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Isolation lemma for NP

SAT

Given a Boolean formula φ determine whether φ has a satisfying
assignment.

Isolation Procedure for SAT

Given: a Boolean forumla φ on n input variables,

Output: a new formula ψ on the same n variables such that
I every satisfying assignment of ψ also satisfies φ

This implies that if φ is not satisfiable then ψ is also not satisfiable.
I if φ is satisfiable, then ψ has exactly one satisfying assignment.

Valiant Vazirani Isolation Lemma

There is a randomized polynomial time isolation procedure for SAT
with success probability Ω( 1

n )
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Bumping up the success probability

Determinizing Isolation Procedure for SAT

Can one get rid of the randomness in the Isolation Procedure for
SAT?

Open!

Success probability of the Isolation Procedure for SAT

Can one make the success probability of the Isolation Procedure
higher?

The success probability of the Isolation Procedure for SAT can be
made greater than 2/3 if and only if NP ⊆ P/poly.
[DKvMW] Is Valiant Vazinai’s isolation probability improvable? Dell, Kabanets, van

Melkebeek, Watanabe, Computational Complexity, 2013.
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NL, L, Directed Reachability, L/poly
Complexity classes NL, L, L/poly

L: the class of decision problems decidable by dereministic Turing
machines using O(log n) space, where n is the length of the input.

NL: the class of decision problems decidable by non-dereministic
Turing machine using O(log n) space, where n is the length of the
input.

L/poly: the class of decision problems decidable by dereministic
Turing machine using O(log n) space and poly(n) amount of advice,
where n is the length of the input.

Directed Reachability, Reach

Given: A directed graph G = (V ,E ) and two designated vertices s, t

Output: yes if and only if there is a directed path from s to t in G .
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Our result

Isolation Procedure for Directed Reachability

Given: a graph G on n input vertices, and two designated vertices s, t

Output: a new graph H on the same n variables such that
I every s to t path in H is also a path in G

This implies that in G if t is not reachable from s then in H as well
there is no s to t path.

I if G has an s to t path, then H has exactly one s to t path.

Success probability of the Isolation Procedure for Reach

Theorem (Main result)

There exists a randomized isolation procedure for Reach with success
probability greater than 2/3 if and only if NL ⊆ L/poly.
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Isolation for other classes

Isolation for LogCFL

There exists a randomized isolation procedure for a hard problem in
LogCFL that runs in L/poly with success probability greater than 2/3
if and only if LogCFL ⊆ L/poly.

Isolation for NP

There exists a randomized isolation procedure for SAT that runs in
L/poly with success probability greater than 2/3 if and only if NP ⊆
L/poly.
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Proof outline

The proofs follows a similar structure as in [DKvMW]

We will start with some definitions.

Definition (Promise sets for a version of Reach)

YesReach = {(G , s, t) | unique reachable path between s and t}, and
NoReach = {(G , s, t) | no path between s and t}

Definition (PrUReach)

Given: G ∈ YesReach ∪ NoReach

Output: yes if and only if G ∈ YesReach.
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Proof outline

Recall the statement we wish to prove

Theorem (Main result)

There exists a randomized isolation procedure for Reach with success
probability greater than 2/3 if and only if NL ⊆ L/poly.

Step 1 Prove that NL ⊆ L/poly if and only if PrUReach ∈ L/poly.

Step 2 Prove the following statement:
There exists a randomized isolation procedure for Reach with success
probability greater than 2/3 if and only if PrUReach ∈ L/poly.
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Details of Step 1

NL ⊆ L/poly ⇔ PrUReach ∈ L/poly

⇒ This direction is trivial.

⇐ Uses an algorithm developed in the following work.
[RA] Making Nondeterminism Unambiguous, Reinhardt, Allender, SIAM Journal of

Computing, 2000.

We need one more definition.

Definition (Min-unique graph [GW, RA] )

A weighted directed graph G = (V ,E ) with weight function w : E → N is said to
be min-unique if between every pair of vertices the minimum weight path is
unique.
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Breaking down Step 1

Step 1.1: Generating min-unique graph using advice

Given a graph G on n vertices a procedure P1 generates graphs
G1,G2, . . . ,Gn2

I For all 1 ≤ i ≤ n2, Gi is on the same set of vertices as G .

I G has an s to t path iff ∀i ∈ [n2], Gi has an s to t path.

I If G has an s to t path then ∃i ∈ [n2] : such that Gi is min-unique.

I P1 has an L/poly algorithm.

P1

advice string

〈G1,G2, . . . ,Gn2〉G
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I If G has an s to t path then ∃i ∈ [n2] : such that Gi is min-unique.

I P1 has an L/poly algorithm.
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Breaking down Step 1

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices a procedure P2 generates a
graph CG

I On input (G , s, t), (CG , s
′, t ′) is produced.

I G has an s to t path if and only if CG has an s ′ to t ′ path.

I If G is min-unique and has an s to t path then there is a unique path
from s ′ to t ′.

I P2 has an L/poly algorithm.
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〈(CG , s
′, t ′)〉

(G , s, t)
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Breaking down Step 1
Step 1.3: Using P1, P2 to solve Reach.

P be the algorithm that solves PrUReach in L/poly.

G P1

G1

G2

P2 CG1

P2 CG2

...
...

...

Gn2 P2 CGn2

P

Yes iff P ac-

cepts one of

the graphs

If G does not have an s to t path, we reject.

If G has an s to t path,
at least one of the Gi is min-unique.
The corresponding CGi ∈ YesReach.
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Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.
If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.

If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.
If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.
If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.
If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Details about Step 1.2

Step 1.2: Generating G ′ ∈ YesReach ∪ NoReach given a min-unique G

Given a min-unique graph G on n vertices

On input (G , s, t), (CG , s
′, t ′) is produced.

G has an s to t path if and only if CG has an s ′ to t ′ path.
If G is min-unique then there is a unique path from s ′ to t ′.

[RA] If G is min-unqiue then there is a UL algorithm that decides the
reachability in G .

CG is the configuration graph of the UL algorithm on input G .

CG can be computed in L.



Proof outline

Recall the statement we wish to prove

Theorem (Main result)

There exists a randomized isolation procedure for Reach with success
probability greater than 2/3 if and only if NL ⊆ L/poly.

Step 1 Prove that NL ⊆ L/poly if and only if PrUReach ∈ L/poly.

Step 2 Prove the following statement:
There exists a randomized isolation procedure for Reach with success
probability greater than 2/3 if and only if PrUReach ∈ L/poly.
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Details about Step 2
From the hypothesis we can show that there is an L/poly procedure,
say B s.t.

Given a graph G as input, it outputs 〈G1,G2, . . . ,Gt〉 such that
> 2/3 fraction of the Gi s have unique s to t paths.

B

advice string

〈G1,G2, . . . ,Gt〉
G

H be a graph with π as its s to t path.

For two graph G ,H we say that (G ,H) is good if π is a reachable
path in < 2/3 fraction of graphs in B(G + H).

Let B(G + H) = 〈G1,G2, . . . ,Gt〉.
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Details about Step 2

Properties of a good pair (G ,H)

If (G ,H) is good then G ∈ YesReach.

If (G ,H) good then there is a ρ such that ρ 6= π and ρ is a unique
reachable path in some Gi , that ρ is a reachable path in G . Therefore
G ∈ YesReach.

If G ,H are both in YesReach then either (G ,H) or (H,G ) is good.

Let π, ρ be unique s to t paths in H,G , respectively. (π 6= ρ).

If neither good, then each π and ρ are reachable paths in 2/3 of the
Gi s.

This means > 1/3 of Gi s have two distinct s to t paths.
This contradicts the hypothesis of B.

Given H, π as advice and G as input, whether (G ,H) is good or not
can be decided in L/poly.
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Wrap-up

Design the advice strings

As advice we need (H1, π1), (H2, π2), . . . , (H`, π`).

The advice ensures thatif G ∈ YesReach then there is an Hi such that
Hi ∈ YesReach and πi is corresponding path.

If G ∈ NoReach, then each Hi ∈ NoReach.

Putting it together

Overall, this gives a L/poly algorithm for PrUReach.
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Thank You!


