .

Proof.

E(Yi) = E

0

@
X

j2[m]\{a}

Yi,j

1

A (By the definition of Yi)

=

X

j2[m]\{a}

E(Yi,j) (By linearity of expectation)

=

X

j2[m]\{a}

fj

2k
+
�fj
2k

(By the definition of Yi,j)

= 0

11-3

E(Y 2
i) = E

0

@
X

j2[m]\{a}

Y
2
i,j +

X

j 6=j02[m]\{a}

Yi,jYi,j0

1

A (By the definition of Yi)

=

X

j2[m]\{a}

E(Y 2
i,j) +

X

j 6=j02[m]\{a}

E(Yi,jYi,j0) (By linearity of expectation)

=

X

j2[m]\{a}

f
2
j

2k
+

(�fj)2

2k
+

X

j 6=j02[m]\{a}

E(Yi,j)E(Yi,j0) (By the pairwise independence of Yi,j)

=

P
j2[m]\{a} f

2
j

k

In the next class we will bound the expectation and variance of the output of the

algorithm using Lemma 11.2.1.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM.

[2] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the

count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

11.3 Exercises

Exercise 1. Make approrpiate modifications to the algorithms presented here so that they
work in the turnstile model. Work out all the calculations for the modified algorithms. Read
about the turnstile model at:
http://en.wikipedia.org/wiki/Streaming algorithm#Models

11-4

(CS602) Applied Algorithms 13 Feb, 2015

Lecture 12: Count-Min and Count sketches

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we studied two di↵erent randomized approximation algorithm for com-
puting all frequency moments using O(1" · log

�
1
�

�
· logm) space and additive approximation

error. We fully analyzed the first algorithm. Recall that the algorithm used a sketch which
is known as Count-Min sketch, which was developed by Cormode and Muthukrishnana [2].
Towards the end of the last class, we presented the second algorithm and we were in the pro-
cess of analysing the second algorithm. The second algorithm was developed by Charikar,
Chen and Farach-Colton [1]. It also uses a sketch, which is known as Count sketch.

Both these sketching algorithms have found a plethora of applications in varied areas of
computer science including compressed sensing, natural language processing, databses, and
networking. (See for example: https://sites.google.com/site/countminsketch/)

We will finish the analysis of the second algorithm in this class.

12.1 Recalling the Count sketch algorithm

Let us start by recalling the algorithm we presented last time, the notation we introduced,
and the Lemmas we proved.

Pick h1, h2, . . . , ht uniformly randomly from pairwise independent family of functions
F = {f : [m]! [k]} and pick g1, g2, . . . , gt uniformly randomly from pairwise
independent family of functions G = {g : [m]! {±}};
for i = 1 to t do

for j = 1 to k do
C[i][hi(j)] 0;

end

end
while there exists x, an input element do

for i = 1 to t do
C[i][hi(x)] C[i][hi(x)] + gi(x);

end

end
On query a, output Median1it {gi(a)C[i][hi(a)]};

Like in the previous section, let for j 2 [n] \ {a}, Yi,j denote the excess in the counter
C[i][hi(a)].

Then we have, Yi,j =

8
<

:

fj if hi(a) = hi(j) and gi(j) = +1 (with probability 1/2k)
�fj if hi(a) = hi(j) and gi(j) = �1 (with probability 1/2k)
0 otherwise (with probability 1� 1/k)

Let Yi :=
P

j Yi,j . The output of the algorithm and the Yis are related in the following
way: Yi counts the total error terms in C[i][hi(a)]. Therefore, C[i][hi(a)] = Yi + gi(a) · fa.

12-1

In order to bound the error in the output, let us first compute the expected value of Yi and
variance of Yi.

Lemma 6.2.1. For every 1 i t, E(Yi) = 0 and Var(Yi) =
P

j2[m]\{a} f
2
j

k .
The proof of this emma was presented in the last lecture note.

12.2 Analysis of the algorithm

We now use Lemma 6.2.1 to analyze the performance of the algorithm. Let ˆ̂
fa denote the

output of the algorithm. Therefore, ˆ̂
fa = Median{ ˆ̂fa,i}, where ˆ̂

fa,i = gi(a)⇥(Yi + gi(a) · fa).
We will first compute the expectation and variance of ˆ̂

fa,i.

Lemma 12.2.1. For every 1 i t, E(ˆ̂fa,i) = fa and Var(ˆ̂fa,i) =
P

j2[m]\{a} f2
j

k

Proof.

E(ˆ̂fa,i) = E(gi(a)⇥ (Yi + gi(a) · fa))
= E(gi(a)Yi + fa) (As gi(a)

2 = 1)

= E(gi(a)Yi) + fa

= fa +
kX

j=1

E(gi(a)Yi,j)

= fa +
kX

j=1

+fj

4k
+
�fj
4k

+
+fj

4k
+
�fj
4k

= 0

Remark 12.2.2. Note that as an intermediate step, the above proof also proved that

E(gi(a)Yi) = 0. We will use this fact in the analysis of the variance.

E(ˆ̂f2
a,i) = E

�
(gi(a)Yi + fa)

2
�

(From Step 2 above)

= f
2
a + E

�
gi(a)

2
Y

2
i + 2fagi(a)Yi

�

= f
2
a + E

�
Y

2
i

�
+ 2faE(gi(a)Yi) (As gi(a)

2 = 1)

= f
2
a + E

�
Y

2
i

�
+ 0 (By Remark 12.2.2)

= f
2
a +

P
j2[m]\{a} f

2
j

k
(By proof of Lemma 6.2.1)

Therefore, we get Var(ˆ̂fa,i) =
P

j2[m]\{a} f
2
j

k

12-2

By using Chebyshev’s inequality, we get Pr
h
| ˆ̂fa,i � fa| � "

p
F2

i

P
j2[m]\{a} f2

j

k"2F2
, where

F2 =
P

j2[m] f
2
j . By choosing k appropriately, we can bound this probability by 1/3,

that is Pr
h
| ˆ̂fa,i � fa| � "

p
F2

i
 1/3. Now by the standard median trick, by choosing

t = O
�
log 1

�

�
, we get Pr

h
| ˆ̂fa � fa| � "

p
F2

i
 � for any constant � > 0.

12.3 Comparison of the two algorithms

Recall that in the last lecture note we proved that Pr
h
|f̂a � fa| � "F1

i
 � for any con-

stant � > 0. That is, in the Count-Min algorithm, the additive approximation error was
proportional to F1 where as here it is proportional to

p
F2. However, the dependence on "

is 1/" for Count-Min and 1/"2 for Count sketch.

References

[1] Finding frequent items in data streams. Theoretical Computer Science, 312(1):3 – 15,
2004. ¡ce:title¿Automata, Languages and Programming¡/ce:title¿.

[2] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

12.4 Exercises

Exercise 1. In the algorithm presented here, say the last line is changed from

“On query a, output Median1it {gi(a)C[i][hi(a)]}”

to

“On query a, output

Pt
i=1{gi(a)C[i][hi(a)]}

t

The rest of the algorithm is kept as it is. Analyze the performance of this modified

algorithm.

12-3

(CS602) Applied Algorithms 06 Feb, 2015

Lecture 9: Sampling based approach for distinct elements

Lecturer: Nutan Limaye Scribe: Nutan Limaye

In the last class we completed the analysis of Count sketch algorithm. Today we will

give a sampling based approach for estimating distinct elements.

Recall the distinct element problem deals with given a stream of data x1, x2, . . . , xn,

where for all i xi 2 [m], counting the number of distinct elements in the stream. As a first

step towards solving this problem using sampling, we will look at the restricted version of

the same problem and design a sampling algorithm for it. We call this version, the gap

version of the problem, GapDistk.
Given: x̃ = x1, x2, . . . , xn, where for all 1 i n, xi 2 [m], and k 2 N
Output “Yes” if the number of distinct elements in x̃ is > 2

k+2

“No” if the number of distinct elements in x̃ is < 2
k�2

9.1 Naive Sampling algorithm for GapDistk

We first give an algorithm which uses (in the worst case) O(m) number of independent
random bits. Later we show how one can raplace independent random bits by pairwise

random bits.

Pick every element of [m] into the set S with probability
1
2k
;

Sum 0;

while there exists x, an input element do
if x 2 S then

Sum Sum +1;

end

end
Output “Yes” i↵ Sum > 0;

Algorithm 1: Algorithm with independent random bits

We now argue the correctness the above algorithm and bound its error probability. Let

x̃ be the given input. Let D denote the set of distinct elements in x̃. Let F0 denote |D|.
Suppose F0 < 2

k�2
. Then the probability that the algorithm makes an error is:

9-1

Pr [Algorithm makes an error] = Pr [Sum > 0]

= Pr [9x 2 D s.t. x 2 S]

X

x2D
Pr [x 2 S] (By union bound)

=
|D|
2k

<
1

4
(By our assumption that |D| < 2

k�2
)

Suppose F0 > 2
k+2

. Then the probability that the algorithm makes an error is:

Pr [Algorithm makes an error] = Pr [Sum = 0]

= Pr [8x 2 D : x /2 S]

Y

x2D
Pr [x /2 S] (As the samples are independent)

=

✓
1� 1

2k

◆2k+2

(By our assumption that |D| > 2
k+2

)

<

✓
1

e

◆4

(Using

✓
1� 1

x

◆x

=
1

e
)

By the above calculations, we get that the algorithm correctly decides GapDistk with

probability at least 3/4.

Note that, in the above calculations we used the fact that our samples are independent.

Let us do the calculations once again, but in such a way that the analysis will go through

even if we draw samples using pairwise independence. Let Xj be a 0-1 random variable

defined as follows: Xj = 1 if j 2 S and Xj = 0 otherwise. Let X =
P

j2D Xj . Note

that Pr [Xj = 1] =
1
2k

for all j. Therefore, E(Xj) =
1
2k

and E(X) =
|D|
2k

. Suppose Xjs are

either purely independent or pairwise independent, we know that Var(X) E(X) (by the

property of pairwise independent random variables).

Suppose F0 < 2
k�2

. Then the probability that the algorithm makes an error is:

9-2

Pr [Algorithm makes an error] = Pr [Sum > 0]

= Pr [X > 0]

= Pr [X � 1]

 |D|
2k

(By Markov’s inequality)

<
1

4
(By our assumption that |D| < 2

k�2
)

On the other hand, suppose F0 > 2
k+2

. Then the probability that the algorithm makes

an error is:

Pr [Algorithm makes an error] = Pr [X = 0]

 Pr [|X � E(X)| � E(X)]

 Var(X)

E(X)2
(By Chebyshev’s inequality)

 1

E(X)
(Var(X) E(X))

<
1

4
(Using |D| > 2

k+2
and E(X) =

|D|
2k

)

Once again, by the above calculations, we get that the algorithm correctly decides

GapDistk with probability at least 3/4.

By using standard Cherno↵ argument, we can bring down the error probability down

to � using at most O(log
1
�) bits.

Now, we change the algorithm so that independent samples can now be changed by

pairwise independent samples.

Pick h from a family of pairwise independent random functions

F = {h : [m]! {0, 1}k}.;
Sum 0;

while there exists x, an input element do
if h(x) = 0

k then
Sum Sum +1;

end

end
Output “Yes” i↵ Sum > 0;

Algorithm 2: Algorithm with pairwise independent random variables

9-3

For the analysis, we define Xj = 1 i↵ h(j) = 0
k
and X =

P
j2D Xj as before. The

analysis of the algorithm is the same as our second analysis.

Let Ak
� denote this randomized algorithm for GapDistk with error at most �. In the next

section we use this algorithm to approximate F0.

9.2 Approximating F0 using Ak

�

In this section we will use A1
� ,A2

� , . . . ,A
dlogme
� to get an 8-approximation for F0. In the

exercise, you are asked to improve it to (1 + ")-approximation.

Let A�0 be the following algorithm:

for i = dlogme downto 1 do
if Ai

� outputs 0 then
next i;

end
else

Output 2
i
;

end

end

Suppose on some fixed input Ai
� outputs 0 for all i � j but Aj�1

� outputs 1 and sup-

pose also that all the answers are correct. Then this tells us that the answer must be

certainly smaller than 2
j+2

and definitely more than 2
j�3

. Therefore, if the algorithm out-

puts 2
j
then it will be 8-approximation. But unfortunately, not all answers may be correct.

Pr [A�0 makes an error] Pr
⇥
9Ai

� makes an error
⇤
 dlogme · �. By making � =

�0

dlogme ,

we can make the error bounded by �
0
.

9.3 Space analysis of Ai

�
and A�0

To pick a random function from a family of pairwise independent functions, we need O(k ·
logm) bits and to store ‘Sum’ we need O(log n) bits. To bring down the overall error to �,

we need to run O(log(
1
�)) copies of Algorithm 2. Therefore, total number of bits stored by

A
i
� is O(log(

1
�) · (k · logm+ log n)). Say s = O(log(

1
�) · (k · logm+ log n)).

Now, the algorithm A�0 simultaeously runs dlogme copies of Ai
�, one for every 1 i

dlogme. This takes space O(dlogme ·s). Finally, for the error to be bounded by �
0
, we need

to set � =
�0

dlogme . Putting it together, we get that the space used by A�0 can be bounded

by O

⇣
dlogme · log(dlogme

�0) · (k · logm+ log n)

⌘
. This gives us an 8-approximation for F0

with probability 1� �
0
.

9.4 Exercises

Exercise 1. Modify Algorithm 2, Ai
� and A�0 to obtain for every " > 0, (1+")-approximation

algorithm for F0. Analyze the space used by your algorithm.

9-4

	Introduction
	Problem 2
	Problem 1

