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Elementary symmetric polynomials

Elemenraty symmetric polynomial of degree D on n variables.

SD
n (X ) :=

X

T✓[n]:|T |=D

Y

i2T
xi

where, X := {x1, x2, . . . , xn}.

Polynomials which have polynomial sized circuits

DET, IMM, SD
n are all in VP, i.e. they have poly sized circuits.
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Recall: depth 3, depth 4 formulas
Depth 3 formulas

XYX

Depth 4 formulas

XYXY

Depth 4 formulas with fan-in bounds

XY
[p]

XY
[q]

Homogeneous vs. inhomogeneous

Degree of all the input polynomials to any
P

gate is the same.
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Known results

Small inhomogeneous formulas exist

For every D 2 N, there is a depth 3 inhomogeneous formula
computing SD

n of size nO(1) [Ben-Or].

Homogeneous depth 3 lower bound

Any depth 3 homogeneous formula computing SD
n requires size

n⌦(D) [Nisan & Wigderson, 1997].
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Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)?

Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)? Open.



Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)? Open.



Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)? Open.



Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)?

Open.



Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)? Open.



Natural questions

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)? Open.

Strong lower bounds for inhomonegeous depth 3 formulas

Does there exists an explicit f (X ) 2 F[X ] on n variables such that
depth 3 inhomogeneous formula computing f requires size
n!(1)? Open.



Our result

Depth 4 homogeneous formulas for SD
n

Does SD
n have a depth 4 homogeneous formula of size

poly(n,D)?

Open.

Our Result: Any depth 4 homogeneous ⌃⇧⌃⇧[t] formula computing
SD
n requires size n⌦(D/t). For D = O(log n/ log log n).
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Proving lower bounds

Notation

Let p(X ) be a polynomial over a field F.
Let C be an arithmetic circuit of size s.

Goal

To prove that if C computes p then s � L.

To prove this

Design a function µ : F[X ] ! R, such that

µ(C )  U · s
µ(p) > L
Conclude that s � L/U
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Partial derivatives of SD
n

Notation

For R = {i1, i2, . . . , ik} ✓ [n], let @R(p) :=
@k (p)

@xi1@xi2 ...@xik
Example

Let R = {1}. Then, @R(x1 + x2 + x3) = 1
Let R = {1, 2}. Then, @R(x1 + x2 + x3) = 0

Let R = {1}. Then, @R(SD
n ) :=

@(SD
n )

@x1
= SD�1

n�1 (x2, . . . , xn)

Let @k(p) := {@R(p) | R ✓ [n], |R | = k}.
The partial derivative measure:

µk(p) := dim {span @k(p)}

Lower bound of [Nisan & Wigderson, 1997]

C be a ⌃⇧⌃ homogeneous formula of size s computing S2d
n .

µd(C )  s · 22d

µd(S
2d
n ) �

�n
d

�

Therefore, s �
�n
d

�
/22d
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Partial Derivatives of SD
n

For A ✓ [n], let XA denote
Q

i2A xi .

Let rS(X ) := @S(SD
n ) =

P
|A|=D�k, A\S=; XA

D:= {rS(X ) | S ✓ [n], |S | = k}

Underlying matrix M

Rows labelled by degree D � k monomials

Columns labelled by r 2 D
Relabelling the rows and columns of M

Rows labelled by sets R of size D � k

Columns labelled by a set S of size k

M[R , S ] = 1 if R \ S = ; and 0 otherwise.

µd(S
2d
n ) =

�n
d

�
[Gottlieb, 1966]
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The almost high rank matrix

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | � |Si+1| for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Lemma (Main technical lemma)

Rank(M) = min{#cols,#rows}(1� o(1))
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Open problems

Some problems arising from the work

For all D 2 [n], any depth 4 homogeneous ⌃⇧⌃⇧[t] formula
computing SD

n requires size n⌦(D/t).

Give an explicit f (X ) 2 F[X ] on n variables such that depth 3
inhomogeneous formula computing f require size n!(1)?



Open problems

Some problems arising from the work

For all D 2 [n], any depth 4 homogeneous ⌃⇧⌃⇧[t] formula
computing SD

n requires size n⌦(D/t).

Give an explicit f (X ) 2 F[X ] on n variables such that depth 3
inhomogeneous formula computing f require size n!(1)?



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where

I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],

I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],

I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Open problems

Rows labelled by a tuple of sets (R1, . . . ,R⌧ )

Columns labelled by a tuple of sets (S1, . . . , S⌧ ,T ), where
I Ri , Si ,T ✓ [n],
I (R1, . . . ,R⌧ ) partition [n], and (S1, . . . , S⌧ ,T ) partition [n],
I |Si | = [n]/⌧ for all i 2 [⌧ ],
I |T | = k , 8i : 1  i < ⌧ |Ri | = |Si | and |R⌧ | = |S⌧ |+ k .

M[(R1, . . . ,R⌧ ), (S1, . . . , S⌧ ,T )] = 1 if

8
>>>>>>><

>>>>>>>:

T ✓ R1

S1 ✓ R1 [ R2

S2 ✓ R2 [ R3
...
S⌧�1 ✓ R⌧�1 [ R⌧

S⌧ ✓ R⌧

Prove that the above matrix has rank min{#cols,#rows}(1� o(1))



Thank You!


