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Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.
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Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.
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A model of computation for polynomials

Arithmetic formula
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Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)
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Small depth formulas

We will focus on small product-depth formulas.

Product-depth ∆ = 1:
∑∏

formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X ) ∈ F[X ] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.
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Examples of polynomials

Let p(X ) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X ) =
∏

i∈[n](1 + xi ) of size O(n).

This is a
∏∑

formula for the same polynomial.
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Multilinear polynomials

Let X = {x1, . . . , xN}.

Let p(X ) ∈ F[X ] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X ) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X ) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y )i ,j =
∑n

k=1 xik × ykj
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Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.

Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].
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Small depth formulas

We will focus on small product-depth multilinear formulas.

Product-depth ∆ = 1:
∑∏

or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!
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Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X ) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X ) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X ) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X ) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.
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How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.
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Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
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∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
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. . .
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.
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Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?
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Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.
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[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.
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Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
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Designing a measure

The measure must satisfy

If f (X ) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f ) ≤ s × U .

There is a polynomial P(X ) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .
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Partial Derivative Matrix & Complexity Measure

Rank measure defined by [Raz 2004]

Let ρ : X 7→ Y t Z be a partitioning function such that |Y | = |Z |.

f =
2n∑
i=1

ci ·mi 7→ f |ρ =
2n∑
i=1

ci ·mi ,Y ·mi ,Z

M(Y ,Z)(f |ρ) : Monomials in Y

Monomials in Z

mZ

mY

coeff f |ρ(mY ·mZ )

Complexity measure: µ(f ) w.r.t. ρ is rank(M(Y ,Z)(f |ρ)).
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Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i ).

Let ρ(xi ) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z ) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f ) w.r.t. the above ρ is 2n.

Let ρ′(xi ) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f ) w.r.t. ρ′ � 2n.
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Designing µ and ρ

The measure must satisfy

If f (X ) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f ) ≤ s × U w.r.t ρ.

There is a polynomial P(X ) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .
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A random ρ : X → Y ∪ Z ∪ F
Map every copy of H(1) uniformly at random to one of the three
possibilities.

y1 z1

y2

z2

y1z1
y2

z2

y1

z1

(y1 + z1)(y2 + z2) (y1 + z1)(y2 + z2) (y1 + z1)

Figure: Map ρ applied to each copy of H(1). Edges that are not labelled have
their variables set to 1. Dotted edges have their variables set to 0.
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Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi )

, where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m) w.h.p. over the distribution defined by
these random partitions.



Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi ), where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m)

w.h.p. over the distribution defined by
these random partitions.



Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi ), where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m) w.h.p. over the distribution defined by
these random partitions.



Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.
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The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?
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