
A Near-Optimal Depth-Hierarchy Theorem for
Small-Depth Multilinear Circuits

Nutan Limaye
Compuer Science and Engineering Department,

Indian Institute of Technology, Bombay, (IITB) India.
Joint work with

Suryajith Chillara, Christian Engels, Srikanth Srinivasan.
IIT Bombay, India.

Seminar 18391 – Algebraic Methods in Computational Complexity
Dagstuhl, September 2018.

More Resources

More power?

More Resources

More power?

More Resources More power?

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources
Turing machines

With more time, can Turing machines compute more languages?

With more space, can Turing machines compute more languages?

Theorem (Time Hierarchy Theorem, [Hartmanis and Stearns, 65])

There exists a language L that is computed by a TM in time
O(t(n) log t(n)) such that no TM running in time o(t(n)) can compute it.

Theorem (Space Hierarchy Theorem, [Stearns, Hartmanis, Lewis, 65])

There exists a language L that is computed by a TM in space O(s(n))
such that no TM running in space o(s(n)) can compute it.

Non-explicit separations.

Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.

Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.

Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.

Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.

Power of resources

We can ask a similar question for any model of computation and a
resource.

Model of computation Resources of interest

Turing machines time, space, number of random bits,
non-determinism, advice

Boolean circuits size, depth

Today we will focus on arithmetic formulas as a model of
computation.

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants

(say over F)

.

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants (say over F).

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants (say over F).

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth.

(Closely related to the depth.)

A model of computation for polynomials

Arithmetic formula

+

×

×

x1 x1

x2

+

×

x1 x1

−1

Definition: An arithmetic formula

a directed tree

with nodes labeled by +, ×,
x1, . . . , xn or constants (say over F).

indegree 0 nodes : input gates

outdegree 0 nodes: output gates

without loss of generality alternate +,
× layers.

Size and product-depth

The number of nodes in the tree is the size of the formula.

The maximum number of product gates along any leaf to root path is
its product-depth. (Closely related to the depth.)

Small depth formulas

We will focus on small product-depth formulas.

Product-depth ∆ = 1:
∑∏

formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}.

Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Small depth formulas

We will focus on small product-depth formulas.
Product-depth ∆ = 1:

∑∏
formulas

The model is complete.

Let X = {x1, . . . , xn}. Let p(X) ∈ F[X] be a degree d polynomial.

p(x) =
∑
m∈M

cm ·m,

where M set of all monomials in n variables of degree at most d .

It may not always be a succinct representation.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi) of size O(n).

This is a
∏∑

formula for the same polynomial.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi) of size O(n).

This is a
∏∑

formula for the same polynomial.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi) of size O(n).

This is a
∏∑

formula for the same polynomial.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi)

of size O(n).

This is a
∏∑

formula for the same polynomial.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi) of size O(n).

This is a
∏∑

formula for the same polynomial.

Examples of polynomials

Let p(X) =
∑
S⊆[n]

∏
i∈S

xi

This has size O(2n).

However, here is its succinct representation.

p(X) =
∏

i∈[n](1 + xi) of size O(n).

This is a
∏∑

formula for the same polynomial.

Multilinear polynomials

Let X = {x1, . . . , xN}.

Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear polynomials

Let X = {x1, . . . , xN}. Let p(X) ∈ F[X] be a degree d multilinear
polynomial.

p(x) =
∑

S∈[n]:|S|≤d

cS ·
∏
i∈S

xi ,

Many interesting polynomials are multilinear.

Determinant: Det(X) =
∑

σ∈Sn sgn(σ)
∏n

i=1 xiσ(i)

Permanent: Perm(X) =
∑

σ∈Sn
∏n

i=1 xiσ(i)

Matrix Multiplication: (X × Y)i ,j =
∑n

k=1 xik × ykj

Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.

Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].

Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.
Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].

Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.
Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].

Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.
Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].

Multilinear formulas

A formula is multilinear if every gate in it computes a multilinear
polynomial.
Many tools and techniques

A breakthrough result of Raz [Raz04] gave a strong lower bound.

Multilinear formulas for Det/Perm must have superpolynomial size.

A set of tools introduced in [Raz04].

Extended and appended by a line of work.
[Raz06,RSY07,RY09,DMPY12,KV17].

Small depth formulas

We will focus on small product-depth multilinear formulas.

Product-depth ∆ = 1:
∑∏

or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas

∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful!

[AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by

∑∏∑
formula of size sO(

√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Small depth formulas

We will focus on small product-depth multilinear formulas.
Product-depth ∆ = 1:

∑∏
or
∑∏∑

formulas∑∏
formulas are not succinct.

What about
∑∏∑

formulas?

p(x) =
∑
i∈[s]

∏
j∈[s′]

Li ,j ,where, Li ,j are linear polynomials in X .

The model is surprisingly powerful! [AV08,Koi09,Tav10,GKKS12]

Any polynomial on n variables of degree d computable by a size s

circuit can be computed by
∑∏∑

formula of size sO(
√
d).

(Assume characteristic 0.)

This
∑∏∑

realization is non-multilinear!

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

Product-depth ∆ = 1

Non-multilinear to multilinear formula conversion.

Let p(X) be a multilinear polynomial computable by a
∑∏∑

formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Chillara, L, Srinivasan, 18] prove that the answer is no.

Product-depth ∆ = 2 to ∆ = 1 conversion

Let p(X) be a multilinear polynomial computable by a
∑∏∑∏

multilinear formula of size s.

Does p(X) have a
∑∏∑

multilinear formula of size sO(1)?

[Kayal, Nair, Saha, 15] show that this is not possible.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏

−→
∑[exp(t)]∏

The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏

The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

How expensive ∆ = 2 −→ ∆ = 1?

Consider
∑∏∑∏

formula of size s.

Consider the
∏∑

layer
∏

i∈[t] Qi .

That is,
∑(∏[t]∑)∏.

Open up the multiplication of summands as a sum of multiplications.

∑(∏[t]∑)∏ −→ ∑(∑[exp(t)]∏)∏ −→ ∑[exp(t)]∏
The conversion incurs an exponential blow-up.

[Kayal, Nair, Saha, 15] show that this exponential blow-up is essential

while going from ∆ = 2 to ∆ = 1.

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑

−→∑∏
. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Larger product depth ∆ + 1 −→ ∆

Consider
∑∏∑∏

. . .
∑∏∑

formula of size s and product depth
∆ + 1.

Consider the
∏∑

layer
∏

i∈[t] Qi , such that t ≤ sO(1/∆).

That is,
∑∏

. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
.

Open up the multiplication of summands as a sum of multiplications.

∑∏
. . .
∑(∏[(sO(1/∆))]∑)∏ . . .

∑∏∑
−→∑∏

. . .
∑(∑[exp((sO(1/∆)))]∏)∏ . . .

∑∏∑
−→∑∏

. . .
(∑[exp((sO(1/∆)))]∏) . . .∑∏∑

Careful analysis shows a blow-up of exp(s1/∆+o(1)).

Is the blow-up essential?

Depth hierarchy theorem

More Resources

More power?

More Product-depth More power?

Depth hierarchy theorem

More Resources

More power?

More Product-depth More power?

Depth hierarchy theorem

More Resources More power?

More Product-depth More power?

Depth hierarchy theorem

More Resources More power?

More Product-depth

More power?

Depth hierarchy theorem

More Resources More power?

More Product-depth

More power?

Depth hierarchy theorem

More Resources More power?

More Product-depth More power?

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem

, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems

Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Boolean circuit complexity world

[Ajtai,Frust et al.,Yao, Håstad, 1980s] proved quasipolynomial
depth-hierarchy theorem.

[Håstad, 1986] proved exponential depth-hierarchy theorem.

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem

, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).

However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆)

, where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆, there is an explicit polynomial P∆+1(x1, . . . , xn)
such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Depth hierarchy theorems
Arithmetic circuit complexity world

[Raz and Yehudayoff, 2009] prove quasipolynomial depth-hierarchy
theorem, i.e. they show quasipolynomial size lower bound for
converting product-depth ∆ + 1 multilinear formula into
product-depth ∆ formula, as long as ∆ is small.

[Kayal, Nair, Saha, 2015] show an exponential size lower bound for
converting product-depth 2 multilinear formulas into product-depth 1
formulas.

Our result: Near-optimal Depth Hierarchy Theorem

For any constant ∆(can be slowly growing function of n), there is an
explicit polynomial P∆+1(x1, . . . , xn) such that

P∆+1(X) is computed by multilinear formula F∆+1 of product-depth
∆ + 1 and size O(n).
However, any multilinear formula of product-depth ≤ ∆ for P∆+1(X)
must have size exp(nα∆), where α∆ = Ω(1/∆).

Hard Polynomial

Construction of the hard polynomial

Polynomial P∆ is constructed inductively.

This polynomial is inspired by the construction of [Chen, Oliviera,
Servedio, Tan, 2016] who prove near optimal Boolean circuit lower
bounds for checking graph connectivity at small depth.

Hard Polynomial

Construction of the hard polynomial

Polynomial P∆ is constructed inductively.

This polynomial is inspired by the construction of [Chen, Oliviera,
Servedio, Tan, 2016] who prove near optimal Boolean circuit lower
bounds for checking graph connectivity at small depth.

Hard Polynomial

Construction of the hard polynomial

Polynomial P∆ is constructed inductively.

This polynomial is inspired by the construction of [Chen, Oliviera,
Servedio, Tan, 2016] who prove near optimal Boolean circuit lower
bounds for checking graph connectivity at small depth.

Hard Polynomial

Construction of the hard polynomial

Polynomial P∆ is constructed inductively.

This polynomial is inspired by the construction of [Chen, Oliviera,
Servedio, Tan, 2016] who prove near optimal Boolean circuit lower
bounds for checking graph connectivity at small depth.

Hard Polynomial

P(0) is a 4 layered Algebraic
Branching Program defined
by G (0).

x1,1 x1,2 x3,1
x3,2

x2,1 x2,2 x4,1 x4,2

Figure: Definition of G (0)

P(0) = x1,1x1,2x3,1x3,2 + x1,1x1,2x4,1x4,2 + x2,1x2,2x3,1x3,2 + x2,1x2,2x4,1x4,2.

This is a succint expression of the form ΣΠ, i.e., product-depth 1 and of
size O(1).

Hard Polynomial

P(0) is a 4 layered Algebraic
Branching Program defined
by G (0).

x1,1 x1,2 x3,1
x3,2

x2,1 x2,2 x4,1 x4,2

Figure: Definition of G (0)

P(0) = x1,1x1,2x3,1x3,2 + x1,1x1,2x4,1x4,2 + x2,1x2,2x3,1x3,2 + x2,1x2,2x4,1x4,2.

This is a succint expression of the form ΣΠ, i.e., product-depth 1 and of
size O(1).

Hard Polynomial

P(0) is a 4 layered Algebraic
Branching Program defined
by G (0).

x1,1 x1,2 x3,1
x3,2

x2,1 x2,2 x4,1 x4,2

Figure: Definition of G (0)

P(0) = x1,1x1,2x3,1x3,2 + x1,1x1,2x4,1x4,2 + x2,1x2,2x3,1x3,2 + x2,1x2,2x4,1x4,2.

This is a succint expression of the form ΣΠ, i.e., product-depth 1 and of
size O(1).

Hard Polynomial

P(0) is a 4 layered Algebraic
Branching Program defined
by G (0).

x1,1 x1,2 x3,1
x3,2

x2,1 x2,2 x4,1 x4,2

Figure: Definition of G (0)

P(0) = x1,1x1,2x3,1x3,2 + x1,1x1,2x4,1x4,2 + x2,1x2,2x3,1x3,2 + x2,1x2,2x4,1x4,2.

This is a succint expression of the form ΣΠ, i.e., product-depth 1

and of
size O(1).

Hard Polynomial

P(0) is a 4 layered Algebraic
Branching Program defined
by G (0).

x1,1 x1,2 x3,1
x3,2

x2,1 x2,2 x4,1 x4,2

Figure: Definition of G (0)

P(0) = x1,1x1,2x3,1x3,2 + x1,1x1,2x4,1x4,2 + x2,1x2,2x3,1x3,2 + x2,1x2,2x4,1x4,2.

This is a succint expression of the form ΣΠ, i.e., product-depth 1 and of
size O(1).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(1) is obtained by
composing two copies of
G (0) in parallel.

G (1) is obtained by
composing m series of
H(1) in series.

P(1) is the sum of
weights of all the source
to sink paths in G (1).

P(1) is a polynomial over
n1 := 8(2m) many
variables and has
product-depth 2, size
O(m) = O(n1) formula.

Figure: H(1).

. . .

m copies

Figure: G (1)

P(1) =
m∏
i=1

(P
(0)
(i ,1) + P

(0)
(i ,2)).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

P(∆) is a polynomial over
n∆ := 2m · n∆−1 = 8(2m)∆

many variables and has a
product-depth of ∆ + 1.

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

P(∆) is a polynomial over
n∆ := 2m · n∆−1 = 8(2m)∆

many variables and has a
product-depth of ∆ + 1.

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

P(∆) is a polynomial over
n∆ := 2m · n∆−1 = 8(2m)∆

many variables and has a
product-depth of ∆ + 1.

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Hard Polynomial

H(∆) is obtained by composing
two copies of G (∆−1) in
parallel.

G (∆) is obtained by composing
m series of H(∆) in series.

P(∆) is the sum of weights of
all the source to sink paths in
G (∆).

P(∆) is a polynomial over
n∆ := 2m · n∆−1 = 8(2m)∆

many variables and has a
product-depth of ∆ + 1.

G (∆−1)

G (∆−1)

H(∆) H(∆) . . . H(∆)

Figure: H(∆) (above) and G (∆)(below).

P(∆) =
m∏
i=1

(P
(∆−1)
(i ,1) + P

(∆−1)
(i ,1)).

Our result restated

Any product-depth ∆ formula for P∆ has size exp(Ω(mΩ(1)))

= exp(n
Ω(1/∆)
∆+1).

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals?

Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Proof details

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Designing a measure

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U .

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L.

Conclude that s ≥ L/U .

Partial Derivative Matrix & Complexity Measure

Rank measure defined by [Raz 2004]

Let ρ : X 7→ Y t Z be a partitioning function such that |Y | = |Z |.

f =
2n∑
i=1

ci ·mi 7→ f |ρ =
2n∑
i=1

ci ·mi ,Y ·mi ,Z

M(Y ,Z)(f |ρ) : Monomials in Y

Monomials in Z

mZ

mY

coeff f |ρ(mY ·mZ)

Complexity measure: µ(f) w.r.t. ρ is rank(M(Y ,Z)(f |ρ)).

Partial Derivative Matrix & Complexity Measure

Rank measure defined by [Raz 2004]

Let ρ : X 7→ Y t Z be a partitioning function such that |Y | = |Z |.

f =
2n∑
i=1

ci ·mi 7→ f |ρ =
2n∑
i=1

ci ·mi ,Y ·mi ,Z

M(Y ,Z)(f |ρ) : Monomials in Y

Monomials in Z

mZ

mY

coeff f |ρ(mY ·mZ)

Complexity measure: µ(f) w.r.t. ρ is rank(M(Y ,Z)(f |ρ)).

Partial Derivative Matrix & Complexity Measure

Rank measure defined by [Raz 2004]

Let ρ : X 7→ Y t Z be a partitioning function such that |Y | = |Z |.

f =
2n∑
i=1

ci ·mi 7→ f |ρ =
2n∑
i=1

ci ·mi ,Y ·mi ,Z

M(Y ,Z)(f |ρ) : Monomials in Y

Monomials in Z

mZ

mY

coeff f |ρ(mY ·mZ)

Complexity measure: µ(f) w.r.t. ρ is rank(M(Y ,Z)(f |ρ)).

Partial Derivative Matrix & Complexity Measure

Rank measure defined by [Raz 2004]

Let ρ : X 7→ Y t Z be a partitioning function such that |Y | = |Z |.

f =
2n∑
i=1

ci ·mi 7→ f |ρ =
2n∑
i=1

ci ·mi ,Y ·mi ,Z

M(Y ,Z)(f |ρ) : Monomials in Y

Monomials in Z

mZ

mY

coeff f |ρ(mY ·mZ)

Complexity measure: µ(f) w.r.t. ρ is rank(M(Y ,Z)(f |ρ)).

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n

zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i). (∆ = 1)

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2

zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Understanding the measure
Example

Let f (x1, . . . x2n) =
∏n

i=1(xi + xn+i).

Let ρ(xi) =

{
yi if 1 ≤ i ≤ n
zi−n if n + 1 ≤ i ≤ 2n

Therefore, f |ρ(Y ,Z) =
∑

S⊆[n] YSZ[n]\S

That is, M(Y ,Z)(f |ρ) is a disjointness matrix.

Therefore, µ(f) w.r.t. the above ρ is 2n.

Let ρ′(xi) =

{
yi if 1 ≤ i ≤ n/2 or n + 1 ≤ i ≤ 3n/2
zi−n if n/2 + 1 ≤ i ≤ n or 3n/2 + 2 ≤ i ≤ 2n

µ(f) w.r.t. ρ′ � 2n.

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

Designing µ and ρ

The measure must satisfy

If f (X) is computable by a product-depth ∆ = 1 multilinear formula
of size s then µ(f) ≤ s × U w.r.t ρ.

There is a polynomial P(X) computable by product-depth ∆ = 2
multilinear formula such that µ(P) ≥ L w.r.t the same ρ.

Conclude that s ≥ L/U .

A random ρ : X → Y ∪ Z ∪ F
Map every copy of H(1) uniformly at random to one of the three
possibilities.

y1 z1

y2

z2

y1z1
y2

z2

y1

z1

(y1 + z1)(y2 + z2) (y1 + z1)(y2 + z2) (y1 + z1)

Figure: Map ρ applied to each copy of H(1). Edges that are not labelled have
their variables set to 1. Dotted edges have their variables set to 0.

A random ρ : X → Y ∪ Z ∪ F
Map every copy of H(1) uniformly at random to one of the three
possibilities.

y1 z1

y2

z2

y1z1
y2

z2

y1

z1

(y1 + z1)(y2 + z2) (y1 + z1)(y2 + z2) (y1 + z1)

Figure: Map ρ applied to each copy of H(1). Edges that are not labelled have
their variables set to 1. Dotted edges have their variables set to 0.

Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi)

, where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m) w.h.p. over the distribution defined by
these random partitions.

Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi), where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m)

w.h.p. over the distribution defined by
these random partitions.

Random map ρ

Recall that G (1) is m copies of H(1).

. . .

Under the above choice of random ρ, the resulting polynomial will be
P(1)|ρ =

∏
i∈[t](yi + zi), where t = Ω(m) in expectation.

Therefore, µ(P(1)) = 2Ω(m) w.h.p. over the distribution defined by
these random partitions.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Effect of ρ on
∑∏∑

P(x) =
s∑

i=1

s′∏
j=1

Li ,j

Easy to see that µ of linear polynomials is small with constant
probability.

Also, µ of each product term is low, say U , w.h.p.

By subadditivity of ranks, µ(P) is at most s · U

Hence, s ≥ 2Ω(m)/U .

At larger depths ...

A carefully chosen ρ at each level of the polynomial.

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals?

Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Conclusion

In the multilinear world there is a strict depth-hierarchy.

(
∑∏

)∆
∑

((
∑∏

)∆+1
∑

, while ∆ = O(1).

The classes are exponentially separated.

The lower bound we prove is near-optimal.

What about general constant depth formuals? Open!

Do similar techniques yield a non-commutative formula
depth-hierarchy theorem?

Thank You!

