
Streaming algorithms for some problems in

log-space

Ajesh Babu, Nutan Limaye, Girish Varma

Tata Institute of Fundamental Research, Mumbai, India
ajesh, nutan, girish@tcs.tifr.res.in

Abstract. In this paper, we give streaming algorithms for some prob-
lems which are known to be in deterministic log-space, when the number
of passes made on the input is unbounded. If the input data is mas-
sive, the conventional deterministic log-space algorithms may not run
efficiently. We study the complexity of the problems when the number
of passes is bounded.
The first problem we consider is the membership testing problem for de-
terministic linear languages, DLIN. Extending the recent work of Magniez
et al.[12](to appear in STOC 2010), we study the use of fingerprinting
technique for this problem. We give the following streaming algorithms
for the membership testing of DLINs: a randomized one pass algorithm
that uses O(log n) space (one-sided error, inverse polynomial error prob-
ability), and also a p-pass O(n/p)-space deterministic algorithm. We also
prove that there exists a language in DLIN, for which any p-pass deter-
ministic algorithm for membership testing, requires Ω(n/p) space. We
also study the application of fingerprinting technique to visibly push-
down languages, VPLs.
The other problem we consider is, given a degree sequence and a graph,
checking whether the graph has the given degree sequence, Deg-Seq. We
prove that, any p-pass deterministic algorithm that takes as its input
a degree sequence, followed by an adjacency list of a graph, requires
Ω(n/p) space to decide Deg-Seq. However, using randomness, for a more
general input format: degree sequence, followed by a list of edges in any
arbitrary order, Deg-Seq can be decided in O(log n) space. We also give
a p-pass, O((n log n)/p)-space deterministic algorithm for Deg-Seq.

1 Introduction

Conventional computational models such as Turing machines do not re-
strict the number of passes on the input. We wish to understand the
conventional space bounded models of computation when the number of
passes made on the input is restricted. The model of computation where
the number of passes is bounded has been studied extensively [1, 15]. In
this paper we study problems that are already known to be in determinis-
tic log-space with no restrictions on the number of passes and re-analyze
their complexity for a bounded number of passes.

The paper is divided into two parts. In the first part, we consider
the membership problem for subclasses of context-free languages, CFLs.
The membership problem, for a fixed language L is: given a string w,
checking whether w ∈ L. We consider some subclasses of CFLs for which
log-space algorithms are already known. We study the number of passes
versus space and randomness trade-offs for these problems.

Recently, Magniez et al. [12] studied the membership problem for
Dyck2 (the set of balanced strings over two types of parentheses). They
proved that there is a O(

√
n log n) space, one pass randomized algorithm

for Dyck2. They also proved that any randomized algorithm that makes
one pass on the input must use Ω̃(

√
n)1 space.

Using their ideas of finger-printing the stack, we study the problem of
membership testing of deterministic linear languages, DLIN, the class of
languages generated by deterministic linear grammars for which the right
hand side of every rule has at most one non-terminal. The language Dyck2

does not belong to DLIN. The membership testing for languages in DLIN

is in deterministic log-space when there is no restriction on the number of
passes [8]. The most obvious log-space algorithm makes multiple passes
on the input. We ask whether adding randomness leads to an algorithm
with fewer passes. We prove the following theorem:

Theorem 1. For any L ∈ DLIN, there exists a constant c and a random-
ized one pass algorithm AL that uses O(log n) space such that ∀w ∈ Σ∗

if w ∈ L, Pr[AL(w) = 1] = 1 and if w /∈ L, Pr[AL(w) = 1] ≤ 1
nc

We also analyze the deterministic streaming complexity of the mem-
bership problem of DLIN. We prove the following two theorems:

Theorem 2. There is a deterministic p-passes, O(n/p)-space algorithm
for membership testing for languages in DLIN.

Theorem 3. Any deterministic algorithm that makes p-passes over the
input, will require Ω(n/p) space for membership testing for languages in
DLIN.

We analyze the algorithm used to prove Theorem 1, and apply it to
a subclass of visibly pushdown languages, VPLs. VPLs were defined by
Mehlhorn [13] and Alur et al. [2]. Their membership testing was stud-
ied in [13, 5, 6]. Brahnmuhl et al. gave the first log-space algorithm for
membership testing of VPLs and later Dymond settled its complexity to

1 A function f(n) is said to be Ω̃(
√

n) if there exists a constant α > 0 such that
f(n) = Ω (

√
n(log n)α)

NC1. VPLs are defined over tri-partitioned alphabet Σ = Σc ∪ Σr ∪ Σl.
A grammar form for VPLs was given in [3]. A sub-class of VPLs, well-
matched VPLs was defined in [2]. It is believed that an efficient algorithm
for membership testing of wVPLs can help in XML type checking. For
large XML documents, it may be inefficient to store the whole document
to perform the type checking. It is therefore interesting to consider the
model where the membership testing for languages in wVPL can be done
using fewer passes on the input.

We answer the question in a more restricted setting. We consider
a class of languages generated by grammars more restrictive than the
grammar form for wVPLs. We denote such grammars by rest-VPG.

Let w be an input string over the input alphabet of L. And let n = |w|.
An index i ∈ [n] is said to be a reversal if w[i−1] ∈ Σr and w[i] ∈ Σc∪Σl.

Let rev(L, n) be defined as maximum value of rev(w) over all strings
w ∈ Σn such that w ∈ L. We denote this by rev(n) if L is clear from the
context.

Theorem 4. For any L generated by rest-VPG, there exists a constant
c and a randomized one pass algorithm AL that uses O(rev(L, n) log n)
space such that ∀w ∈ Σ∗ if w ∈ L, Pr[AL(w) = 1] = 1 and if w /∈ L,
Pr[AL(w) = 1] ≤ 1

nc

In the second part of the paper we consider the following graph prob-
lem:

Degree-Sequence, Deg-Seq:
Given: A degree sequence and a directed graph
Check: Do vertices v1, v2, . . . , vn have out-degrees d1, d2, . . . , dn,

respectively?

This problem is known to be in log-space (in fact in TC0(see for exam-
ple [16])). The most obvious log-space algorithm for this problem makes
multiple passes on the input, as in the case of membership testing of
DLIN.

It has been observed [4, 7] that the complexity of graph problems
changes drastically depending on the order in which the input is presented
to the streaming algorithm. If the input to Deg-Seq is such that the degree
of a vertex along with all the edges out of that vertex are listed one after
the other, then checking whether the graph has the given degree sequence
is trivial. If the degrees sequence is listed first, followed by the adjacency
list of the graph then we observe that a one pass deterministic algorithm
needs Ω(n) space to compute Deg-Seq. For a more general ordering of

the input where the degree sequence is followed by a list of edges in an
arbitrary order, we prove the following theorem:

Theorem 5. If the input is a degree sequence followed by a list of edges
in an arbitrary order, then Deg-Seq can be solved

– by a one pass, O(log n) space randomized streaming algorithm such
that if vertices v1, v2, . . . , vn have out-degrees d1, d2, . . . , dn, respec-
tively, then the algorithm accepts with probability 1 and rejects with
probability 1 − n−c, otherwise.

– by a p-passes, O((n log n)/p)-space deterministic streaming algorithm.

The rest of the paper is organized as follows: In Section 2 we prove
Theorem 1 and Theorem 2 . Here we also give a randomness efficient
version of the algorithm used to prove Theorem 1. Theorem 3 is proved
in Section 2.5. In Section 3, we modify the algorithm from Section 2.2
and prove Theorem 4. In Section 4, we analyze the complexity of Deg-Seq

and prove Theorem 5.

2 Streaming algorithms for membership testing of DLINs

In this section we give streaming algorithms for the membership test-
ing of languages in DLIN (Theorem 1). (See [9], for the basic definitions
regarding context-free grammars, sentential forms and derivations.) We
start with some definitions.

Definition 1 ([10, 8]). A deterministic linear CFG, DL-CFG, is a
CFG (Σ, N, P, S) for which, every production is of the form A −→ aω,
where a ∈ Σ and ω ∈ (N ∪ ǫ)Σ∗ and for any two productions, A −→ aω
and B −→ bω′, if A = B then a 6= b, where a, b ∈ Σ and ω, ω′ ∈ NΣ∗

Definition 2. Deterministic linear CFLs, DLIN, is the class of lan-
guages for which there exists a DL-CFG generating it.

The algorithm for membership testing of DLINs is a modification of
the algorithm of [12]. The working of our algorithm is easier to follow
for a specific language in DLIN, generated by the following grammar:
S −→ (S) | [S] | () | [], denoted as 1-turn-Dyck2.

2.1 Streaming algorithm for membership testing of
1-turn-Dyck2

The strategy to check membership in 1-turn-Dyck2 is to come up with a
polynomial from the given string, such that this polynomial is the zero

polynomial if and only if the string is in 1-turn-Dyck2. The algorithm
uses this underlying polynomial, and maintains its evaluation at randomly
chosen elements from a large enough field. If the string is in 1-turn-Dyck2

then the evaluation is zero. Otherwise the evaluation is non-zero with
high probability.

Let us define a function, type : Σ → {x0, x1}, where x0, x1 are formal
variables. Let type(′(′) = type(′)′) = x0 and type(′[′) = type(′]′) =
x1. Given a string w ∈ Σ∗, let n = |w|. Assuming n is even 2 we construct
a bi-variate polynomial q(x0, x1) as:

q(x0, x1) =

n/2
∑

i=1

type(w[i])i −
n

∑

i=n/2+1

type(w[i])n−i−1

It is easy to observe that this polynomial is the zero polynomial if and
only if the string is in 1-turn-Dyck2.

The algorithm maintains an evaluation of the polynomial q(x0, x1)
using the following Hash function. Given a string over the alphabet Σ =
{(, [,),]} and n, the length of the string, Hashα,β : Σ×[n] → Fp is defined
as follows 3, where p is a prime, Fp is a prime field and α, β ∈ Fp:

Hashα,β(w[i], i) =

αi (mod p) if w[i] = ′(′

βi (mod p) if w[i] = ′[′

−αn−i+1 (mod p) if w[i] = ′)′

−βn−i+1 (mod p) if w[i] = ′]′

The algorithm can now be described as:

Algorithm 1 Randomized one pass algorithm for 1-turn-Dyck2

Choose α, β uniformly at random from Fp. Let Sum be initialized to 0.
for i = 1 to n do

Sum← Sum + Hashα,β(w[i], i) (mod p)
end for

Output ’yes’ if Sum is zero and ’no’ otherwise.

If the input w is in 1-turn-Dyck2 then the value of Sum becomes zero
for any choice of α, β, since the polynomial itself is zero. The multi-variate
version of the Schwartz-Zippel Lemma (see for example [14], page 165)
tells that if w /∈ 1-turn-Dyck2 then Sum is non-zero with high probability
(for appropriately chosen p).

2 If n is not even, we reject the string.
3 In [12], only one type of parenthesis is hashed. Our algorithm here is randomness

inefficient. But this type of finger-printing helps for the general algorithm for DLIN

Since the algorithm only stores Sum and the current index i, the space
requirement is O(log n) and the algorithm makes one pass on the input
string.

2.2 A randomized streaming algorithm for DLIN

We observe a property of 1-turn-Dyck2 which can be generalized for DLIN

to obtain an efficient algorithm.

Observation 6 For any string w in 1-turn-Dyck2 and i ∈ [n
2], the letter

at location w[i] completely determines the letter at location w[n − i + 1],
where n = |w|.

For a language in the class DLIN the observation may not be immediately
applicable. For example, S → aBc; B → aSb is a valid DL-CFG but on
seeing the letter a at location i < n

2 , we do not know whether to expect
b or c at w[n − i + 1]. However, something very similar to Observation 6
applies to DL-CFG.

In this section, for the sake of simplicity, we restrict ourselves to
DL-CFG grammars that have rules of the form A → uBv, where |u| =
|v| = 1. It is easy to see that this can be generalized to all of DL-CFG. Let
L be a DLIN. Any string in L is produced by repeated application of rules
corresponding to the DL-CFG of L, say GL. The sentential forms arising in
the derivation of any w ∈ L have at most one non-terminal in them. Let
the current sentential form be uAu′, where u, u′ ∈ Σ∗, u and u′ are prefix
and suffix of w respectively, and A ∈ N . Let the next terminal symbol
after u in w be a. Suppose there is a rule A → aBc then determinism
forces that there is no other rule A → a′B′c′ such that a′ = a. Therefore,
if the rule for A is to be applied and the letter to be generated is a, then
the next sentential form is uaBcu′, i.e. A and a uniquely determine c.

Observation 7 Let w be a string generated by a DL-CFG G that have
rules only of the form A → uBv, where |u| = |v| = 1. Let i ∈ [n

2]. The
letter at location w[i] and the rule that needs to be applied to produce it,
completely determine the letter at location w[n − i + 1], where n = |w|.

While processing w[i], we add a monomial to the sum which is expected
to be subtracted on reading w[n − i + 1].

In the case of 1-turn-Dyck2 we could write down an explicit poly-
nomial to be computed for a given input string. Here, the polynomial
computation is more involved.

Let L be a DLIN, generated by a DL-CFG, GL = (N, Σ, P, S). We
describe the multi-variate polynomial that we come up with for the given
input string such that this polynomial is the zero polynomial if and only
if the given string is in L.

Let Σ = {a1, a2, . . . , ak}. Let {x1, x2, . . . , xk} be formal variables. Let
type and next be two functions such that type : Σ × N → {x1, . . . , xk}
and next : Σ × N → N .

If A → aiBaj is a rule in the grammar GL, then type(ai, A) and
next(ai, A) are defined to be xj and B respectively. They are undefined
otherwise. The determinism of the grammar ensures that for given A and
ai, xj and B are unique.

We define the polynomial inductively using an extra variable var also
maintained inductively.

Let q0(x1, . . . , xk) = 0 and var0 = S. For i ≤ n
2 , we define:

qi(x1, . . . , xk) = qi−1(x1, . . . , xk) + (type(w[i], vari−1))
i

vari = next(w[i], vari−1).

For i > n
2 , define qi(x1, . . . , xk) as qi−1(x1, . . . , xk)−(map(w[i]))n−i+1,

where map(ai) = xi.

It is easy to see that qn(x1, . . . , xk) is the zero polynomial if and only
if the given string is in L.

As in the case of 1-turn-Dyck2, we will implicitly compute this polyno-
mial. The idea is to maintain an evaluation of this polynomial at randomly
points α1 · · ·αk chosen from a enough field, Fp.

We are now ready to describe our algorithm for membership test of
DLIN.

Algorithm 2 Randomized one pass algorithm
Pick α1, α2, . . . , αk uniformly at random from Fp, where k = |Σ|.
Sum← 0
var ← S
for i = 1 to n/2 do

Let index be j if type(w[i], var) = xj

Sum← (Sum + (αindex)i)(mod p)
var ← next(w[i], var)

end for

for i = n/2 + 1 to n do

Let index be j if map(w[i]) = xj

Sum← (Sum− (αindex)n−i+1)(mod p)
end for

Output ’yes’ if Sum is zero and ’no’ otherwise.

It is easy to see that the above algorithm can be generalized when
the DL-CFG grammar has rules of the form A → aBv, where |v| = 0 or
|v| > 1. We need to maintain an extra variable to keep track of the power
to which αjs will be raised. We denote this variable by h. Suppose the
rule A → aBv such that |v| > 1 is being applied at step i ≤ n/2, then
obtain the type of each letter inside v. Say the types are xt1 , xt2 , . . . xtl

where l = |v|. Now add
∑l

j=1 α
h+(l−j)
tj

to the sum and set h to h + l. For
|v| = 0, h and Sum remain unchanged.

The algorithm makes one pass on the input. We know that qn(x1, x2, . . . , xk)
is non-zero when the given string is not in L. However, the evaluation may
still be zero. Note that degree of qn(x1, x2, . . . , xk) is less than or equal to
n. If the field size is chosen to be n1+c ≤ p ≤ n2+c, then due to Schwartz-
Zippel lemma [14] the probability that Sum is zero but qn(x1, x2, . . . , xk)
is non-zero is at most n/p which is at most n−c. The amount of ran-
domness used will be (c|Σ| log n). The algorithm needs to keep track of
α1, . . . , αk and the value of Sum. Therefore, the amount of space used is
also (c|Σ| log n).

2.3 Randomness Efficient version

In this section we will give a randomness efficient version of Algorithm
2 by reducing the membership testing problem for DLINs to membership
testing in 1-turn-Dyck2in a streaming way.

Definition 3 (Streaming Reduction). Fix two alphabets Σ1 and Σ2.
A problem P1 is f(n)-streaming reducible to a problem P2 with space s(n)
if for every input x ∈ Σn

1 , there exists y1y2 . . . yn with

yi ∈ ∪f(n)
i=1 Σi

2 ∪ {ǫ}

such that 4:

– yi can be computed from xi using space s(n).
– From a solution of P2 on input y, a solution on P1 on input x can be

computed in space s(n).

Note that our definition is a slight modification of the definition from [12].
In [12], it was observed that the membership testing of Dyckk O(log k)-

streaming reduces to membership testing of Dyck2. We show that the
membership testing for any language in DLIN O(1)-streaming reduces to

4 In [12], yi s are assumed to be of fixed length, i.e. from Σ
f(n)
2

membership testing in 1-turn-Dyckk, where k is the alphabet size of the
language.

As the membership testing for Dyck2 requires only (c log n) random
bits as opposed to (ck log n)-bits used in Algorithm 2, this gives a random-
ness efficient algorithm. The main result in this section is stated below:

Theorem 8. The membership testing for any language in DLIN O(log |Σ|)-
streaming reduces to membership testing in 1-turn-Dyck2, where Σ is the
alphabet of the language.

Proof. Say L is a fixed DLIN. Given an input w, the streaming reduction
outputs a string w′ so that w′ is in 1-turn-Dyckk if and only if w belongs
to L. In order to do this, we modify a step from Algorithm 2 where
the expected sums are built. Let Σ2 be {a1, a2, . . . , ak}. Let us define
Σ′

2 = {a1, a2, . . . , ak} such that ai, ai form a matching pair.
The streaming reduction can be described as follows: In the descrip-

Algorithm 3 Streaming reduction to 1-turn-Dyckk

var ← S
for i = 1 to n/2 do

Let index be j if type(w[i], var) = xj

Output aj

var ← next(w[i], var)
end for

for i = n/2 + 1 to n do

Output w[i]
end for

tion of Algorithm 3, we have assumed that the grammar has rules of the
form A → uBv, where |u| = |v| = 1. It is easy to see that this can be
generalized to all of DL-CFG.

2.4 A deterministic multi-pass algorithm

In this section we give a deterministic multi-pass algorithm for the mem-
bership testing of any language in DLIN (Theorem 2).

From Theorem 8, we know that any language in DLIN O(log |Σ|)-
streaming reduces to 1-turn-Dyck2. Thus it suffices to give a p-passes,
O(n/p)-space deterministic algorithm for membership testing of 1-turn-
Dyck2.

The algorithm divides the string into blocks of length n/2p. Let the
blocks be called B0, B1, . . . , B2p−1 from left to right. (i.e. Bi = w[i(n/2p)+

1] w[i(n/2p) + 2] . . . w[(i + 1)n/2p].) The algorithm considers a pair of
blocks (Bj ,B2p−(j+1)) during the jth pass. Using the stack explicitly, the
algorithm checks whether the string formed by the concatenation of Bj

and B2p−(j+1) is balanced. If it is balanced, it proceeds to the next pair of
blocks. The number of passes required is p. Each pass uses O(n/p) space
and the algorithm is deterministic.

2.5 Lower bound for the multi-pass streaming algorithm

Now we prove Theorem 3 which states that any deterministic algorithm
that makes p passes over the input, will require Ω(n/p) space for mem-
bership testing of any language DLIN.

Proof. We reduce the two party communication problem of testing equal-
ity of strings to membership testing in 1-turn-Dyck2. Given two string
x, y ∈ {0, 1}n we obtain a string z ∈

{

(, [,],)
}2n

such that EQUALITY(x, y) =

1 if and only if z ∈ 1-turn-Dyck2. Take z = x
′

y
′

where x
′

is the string
obtained by replacing 0, 1 of x by [, (respectively and y

′

is the string
obtained by first taking the reverse of y, and then replacing 0, 1 by],) re-
spectively. Clearly EQUALITY(x, y) = 1 if and only if z ∈ 1-turn-Dyck2.
Since EQUALITY(x, y) has a communication complexity of n bits even
if multiple rounds of communication are allowed (see for example [11]) at
least in one round, n/p bits are required to be communicated. Hence the
theorem follows.

3 Streaming algorithm for a subclass of VPLs

In this section we prove Theorem 4. Visibly pushdown languages, VPLs,
were defined by [13] and [2]. They are known to be a subclass of DCFLs.
In [3], a grammar form for VPLs was defined. We denote the grammars
generating VPLs by VPG. Here, we consider a restriction of VPG.

Consider a context-free grammar G = (N, Σ, S, P) over a tri-partitioned
alphabet Σ = (Σc, Σr, Σl) having rules of the form A −→ ǫ, A −→ cB,
A −→ aBb or A −→ aBbD, where a ∈ Σc, b ∈ Σr, c ∈ Σl, and
D −→ ǫ /∈ P (i.e. if A → ǫ, then there is no rule in P that has A as
its second non-terminal.) If A −→ aω and A −→ a′ω′ are two rules such
that ω, ω′ ∈ (N∪Σ)∗, then a 6= a′. We denote such grammars by rest-VPG

and the languages generated by it as rest-VPLs.
The example language generated by such a grammar is {anbnambm|n ≥

1, m ≥ 1}. The rest-VPG, generating it is S −→ aAbB, A −→ aAb | ǫ, B −→
aAb

We coin a notation to address these rules of rest-VPG. Let a rule be
called linear if it has one non-terminal on the right hand side. Let a rule
be called quadratic if there are two non-terminals on the right hand side.

We first make one crucial observation about the derivation of a string
in a language generated by rest-VPG.

Observation 9 Let L be generated by a rest-VPG, say GL. Let w ∈ Σn.
If w ∈ L, then for any derivation d of w in GL, the number of times a
quadratic rule is applied is at most rev(L, n).

Proof. Recall that an index i ∈ [n] is called a reversal if w[i − 1] ∈ Σr

and w[i] ∈ Σc ∪ Σl.

As w ∈ L, and L is generated by GL. Therefore, there is a derivation
for w in GL. Suppose there exists a derivation for w in GL that needs more
than rev(L, n) applications of quadratic rules. Every time a quadratic rule
is applied, it gives rise to one reversal. Therefore, the string w must have
more than rev(L, n) reversals, which is a contradiction.

Let L be a fixed rest-VPL and let L be generated by a rest-VPG GL.
Let w be the input string. For every application of a quadratic rule in the
derivation of w, we perform a book keeping operation storing O(log n)
bits in the memory. As the maximum number of times a quadratic rule is
applied in the derivation of w is bounded by rev(w) (due to Observation
9), we get the desired bound. (If the storage grows beyond O(rev(n) log n)
the algorithm rejects and halts.)

We now describe the book keeping. Initially the expected sum is zero.
As long as linear rules are applied, expected sums can be computed as in
Algorithm 2. Consider the first time a quadratic rule is applied. The string
w can be split into four parts at this stage. (See Figure 1 for example.)
The first part consists of the string of length l that has been read so far,
and the fourth part consists of the suffix of w of length l. The second
(third) part consists of the substring of w generated by the first (second,
respectively) non-terminal.

The expected sum accumulated during the first part needs to be used
when the fourth part is being processed. The second non-terminal is
needed when the third part is being processed. Thus, while starting to
check the second part, the sum as well as the second non-terminal are
stacked. Once, the second part is recursively checked, the stacked non-
terminal is popped and it is recursively processed. After this, the algo-
rithm needs to check the fourth part. During this stage, the sum that was
stacked is popped and used as in Algorithm 2.

Algorithm 4 Streaming algorithm for membership testing of rest-VPLs
Pick α1, α2, . . . , αk uniformly at random from Fp, where k = |Σ|.
Sum← 0, var ← S, h← 0, Rev ← rev(n) (encoded along with the input)
for i = 1 to n do

if w[i] ∈ (Σc ∪Σl) and next1(w[i], var) is undefined then

reject and halt
end if

if w[i] ∈ Σc then

v2 ← next2(w[i], var)
if v2 6= ǫ then

if Rev = 0 then

’reject’ and halt
else

Stack.Push(v2, Sum, h) (*Addressed as: StackTop.V ar, StackTop.Sum,
StackTop.Height*)
Sum = 0
Rev ← Rev − 1

end if

end if

h← h + 1
Let index be j if type(w[i], var) = xj

Sum← Sum + αh
index(mod p) , var ← next1(w[i], var),

else if w[i] ∈ Σr then

if w[i− 1] ∈ Σc then

var ← ǫ (*This handles rules of the form A −→ ǫ*)
end if

Let index be j if w[i] = aj

Sum← Sum− αh
index(mod p)

h← h− 1
if h = StackTop.Height then

if Sum 6= 0 then

reject and halt
else if StackTop.V ar = ǫ then

Sum← StackTop.Sum
Stack.Pop()

else

var ← StackTop.V ar
StackTop.V ar ← ǫ

end if

end if

else

var ← next1(w[i], var) (*i.e. w[i] ∈ Σl*)
end if

end for

S → aAb, A → aBb,

B → aAcS

aAc S

Grammar:
S

aAb

aBb

Part I Part II Part III Part IV

Fig. 1. The first time a quadratic rule is applied

We start with some notation. Let type and next1, next2 be functions
such that type : Σ × N → {x1, . . . , xk} next1 : Σ × N → N and next2 :
Σ × N → N .

If A → aiBajD is a rule in the grammar GL, then the values of
type(ai, A), next1(ai, A), and next2(ai, A) are xj , B and D, respectively.
(Here ai ∈ Σc and aj ∈ Σr. Also, if D = ǫ then next2(ai, A) is ǫ).

If A → aiB is a rule in the grammar GL, then the values of next1(ai, A),
next2(ai, A), are B and ǫ, respectively. (Note that in this case, ai ∈ Σl.)

3.1 Proof of correctness of algorithm 4

The algorithm maintains an explicit counter Rev, to keep track of the
number of reversals seen so far. When the counter runs down to zero, the
algorithm rejects and halts. Rev is decremented every time a quadratic
rule is applied. This is upper bounded by Rev(L, n) for length n inputs
by Observation 9. Thus the space bound.

For any L in rest-VPL having a grammar G = (N, Σ, P, S), we define a
PDA ML = ({q}, Σ, N, δ, q, S,), where the transition function δ is defined
as follows:

– for each production of the form A → aω, δ(q, a, A) = (q, ω),

– for all a ∈ Σ, δ(q, a, a) = (q, ǫ)

– for each production of the form A → ǫ, δ(q, r, Ar) = (q, ǫ) for all
r ∈ Σr

ML starts with only the start symbol S on the stack and it accepts by
empty stack. It is easy to see that the language accepted by ML is L.

Consider an algorithm similar to Algorithm 4, but maintains a poly-
nomial, instead of its evaluation. Then it is easy to see that it simulates
ML on any input belonging to the language.

If w ∈ L, then ML would accept with an empty stack. The algorithm
will also accept because all the polynomials that it keeps track of during
its execution will become the zero polynomial whenever the polynomial
identity testing is performed. Each of these corresponds to the points
at which the Algorithm 4 checks whether Sum = 0. As w ∈ L, the
polynomial will be identically zero and hence the evaluation will also be
zero.

If the input w /∈ L and ML rejects, say on reading w[i]. Suppose
w[i] ∈ Σc ∪Σl then the algorithm will also reject on reading w[i] because
next1(w[i], var) will be undefined. Suppose w[i] ∈ Σr, then this implies
that the stack top, say aj of ML did not match with the input ak = w[i].
The polynomial maintained by the algorithm at this instant will have
a term corresponding to xh

j , where h is the height of the stack of ML

and the term subtracted is xh
k . Note that var is ǫ at this point. From

now on the height will keep decrementing and var will remain ǫ until the
next polynomial identity testing is done. The polynomial identity test
will fail. Hence, the algorithm will reject w. But the Algorithm 4 only
keeps an evaluation of the polynomial at a random point chosen from a
large enough field. The Schwartz-Zippel theorem gives us that with high
probability the evaluation will be non-zero if the polynomial is non-zero.
Hence Algorithm 4 rejects with high probability.

4 Streaming algorithms for checking degree sequence of

graphs

The input to a graph streaming algorithm may be in the form of a se-
quence of edges. These may be provided in a specific order (eg: adjacency
list), or in any arbitrary fashion. It has been observed [4, 7] that the com-
plexity of graph problems changes drastically depending on the order in
which the edges are presented to the streaming algorithm. The usual set-
ting is: the edges are assumed to be presented in any arbitrary order. If
one is able to provide an efficient algorithm in such a setting, then of
course this gives the most general algorithm. However, more recently Das
Sarma et al. [4] observed that it is also useful to consider other orderings
of the edges. They observed that, the algorithm can be considered as a

resource bounded verifier and that the input is presented to the verifier
by a prover. In this setting, two models can be considered: the adversarial
model and the best order model [4]. In the former the prover may provide
the edges in the worst possible order. In contrast to this, in the latter
model, the prover orders the edges in such a manner that the verifier can
easily check the property.

We consider the problem Deg-Seq which we defined in Section 1. Under
various assumptions on its input, we analyze its complexity. If the input
to Deg-Seq is such that the degree of a vertex along with all the edges
out of that vertex are listed one after the other, then checking whether
the graph has the given degree sequence is trivial. If the degrees sequence
is listed first, followed by the adjacency list of the graph then we observe
the following:

Lemma 1. Any p-pass deterministic algorithm for Deg-Seq needs Ω(n/p)
space when the input is: a degrees sequence, followed by the adjacency list.

Proof. Again, as in the proof of Theorem 3, we reduce the two party
communication problem of testing equality to that of Deg-Seq. Given
strings x, y ∈ {0, 1}n we obtain a degree sequence d = (d1, d2, · · · , dn) and
a list of edges e1e2 · · · em. Take d = x and for each i such that yi = 1, add
an edge (i, i). Clearly EQUALITY(x, y) = 1 if and only if d is the degree
sequence of the graph with edges e1e2 · · · em. Since EQUALITY(x, y) has
a communication complexity of n bits(see for example [11]), in any p
rounds protocol for EQUALITY with two players, atleast 1 message will
be of size n/p. The reduction above translates a p pass algorithm for
Deg-Seq to a p rounds protocol for EQUALITY(x, y) and hence the lemma
follows.

Now we give a p-pass, O(n/p log n)-space determinsitic algorithm for
Deg-Seqand hence prove part 2 of Theorem 5. The algorithm simply stores
the degrees of n/p vertices during a pass and checks whether those vertices
have exactly the degree sequence as stored. If the degree sequence is
correct, then proceed to the next set of n/p vertices. The algorithm needs
to store O(n/p log n) bits during any pass. The algorithm makes p-passes.
Also Lemma 1 implies that this algorithm is optimal, ignoring a log n
factor.

We present the proof of the first part of Theorem 5.

Proof (of part 1 of Theorem 5). We come up with a uni-variate polyno-
mial from the given degree sequence and the set of edges such that the

polynomial is identically zero if and only if the graph has the given degree
sequence (assuming some predecided order on the vertices).

We do not store the polynomial explicitly. Instead, we evaluate this
polynomial at a random point chosen from a large enough field and only
maintain the evaluation of the polynomial. The Schwartz-Zippel lemma
[14] gives us that with high probability the evaluation will be non-zero
if the polynomial is non-zero. (If the polynomial is identically zero, its
evaluation will also be zero.)

The uni-variate polynomial can be constructed as follows: Let the
vertices be labelled from 1 to n (in the order in which the degrees appear
in the degree sequence). Let l : V (G) → [n] be a function such that l(v)
gives the label for v ∈ V (G).

The uni variate polynomial we construct is:

q(x) =
∑

i

dix
i −

∑

∃v:(u,v)∈input

xl(u)

The algorithm can be now described as:

Algorithm 5 Randomized streaming algorithm for Deg-Seq

Pick α ∈R Fp. (p will be fixed later)
Sum← 0.
for i = 1 to n do

Sum← Sum + diα
i

end for

for i = 1 to m (where m number of edges) do

Sum← Sum− αl(u), where ei = (u, v)
end for

if Sum = 0 then

output ”yes”
else

output ”no”
end if

It is easy to note that the algorithm requires only log-space as long
as p is O(poly(n)). The input is being read only once from left to right.
For the correctness, note that if the given degree sequence corresponds
to that of the given graph, then q(x) is identically zero and the value of
Sum is also zero for any randomly picked α. We know that q(x) is non-
zero when the given degree sequence does not correspond to that of the
given graph. However, the evaluation may still be zero. Note that degree
of q(x) is n. If the field size is chosen to be n1+c ≤ p ≤ n2+c then due to

Schwartz-Zippel lemma [14] the probability that Sum is zero given that
q(x) is non-zero is at most n/p which is at most n−c.

Acknowledgements: We thank Meena Mahajan and Jaikumar Rad-
hakrishnan for useful discussions.

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-
imating the frequency moments. In STOC ’96: Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 20–29, 1996.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–
211, 2004.

3. Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM,
56(3), 2009.

4. Danupon Nanongkai Atish Das Sarma, Richard J. Lipton. Best-order streaming
model. In The 6th Annual Conference on Theory and Applications of Models of
Computation (TAMC), pages 178–191, 2009.

5. B. Von Braunmühl and R. Verbeek. Input-driven languages are recognized in log n
space. In Proc. FCT Conference, LNCS, pages 40–51, 1983.

6. Patrick W. Dymond. Input-driven languages are in log n depth. Information
Processing Letters, 26:247–250, 1988.

7. Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan.
Testing and spot-checking of data streams. Algorithmica, 34(1):67–80, 2002.

8. Markus Holzer and Klaus-Jörn Lange. On the complexities of linear LL(1) and
LR(1) grammars. In FCT ’93: Proceedings of the 9th International Symposium
on Fundamentals of Computation Theory, pages 299–308, London, UK, 1993.
Springer.

9. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2006.

10. O.H. Ibarra, T. Jiang, and B. Ravikumar. Some subclasses of context-free lan-
guages in NC1. Information Processing Letters, 29:111–117, 1988.

11. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, New York, NY, USA, 2006.

12. Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-
parenthesized expressions in the streaming model. In STOC, 2009.

13. K. Mehlhorn. Pebbling mountain ranges and its application to DCFL recognition.
In Proc. 7th ICALP, pages 422–432, 1980.

14. Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. ACM Com-
put. Surv., 28(1):33–37, 1996.

15. S. Muthukrishnan. Data streams: algorithms and applications. In SODA ’03: Pro-
ceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 413–413, 2003.

16. Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

