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Our focus
Task:

Fix a class of circuits C.

#SAT(C)

Given: C ∈ C computing f : {−1, 1}n → {−1, 1}

Count: #{a ∈ {−1, 1}n | f (a) = −1}

Here −1 stands for True and 1 stands for False.

Trivial brute-force algorithm exists. It takes time poly(|C |) · 2n.

Can we design an algorithm that takes time 2n/nω(1) when |C | is
small, say poly(n)?
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Circuit satisfibaility algorithms

Connections to circuit lower bounds

Better than brute-force circuit-satisfiability algorithms for a class C
reveals some weaknesses of functions computable by C.

This intuitive connection has been formalised to derive lowerbounds
for various interesting classes of circuits.

[Paturi, Pudlák, Zane 1997],[Paturi, Pudlák, Saks, Zane 2005],
[Williams 2010], [Williams 2011].
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Polynomial Threshold Functions

Definition (Polynomial Threshold Functions)

Let X = {x1, . . . , xn}.

A function f : {−1, 1}n → {−1, 1} is called a degree-k Polynomial
Threshold Function (k-PTF) if there is a multilinear degree-k polynomial

P(x1, . . . , xn) =
∑

S⊆[n],|S|≤k

αSxS

where XS =
∏

i∈S xi , P(X ) ∈ R[X ] such that sign(P(a)) = f (a) for every
a ∈ {−1, 1}n.

We assume that P(a) 6= 0 for each a ∈ {−1, 1}n.

Let w(P) denote the bit-complexity of
∑

S⊆[n],|S|≤k |αS |.

Example: AND(x1, x2) = sign(x1 + x2 + 1) = sign(100x1 + 100x2 + 1).
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A circuit consisting of PTF gates.

Definition (k-PTF circuits)

A k-PTF circuit on n variables is a Boolean circuit, where each gate of
fan-in m computes a fixed k-PTF of its inputs.

Size of the circuit is the number of gates in it.

Depth of the circuit is the longest input to output path.

Weight of the circuit is the maximum among the weights of k-PTFs
in the circuit.



Polynomial Threshold Circuits

A circuit consisting of PTF gates.

Definition (k-PTF circuits)

A k-PTF circuit on n variables is a Boolean circuit, where each gate of
fan-in m computes a fixed k-PTF of its inputs.

Size of the circuit is the number of gates in it.

Depth of the circuit is the longest input to output path.

Weight of the circuit is the maximum among the weights of k-PTFs
in the circuit.



Polynomial Threshold Circuits

A circuit consisting of PTF gates.

Definition (k-PTF circuits)

A k-PTF circuit on n variables is a Boolean circuit, where each gate of
fan-in m computes a fixed k-PTF of its inputs.

Size of the circuit is the number of gates in it.

Depth of the circuit is the longest input to output path.

Weight of the circuit is the maximum among the weights of k-PTFs
in the circuit.



Polynomial Threshold Circuits

A circuit consisting of PTF gates.

Definition (k-PTF circuits)

A k-PTF circuit on n variables is a Boolean circuit, where each gate of
fan-in m computes a fixed k-PTF of its inputs.

Size of the circuit is the number of gates in it.

Depth of the circuit is the longest input to output path.

Weight of the circuit is the maximum among the weights of k-PTFs
in the circuit.



Polynomial Threshold Circuits

A circuit consisting of PTF gates.

Definition (k-PTF circuits)

A k-PTF circuit on n variables is a Boolean circuit, where each gate of
fan-in m computes a fixed k-PTF of its inputs.

Size of the circuit is the number of gates in it.

Depth of the circuit is the longest input to output path.

Weight of the circuit is the maximum among the weights of k-PTFs
in the circuit.



Polynomial Threshold Circuits

Suppose each gate is a Linear Threshold function, the class is called TC0.

They are powerful.

Integer arithmetic can be done in TC0.
[Beame, Cook, Hoover 1986],[Hesse, Allender,Barrington, 2002].

At the frontier of lower bound techniques.

For instance [Kane, Williams, 2015], [Chen 2018].

Polynomial Threshold circuits are a natural generalization of TC0.
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Better than brute-force satisfiability algorithms.

Algorithms that run in time 2n−s , where s is non-trivial.

Known results for a single PTF gate

A single 2-PTF satisfiability.
[Williams, 2004], [Williams, 2014].

#SAT for a single k-PTF when the weights are small.
[Sakai, Seto, Tamaki, Teruyama, 2016].
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Known results for constant-depth

For constant depth TC0 circuits of size n1+εd , where d is the depth of
the circuit.
[Chen, Santhanam, Srinivasan, 2018].

The paper proved the first average case lower bound for constant depth
TC0 circuits.

The lower bound was extended to a much more powerful class of
constant depth PTF circuits. [Kane, Kabanets, Lu, 2017].

For constant depth PTF circuits of size n1+εd , where d depends on
the depth of the circuit, and sparsity n2−Ω(1).
[Kabanets and Lu 2018].

The last two algorithms also work for #SAT.
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A simple question

Question left open by previous works.

Is there a better than brute-force #SAT algorithm for degree-k PTFs?

Answered affirmatively here.

Our result

Theorem (#SAT for a single k-PTF)

Fix any constant k , there is a zero-error radomized algorithm that
solves the #SAT problem for a single k-PTF in time
poly(n,M) · 2n−s , where s = Ω̃(n1/k+1).

Here n is the number of variables and M = w(P).

w(P): bit-complexity of sum of absolute values of the coeffients of the k-PTF.
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#SAT algorithm for k-PTF circuits

Our result

Theorem (#SAT for constant depth k-PTF circuits)

Fix any constants k, d , we have the following for some fixed constants
εk,d , βk,d depending only on k , d .

There is a zero-error randomized algorithm that solves #SAT problem
for k-PTF circuits of depth d and size n(1+εk,d ) in time
poly(n,M) · 2n−s , where s = nβk,d . Here n is the number of inputs,
M is the weight of the circuit.

Weight of a k-PTF circuit is the maximum among the weights of
k-PTFs in the circuit.
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Memoization

A 2-step procedure to solve satisfiability for class C of circuits.

Step 1 Use brute-force to solve all instances on m inputs. Typically m = nε.

Store all answers (SAT or not SAT) for each in a table T .

Takes time exp(mO(1))� 2n.

Step 2 On input C ∈ C,
set variables xm+1, . . . , xn to all possible Boolean values.

Each setting creates an instance on m inputs.

Look-up T and figure out whether it is satisfiable.

If look-up can be done in poly(|C |) time, then this step takes time
O(2n−m · poly(|C |)) � 2n.
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Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF

Given as input f specified by a degree-k polynomial P on n variables with
integer coefficients.

Can memoization be made to work for a single k-PTF?

Step 1 The number of k-PTF on m variables is 2mk+1

. [Chow 1961].

Hence this step can be implemented in time 2mk+1 � 2n time.

Step 2 For this to work, the look-up (into the functions stored in Step 1) need
to happen quickly.

This step not obvious.

Quick Look-up?



Memoization for k-PTF
Quick Look-up: A possible approach.

Every k-PTF on m variables can be sign represented by a polynomial
with coefficients bounded by 2O(poly(m)). [Muroga 1971].

Simply store all polynomials with small weights in the table.

Doable in time 2O(poly(m)) � 2n.

May not wok.

A k-PTF P on n variables is reduced to a k-PTF P ′ on m variables
by Step 1.

The coeffiecients of P ′ can be as large as 2poly(n).

Not clear how to find a polynomial with small coefficients that
sign-represents P ′.
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Quick Look-up: Another possible approach.

A k-PTF on m variables can be represented by poly(m) many
numbers of O(m) bit-complexity.

The numbers are called Chow parameters. [Chow 1961].

Expensive to compute

Even for LTFs computing Chow parameters is known to be NP-hard.
[O’Donnell, Servedio 2011].



Memoization for k-PTF

Quick Look-up: Another possible approach.

A k-PTF on m variables can be represented by poly(m) many
numbers of O(m) bit-complexity.

The numbers are called Chow parameters. [Chow 1961].

Expensive to compute

Even for LTFs computing Chow parameters is known to be NP-hard.
[O’Donnell, Servedio 2011].



Memoization for k-PTF

Quick Look-up: Another possible approach.

A k-PTF on m variables can be represented by poly(m) many
numbers of O(m) bit-complexity.

The numbers are called Chow parameters. [Chow 1961].

Expensive to compute

Even for LTFs computing Chow parameters is known to be NP-hard.
[O’Donnell, Servedio 2011].



Linear Decision Tree

Our approach:

Linear Decision Trees [Kane, Lovett, Moran, Zhang 2017]

There is an algorithm that given a positive integer r and a set
H ⊆ {−1, 1}r , produces a decision tree T in time 2O(∆), where
∆ = O(r log r log |H|) and T that has the following properties:

Each internal node of the tree is a linear test (
∑r

i=1 αiwi ≥ θ), where
w is the input to T and αi ∈ {−2,−1, 0, 1, 2}.

It computes a function F : Rr → {−1, 1}|H| such that

given an input w ∈ Rr , F (w) is the truth table of the LTF defined by
w on all points in H.

The depth of the decision tree is ∆.
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Linear Decision Trees

Let r be a parameter,
H ⊆ {−1, 1}r .

The linear decision tree T has
the following properties:

I Each internal node of the tree
is a linear test
(
∑r

i=1 αiwi ≥ θ), where w is
the input to T and
αi ∈ {−2,−1, 0, 1, 2}.

I It computes a function
F : Rr → {−1, 1}|H| such that

I Given an input w ∈ Rr , F (w)
is the truth table of the LTF
defined by w on all points in
H.

Solving a learning problem.

Given w ∈ Rr ,

think of w as a linear test
fw (h) := 〈w , h〉

We want to learn sign(fw ) at
every point in H.

Types of queries allowed: for
h, h′ ∈ H is fw (h) ≥ fw (h′)?

Small depth decision tree for this

implies a fast learning algorithm.
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Using Linear Descision Tree

Definition

Given a k-PTF P ′ on m variables, let coeff(P ′) ∈ Rr denote a vector
of coefficients of all monomials in P ′ in lexicographical order, where
r =

∑k
i=0

(m
i

)
.

For a point b ∈ {−1, 1}m, let eb ∈ {−1, 1}r denote the evaluation
vector of all monomials of degree at most k on the point b.

Let H = {eb | b ∈ {−1, 1}m}. |H| ≤ 2m.

Note that

Given a polynomial P ′ of degree k on m variables, the truth table of
the function sign-represented by P ′ is given by the LTF defined by
coeff(P ′) evaluated at H.
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Linear Decision Tree for k-PTF
Linear Decision Trees

[Kane, Lovett, Moran, Zhang 2017]

Given a k-PTF P ′ on m.

Run the algorithm of [KLMZ 2017] with r =
∑m

i=1

(m
i

)
and a set

H = {eb | b ∈ {−1, 1}m} ⊆ {−1, 1}r .

This produces a decision tree T that has the following properties:
Each internal node of the tree is a linear test (

∑r
i=1 αiwi ≥ θ), where

wi s are the inputs and αi ∈ {−2,−1, 0, 1, 2}.

It computes a function F : Rr → {−1, 1}|H| such that

Given an input coeff(P ′) ∈ Rr , F (coeff(P ′)) is the truth table of the
k-PTF defined by P ′.

The decision tree depth is ∆ = O(r log r log |H|) = O(mk+1 logm).

The tree can be constructed in time 2O(∆) = exp(mk+1) time.
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Memoization for k-PTF

Our approach

Step 1 Construct Linear Decision Tree T for k-PTFs on m variables.
Time: exp(mk+1).

Step 2 Let P be a k-PTF on n variables and w(P) = M.

For each σ : {xm+1, . . . , xn} → {−1, 1},
Compute k-PTF P ′

σ obtained from P after restricting the last n −m
variables.
Time: poly(n,M).
Query the tree T using coeff(P ′

σ) and compute the answer.
Time: O(mk+1 logm).

Time: 2n−m × poly(n,M).

Time: exp(mk+1) + 2n−m poly(n,M) = 2n−m poly(n,M) if
m = n1/k+1/ log n.
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Thank You!


