Depth 4 lower bounds for elementary symmetric polynomials

Nutan Limaye CSE, IITB Joint work with Hervé Fournier, Meena Mahajan and Srikanth Srinivasan

> Workshop on low depth complexity St. Petersburg, Russia, May, 2016

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

where, $X := \{x_1, x_2, ..., x_n\}.$

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

where,
$$X := \{x_1, x_2, ..., x_n\}.$$

Polynomials which have polynomial sized circuits DET, IMM,

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

where,
$$X := \{x_1, x_2, ..., x_n\}.$$

Polynomials which have polynomial sized circuits DET, IMM, S_n^D are all in VP

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

where,
$$X := \{x_1, x_2, ..., x_n\}.$$

Polynomials which have polynomial sized circuits DET, IMM, S_n^D are all in VP, i.e. they have poly sized circuits.

Elemenraty symmetric polynomial of degree D on n variables.

$$S_n^D(X) := \sum_{T \subseteq [n]: |T| = D} \prod_{i \in T} x_i$$

where,
$$X := \{x_1, x_2, ..., x_n\}.$$

Polynomials which have polynomial sized circuits DET, IMM, S_n^D are all in VP, i.e. they have poly sized circuits.

Recall: depth 3, depth 4 formulas Depth 3 formulas

$\Sigma\Pi\Sigma$

Recall: depth 3, depth 4 formulas Depth 3 formulas

$\Sigma\Pi\Sigma$

Depth 4 formulas

$\Sigma\Pi\Sigma\Pi$

Recall: depth 3, depth 4 formulas Depth 3 formulas

$\Sigma\Pi\Sigma$

Depth 4 formulas

$\Sigma\Pi\Sigma\Pi$

Depth 4 formulas with fan-in bounds

 $\sum \prod {}^{[p]} \sum \prod {}^{[q]}$

Recall: depth 3, depth 4 formulas Depth 3 formulas

$\Sigma\Pi\Sigma$

Depth 4 formulas

$\Sigma\Pi\Sigma\Pi$

Depth 4 formulas with fan-in bounds

$\sum \prod {}^{[p]} \sum \prod {}^{[q]}$

Homogeneous vs. inhomogeneous

Degree of all the input polynomials to any \sum gate is the same.

Known results

Small inhomogeneous formulas exist

For every $D \in \mathbb{N}$, there is a depth 3 inhomogeneous formula computing S_n^D of size $n^{O(1)}$ [Ben-Or].

Known results

Small inhomogeneous formulas exist

For every $D \in \mathbb{N}$, there is a depth 3 inhomogeneous formula computing S_n^D of size $n^{O(1)}$ [Ben-Or].

Homogeneous depth 3 lower bound

Any depth 3 homogeneous formula computing S_n^D requires size $n^{\Omega(D)}$ [Nisan & Wigderson, 1997].

Known results

Small inhomogeneous formulas exist

For every $D \in \mathbb{N}$, there is a depth 3 inhomogeneous formula computing S_n^D of size $n^{O(1)}$ [Ben-Or].

Homogeneous depth 3 lower bound

Any depth 3 homogeneous formula computing S_n^D requires size $n^{\Omega(D)}$ [Nisan & Wigderson, 1997].

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)?

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit $f(X) \in \mathbb{F}[X]$ on *n* variables such that depth 3 inhomogeneous formula computing *f* requires size $n^{\omega(1)}$?

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit $f(X) \in \mathbb{F}[X]$ on *n* variables such that depth 3 inhomogeneous formula computing *f* requires size $n^{\omega(1)}$? Open.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit $f(X) \in \mathbb{F}[X]$ on *n* variables such that depth 3 inhomogeneous formula computing *f* requires size $n^{\omega(1)}$? Open.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)?

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Our Result: Any depth 4 homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ formula computing S_n^D requires size $n^{\Omega(D/t)}$.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Our Result: Any depth 4 homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ formula computing S_n^D requires size $n^{\Omega(D/t)}$. For $D = O(\log n / \log \log n)$.

Depth 4 homogeneous formulas for S_n^D

Does S_n^D have a depth 4 homogeneous formula of size poly(n, D)? Open.

Our Result: Any depth 4 homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ formula computing S_n^D requires size $n^{\Omega(D/t)}$. For $D = O(\log n / \log \log n)$.

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let *C* be an arithmetic circuit of size *s*.

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

To prove that if C computes p then $s \ge L$.

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

To prove that if C computes p then $s \ge L$. To prove this

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

```
To prove that if C computes p then s \ge L.
```

To prove this

Design a function $\mu : \mathbb{F}[X] \to \mathbb{R}$, such that

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

```
To prove that if C computes p then s \ge L.
```

To prove this

Design a function $\mu : \mathbb{F}[X] \to \mathbb{R}$, such that $\mu(C) \leq \mathcal{U} \cdot s$

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

```
To prove that if C computes p then s \ge L.
```

To prove this

Design a function $\mu : \mathbb{F}[X] \to \mathbb{R}$, such that $\begin{array}{l} \mu(C) \leq \mathcal{U} \cdot s \\ \mu(p) > \mathcal{L} \end{array}$

Notation

Let p(X) be a polynomial over a field \mathbb{F} . Let C be an arithmetic circuit of size s. Goal

```
To prove that if C computes p then s \ge L.
```

To prove this

Design a function $\mu : \mathbb{F}[X] \to \mathbb{R}$, such that $\begin{array}{l} \mu(C) \leq \mathcal{U} \cdot s \\ \mu(p) > \mathcal{L} \\ \text{Conclude that } s \geq \mathcal{L}/\mathcal{U} \end{array}$

Partial derivatives of S_n^D Notation

Partial derivatives of S_n^D

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$

Partial derivatives of S_n^D

Notation

For $R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$ Example

Let $R = \{1\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 1$

Partial derivatives of S_n^D

Notation

For $R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$ Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let $\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Lower bound of [Nisan & Wigderson, 1997]

C be a $\Sigma \Pi \Sigma$ homogeneous formula of size s computing S_n^{2d} .

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Lower bound of [Nisan & Wigderson, 1997]

C be a $\Sigma\Pi\Sigma$ homogeneous formula of size s computing S_n^{2d} . $\mu_d(C) \leq s \cdot 2^{2d}$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Lower bound of [Nisan & Wigderson, 1997]

C be a $\Sigma\Pi\Sigma$ homogeneous formula of size s computing S_n^{2d} . $\mu_d(C) \leq s \cdot 2^{2d}$ $\mu_d(S_n^{2d}) \geq {n \choose d}$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Lower bound of [Nisan & Wigderson, 1997]

C be a $\Sigma\Pi\Sigma$ homogeneous formula of size s computing S_n^{2d} . $\mu_d(C) \leq s \cdot 2^{2d}$ $\mu_d(S_n^{2d}) \geq \binom{n}{d}$ Therefore, $s \geq \binom{n}{d}/2^{2d}$

Notation

For
$$R = \{i_1, i_2, \dots, i_k\} \subseteq [n]$$
, let $\partial_R(p) := \frac{\partial^k(p)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$
Example

Let
$$R = \{1\}$$
. Then, $\partial_R(x_1 + x_2 + x_3) = 1$
Let $R = \{1, 2\}$. Then, $\partial_R(x_1 + x_2 + x_3) = 0$
Let $R = \{1\}$. Then, $\partial_R(S_n^D) := \frac{\partial(S_n^D)}{\partial x_1} = S_{n-1}^{D-1}(x_2, \dots, x_n)$

Let
$$\partial_k(p) := \{\partial_R(p) \mid R \subseteq [n], |R| = k\}.$$

The partial derivative measure:

$$\mu_k(p) := \dim \{ \text{span } \partial_k(p) \}$$

Lower bound of [Nisan & Wigderson, 1997]

C be a $\Sigma\Pi\Sigma$ homogeneous formula of size s computing S_n^{2d} . $\mu_d(C) \leq s \cdot 2^{2d}$ $\mu_d(S_n^{2d}) \geq \binom{n}{d}$ Therefore, $s \geq \binom{n}{d}/2^{2d}$

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(S_n^D) = \sum_{|\mathcal{A}|=D-k, \mathcal{A}\cap \mathcal{S}=\emptyset} X_{\mathcal{A}}$$

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$. Let $r_S(X) := \partial_S(S_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$ $\mathcal{D} := \{r_S(X) \mid S \subseteq [n], |S| = k\}$ Underlying matrix M

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials Columns labelled by $r \in \mathcal{D}$

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials Columns labelled by $r \in D$

Relabelling the rows and columns of M

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials

Columns labelled by $r \in \mathcal{D}$

Relabelling the rows and columns of M

Rows labelled by sets R of size D - k

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials

Columns labelled by $r \in \mathcal{D}$

Relabelling the rows and columns of M

Rows labelled by sets R of size D - k

Columns labelled by a set S of size k

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials

Columns labelled by $r \in \mathcal{D}$

Relabelling the rows and columns of M

Rows labelled by sets R of size D - kColumns labelled by a set S of size k M[R, S] = 1 if $R \cap S = \emptyset$ and 0 otherwise.

For $A \subseteq [n]$, let X_A denote $\prod_{i \in A} x_i$.

Let
$$r_{\mathcal{S}}(X) := \partial_{\mathcal{S}}(\mathcal{S}_n^D) = \sum_{|A|=D-k, A \cap S = \emptyset} X_A$$

 $\mathcal{D}:=\{r_{\mathcal{S}}(X)\mid \mathcal{S}\subseteq [n], |\mathcal{S}|=k\}$

Underlying matrix M

Rows labelled by degree D - k monomials

Columns labelled by $r \in \mathcal{D}$

Relabelling the rows and columns of M

Rows labelled by sets R of size D - kColumns labelled by a set S of size kM[R, S] = 1 if $R \cap S = \emptyset$ and 0 otherwise. $\mu_d(S_n^{2d}) = {n \choose d}$ [Gottlieb, 1966]

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ})

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ}) Columns labelled by a tuple of sets $(S_1, \ldots, S_{\tau}, T)$, where

► $R_i, S_i, T \subseteq [n],$

- $\blacktriangleright R_i, S_i, T \subseteq [n],$
- (R_1, \ldots, R_{τ}) partition [n], and $(S_1, \ldots, S_{\tau}, T)$ partition [n],

- $\triangleright R_i, S_i, T \subseteq [n],$
- (R_1, \ldots, R_{τ}) partition [n], and $(S_1, \ldots, S_{\tau}, T)$ partition [n],
- $|S_i| \gg |S_{i+1}|$ for all $i \in [\tau]$,

- *R_i*, *S_i*, *T* ⊆ [*n*],
 (*R*₁,...,*R_τ*) partition [*n*], and (*S*₁,...,*S_τ*, *T*) partition [*n*],
- ► $|S_i| \gg |S_{i+1}|$ for all $i \in [\tau]$,
- ► $|T| = k, \forall i : 1 \le i < \tau |R_i| = |S_i| \text{ and } |R_\tau| = |S_\tau| + k.$

▶
$$R_i, S_i, T \subseteq [n],$$
• (R_1, \ldots, R_{τ}) partition $[n]$, and $(S_1, \ldots, S_{\tau}, T)$ partition $[n],$
• $|S_i| \gg |S_{i+1}|$ for all $i \in [\tau],$
• $|T| = k, \forall i : 1 \le i < \tau |R_i| = |S_i|$ and $|R_{\tau}| = |S_{\tau}| + k.$
 $M[(R_1, \ldots, R_{\tau}), (S_1, \ldots, S_{\tau}, T)] = 1$ if $\begin{cases} T \subseteq R_1 \\ S_1 \subseteq R_1 \cup R_2 \\ S_2 \subseteq R_2 \cup R_3 \\ \vdots \\ S_{\tau-1} \subseteq R_{\tau-1} \cup R_{\tau} \\ S_{\tau} \subseteq R_{\tau} \end{cases}$

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ}) Columns labelled by a tuple of sets $(S_1, \ldots, S_{\tau}, T)$, where

•
$$R_i, S_i, T \subseteq [n],$$
 • (R_1, \ldots, R_{τ}) partition $[n]$, and $(S_1, \ldots, S_{\tau}, T)$ partition $[n]$,
 • $|S_i| \gg |S_{i+1}|$ for all $i \in [\tau]$,
 • $|T| = k, \forall i : 1 \leq i < \tau |R_i| = |S_i|$ and $|R_{\tau}| = |S_{\tau}| + k.$
 $M[(R_1, \ldots, R_{\tau}), (S_1, \ldots, S_{\tau}, T)] = 1$ if
 $\begin{cases}
 T \subseteq R_1 \\
 S_1 \subseteq R_1 \cup R_2 \\
 S_2 \subseteq R_2 \cup R_3 \\
 \vdots \\
 S_{\tau-1} \subseteq R_{\tau-1} \cup R_{\tau}
 \end{cases}$

Lemma (Main technical lemma) $Rank(M) = min\{\#cols, \#rows\}(1 - o(1))$ Some problems arising from the work

For all $D \in [n]$, any depth 4 homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ formula computing S_n^D requires size $n^{\Omega(D/t)}$.

Some problems arising from the work

For all $D \in [n]$, any depth 4 homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ formula computing S_n^D requires size $n^{\Omega(D/t)}$.

Give an explicit $f(X) \in \mathbb{F}[X]$ on *n* variables such that depth 3 inhomogeneous formula computing *f* require size $n^{\omega(1)}$?

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ})

►
$$R_i, S_i, T \subseteq [n],$$

- ► $R_i, S_i, T \subseteq [n],$
- (R_1, \ldots, R_{τ}) partition [n], and $(S_1, \ldots, S_{\tau}, T)$ partition [n],

- $R_i, S_i, T \subseteq [n]$, • (R_1, \ldots, R_{τ}) partition [n], and $(S_1, \ldots, S_{\tau}, T)$ partition [n],
- $|S_i| = [n]/\tau$ for all $i \in [\tau]$,
- $|T| = k, \forall i : 1 \le i < \tau |R_i| = |S_i| \text{ and } |R_\tau| = |S_\tau| + k.$

▶
$$R_i, S_i, T \subseteq [n],$$
• (R_1, \ldots, R_{τ}) partition $[n]$, and $(S_1, \ldots, S_{\tau}, T)$ partition $[n],$
• $|S_i| = [n]/\tau$ for all $i \in [\tau],$
• $|T| = k, \forall i : 1 \le i < \tau \ |R_i| = |S_i|$ and $|R_{\tau}| = |S_{\tau}| + k.$
 $M[(R_1, \ldots, R_{\tau}), (S_1, \ldots, S_{\tau}, T)] = 1$ if $\begin{cases} T \subseteq R_1 \\ S_1 \subseteq R_1 \cup R_2 \\ S_2 \subseteq R_2 \cup R_3 \\ \vdots \\ S_{\tau-1} \subseteq R_{\tau} \cup R_{\tau} \end{cases}$

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ}) Columns labelled by a tuple of sets $(S_1, \ldots, S_{\tau}, T)$, where

▶
$$R_i, S_i, T \subseteq [n],$$
• (R_1, \ldots, R_{τ}) partition $[n]$, and $(S_1, \ldots, S_{\tau}, T)$ partition $[n],$
• $|S_i| = [n]/\tau$ for all $i \in [\tau],$
• $|T| = k, \forall i : 1 \leq i < \tau |R_i| = |S_i|$ and $|R_{\tau}| = |S_{\tau}| + k.$
 $M[(R_1, \ldots, R_{\tau}), (S_1, \ldots, S_{\tau}, T)] = 1$ if $\begin{cases} T \subseteq R_1 \\ S_1 \subseteq R_1 \cup R_2 \\ S_2 \subseteq R_2 \cup R_3 \\ \vdots \\ S_{\tau-1} \subseteq R_{\tau-1} \cup R_{\tau} \\ S_{\tau} \subseteq R_{\tau} \end{cases}$

Prove that the above matrix has rank $min\{\#cols, \#rows\}(1 - o(1))$

Rows labelled by a tuple of sets (R_1, \ldots, R_{τ}) Columns labelled by a tuple of sets $(S_1, \ldots, S_{\tau}, T)$, where

▶
$$R_i, S_i, T \subseteq [n],$$
• (R_1, \ldots, R_{τ}) partition $[n]$, and $(S_1, \ldots, S_{\tau}, T)$ partition $[n],$
• $|S_i| = [n]/\tau$ for all $i \in [\tau],$
• $|T| = k, \forall i : 1 \leq i < \tau |R_i| = |S_i|$ and $|R_{\tau}| = |S_{\tau}| + k.$
 $M[(R_1, \ldots, R_{\tau}), (S_1, \ldots, S_{\tau}, T)] = 1$ if $\begin{cases} T \subseteq R_1 \\ S_1 \subseteq R_1 \cup R_2 \\ S_2 \subseteq R_2 \cup R_3 \\ \vdots \\ S_{\tau-1} \subseteq R_{\tau-1} \cup R_{\tau} \\ S_{\tau} \subseteq R_{\tau} \end{cases}$

Prove that the above matrix has rank $min\{\#cols, \#rows\}(1 - o(1))$

Thank You!