A Simple Efficient Method for Realistic Animation of Clouds

Yoshinori Dobashi Kazufumi Kaneda Hideo Yamashita
Tsuyoshi Okita Tomoyuki Nishita
Year 2000

Presented By:
Neha Dhamija
Vipin Vishvkarma
Contents

- Introduction
- Simulation
- Rendering
- Results
- Conclusion
Problem Definition

- Model clouds in runtime
- Animate them realistically
- Solution should be efficient

- It can be broken into two sub-problems
 - Simulate the process of cloud formation
 - Rendering of clouds
Simulation: Possible solution

- Simulate physical process of fluid dynamics
 - Very accurate
 - Computationally expensive

- Simulate clouds using an heuristic approach
 - Computationally inexpensive
 - Easier to implement
 - Requires tweaking of acceptable result
Simulation: Author’s approach

- Intermediate between the two
- Model clouds using cellular automaton and Boolean operations
- Considers the following
 - Extinction of clouds
 - Wind effects
 - Controlling cloud motion
 - Speeding up of the simulation
Simulation: Cloud formation

- When wet air particles move upward and reach the height of dew point, clouds are formed.

- Use Nagel’s method to simulate formation:
 - Divide 3-D space evenly into 3-D cells
 - Assign Boolean variables to each cell
Simulation: Cellular Automaton

- Voxels correspond to cells
- Three logical Boolean variables at each cell
 - hum: indicates whether cell has enough water vapor to form clouds
 - act: indicates whether phase transition is ready to occur
 - cld: indicates whether cell contains clouds
Simulation : Cloud Growth

- Cell properties in the current animation frame t_i are used to compute the cell properties in the next frame t_{i+1}:

$$\text{hum}(x, y, z, t_{i+1}) = \text{hum}(x, y, z, t_i) \land \neg \text{act}(x, y, z, t_i)$$

$$\text{cld}(x, y, z, t_{i+1}) = \text{cld}(x, y, z, t_i) \lor \text{act}(x, y, z, t_i)$$

$$\text{act}(x, y, z, t_{i+1}) = \neg \text{act}(x, y, z, t_i) \land \text{hum}(x, y, z, t_i) \land \text{fact}(x, y, z, t_i)$$

fact is a boolean function and its value is calculated by the status of act in the surrounding cells.
Simulation: Cloud Growth

<table>
<thead>
<tr>
<th></th>
<th>time t_i</th>
<th>time t_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>act</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>hum</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
<tr>
<td>cld</td>
<td>![Diagram]</td>
<td>![Diagram]</td>
</tr>
</tbody>
</table>

- $\triangle act = 0$, $\square hum = 0$, $\circ cld = 0$
- $\triangle act = 1$, $\blacksquare hum = 1$, $\bullet cld = 1$
Simulation: Cloud Extinction

- Extension to Nagel's method:

\[cld(x, y, z, ti+1) = cld(x, y, z, ti) \land IS(rnd > pext(x, y, z, ti)) \]
\[hum(x, y, z, ti+1) = hum(x, y, z, ti) \lor IS(rnd < phum(x, y, z, ti)) \]
\[act(x, y, z, ti+1) = act(x, y, z, ti) \lor IS(rnd < pact(x, y, z, ti)) \]

- **rnd**: uniform random number
- **pext**: probability of cloud extinction
- **phum**: probability of vapor forming
- **pact**: probability of phase transition occurrence
Simulation: Advection by Wind

- Clouds move, blown by winds
- Wind velocity is different depending on the height from the ground

\[
\begin{align*}
\text{hum}(i, j, k, t_{i+1}) &= \begin{cases}
\text{hum}(i - v(z_k), j, k, t_i), & i - v(z_k) > 0 \\
0, & \text{otherwise}
\end{cases}, \\
\text{cld}(i, j, k, t_{i+1}) &= \begin{cases}
\text{cld}(i - v(z_k), j, k, t_i), & i - v(z_k) > 0 \\
0, & \text{otherwise}
\end{cases}, \\
\text{act}(i, j, k, t_{i+1}) &= \begin{cases}
\text{act}(i - v(z_k), j, k, t_i), & i - v(z_k) > 0 \\
0, & \text{otherwise}
\end{cases},
\end{align*}
\]

- \(v(z)\) : wind velocity, piecewise linear function
- Assumption: wind blows towards the direction of x-axis
Simulation: using Bit Field

- Each cell state (cld, act, hum) can be stored in a single bit
- Low memory requirements
- Fast computation of simulation process
- Problem: Random numbers
- Solution: Precalculated look-up tables
Simulation: cloud motion

- Motion of cloud can be controlled by using ellipsoids.
- Ellipsoids simulate air parcels.
- Vapor and phase transition probability:
 - higher at center / lower at edge
- Cloud extinction probability:
 - Lower at center / higher at edge
- Ellipsoids move in direction of wind.
- Different kinds of clouds by controlling ellipsoid parameters (sizes and position).
Rendering
Rendering: Previous Work

- Using Direct Mapping Techniques
 simple & efficient but unrealistic & static
- Using Physical Models
 with scattering/absorption
 with multiple scattering and skylight
- Using 3D textures
 simple, efficient, expensive hardware, not realistic enough
Rendering

- Shafts of light using ray-tracing highly inefficient
- Shafts of light using scan-line accumulation buffer faster but still inefficient
- THE PROPOSED METHOD: making use of graphics hardware (OpenGL) for displaying clouds and shafts of light.
Continuous Density Distribution

- 0-1 values obtained for simulation smoothened to continuous values.
- Space and time distribution of each cell:

\[
q(i, j, k, t_i) = \frac{1}{(2t_0 + 1)(2k_0 + 1)(2j_0 + 1)(2i_0 + 1)} \sum_{t'=-t_0}^{t_0} \sum_{k'=-k_0}^{k_0} \sum_{j'=-j_0}^{j_0} \sum_{i'=-i_0}^{i_0} w(i', j', k', t') cld \(i + i', j + j', k + k', t_i + t'\),
\]
• Clouds rendered as 3D Metaballs. Cell density distributed over these.

\[\rho(x, t_i) = \sum_{i,j,k \in \Omega(x,R)}^{N} q(i, j, k, t_i) f(|x - x_{i,j,k}|), \]

No animation frames. Runtime computations.
Rendering

- 2D texture generated on billboard for each metaball using splatting.

- Discretization of density due to huge memory requirement.

- Closest billboard mapped to metaball.
Step 1: Intensity Computation

- View from Sun's direction
- Process metaballs in decreasing depth order
Step1: Intensity Computation

- Final image used as light map texture for shadows
Step 2: Image Generation

- Render Background
- Draw metaballs in increasing depth order using the color computed
Step 3: Shafts of Light

- Scattering caused due to particles in atmosphere
• Intensity actually reaching the view point:

\[I = I_c \beta(T) + \int_0^T \gamma(s) I_s(s) \beta(s) ds , \]

• Particle density exponentially reduces with height. \(\beta s \) & \(I(s) \) analytically computed.

• Discretized Equation

\[I = I_c \beta(T) + \sum_{k=0}^{n_s} \gamma(k\Delta s) I_s(k\Delta s) \beta(k\Delta s) \Delta s , \]
Results

smoothing \quad \text{volume rendering}

- Two cubes before and after smoothing.
- Image of a volume rendered cloud.

Conclusion

• Advantages:
 – Simulation requires little computation
 – Memory requirements are small
 – Rendering is fast by making use of graphics hardware
 – Shadows of clouds and shafts of light can also be rendered

• Possible improvements:
 – Effects of terrain under clouds
 – Handle multiple wind direction, wind field
References

THANK YOU !!